A comparative study on reproductive performance and productivity of the Black Bengal and Crossbred goat at Atrai, Bangladesh

Mohammad Mahmudul Hassan¹, S.M. Niaz Mahmud², S.K.M. Azizul Islam, Omar Faruk Miazi³
¹Department of Physiology, Biochemistry and Pharmacology, Chittagong Veterinary and Animal Sciences University
²Dept. of Genetics and Animal Breeding, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong-4202

Abstract : The present investigation was carried out to detect the status of different productive and reproductive parameters of Black Bengal and Crossbred goats at Bandaikhra village under Atrai Upazilla of Naogaon district during the period of September to December/2005. The average age at first sign of heat of Black Bengal goats was better than that of Crossbred goats. In Black Bengal goat the average age at first kidding was 360.5±10 days, whereas, in crossbred goats it was 411.5±15.5 day. Significantly (P<0.01) lower the post partum heat period in Black Bengal goat than the crossbred goat. The average kidding interval in Black Bengal and Crossbred goats were 179±20 and 270±22 days respectively and differences are statistically significant (P<0.01). The usual numbers of kids at one time in Black Bengal goats vary from single to quadruplet. On the other hand, litter size of crossbred goat was single or twin. The average birth weight of Black Bengal goat was lower than Crossbred goats, which are statistically significant (P<0.05). The average body weight gain after 365 days is better in Crossbred than Black Bengal goats and statistically significant (P<0.01). The average milk yield in Crossbred goat was 1.05 liter/day, whereas, in Black Bengal goat, it produces milk that only nourished its kids. It was concluded that the reproductive performance like early maturity, larger litter size, shorter postpartum period, minimum kidding interval are better in Black Bengal goat. On the other hand productive performance like higher birth weight, maximum body weight gain, high milk yield, longer lactation length are suitable in crossbred goat.

Key words: Black Bengal goat, Crossbred goat, Production, Reproduction, Performance

Introduction
Goat is numerically and economically important and promising animal resources in the developing countries especially in Asia and Africa (Hussain, 1999). It is an important source of income for the poor people. Goats are raised by poor farmers and distressed women with little capital investment (FAO, 1991). It is estimated that more than 90% of goat population comprised of Black Bengal goat (BBGs). Goats rank first position in terms of total livestock population in Bangladesh (FAO, 1999). The total contribution of livestock sub-sector to the GDP (Gross Domestic Product) is approximately 6.5% (DLS, 1998). The contribution of livestock sub-sector is 13% earning of total foreign currency in Bangladesh (Alam, 1993).

Considering the possibilities, a participatory approach in rearing poultry and later goat as a small scale subsistent family enterprise has been promoted by the government and various non-government organizations with the credit and input support since 1980’s in this country (Islam et al. 1992; DLS 1998; Fattah, 1999; Das, 2004). Bangladesh Government has also given special emphasis and adopted a national programme on Black Bengal goats for poor farmers to reduce poverty with targeting the Millennium Development Goals (MDGs) achievement since 2003 (Kader, 2006). For rearing goats, a minimum investment of money is often required, even without specific arrangement of housing. Goat graze on barren and road-side land with grass and least home made supplies such as rice gruel, boiled rice, vegetables peels etc. In addition goats fed on jackfruit leaves, which often are available in most of the rearing areas. The higher demands for meat and especially for skin in the local as well as foreign markets focused the goat enterprise extremely prominent to the vulnerable group of people and the existing socio-economic condition of the country. Goat also have important role in generating employment, income, capital storage and improving household nutrition (Devendra, 1992; Hussain, 1999). It has been anticipated that over the next decade, there will be a massive increase in the demand for food of animal origin (100 million tons of meat and 201 million tons of milk), as a result of global population growth, an extra 2.5 billion people to feed by 2020 (DFID, 2000). The normal requirement of animal protein for a man is about 62.5 per day, while people of our country get only 6.90 meats per day (Jabber, 1985).

The importance of goat is strongly emphasized for their versatile production profile and valuable contribution like meat, milk, industrial raw product such as skin, fiber and manure. Black Bengal goats are known to be famous for its adaptability, fertility, prolificacy, meat and skin quality.

The present study was therefore undertaken to assess the reproductive performance and productivity of BBGs and the available crossbred goat (CBGs).

Materials and Methods
The data for reproductive performance such as age of puberty (days), age at insemination, age at first kidding...
and Crossbred goats

Table 1: Reproductive performance

Results and Discussion

Reproductive performance

Table 1: Reproductive performances of Black Bengal and Crossbred goats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Black Bengal goat</th>
<th>Crossbred goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (Kg)</td>
<td>*1.60±.50 (662)</td>
<td>*1.90±.75 (56)</td>
</tr>
<tr>
<td>Litter size (Number)</td>
<td>*38.75±10.5 (662)</td>
<td>*121.75±15 (56)</td>
</tr>
<tr>
<td>Post partum heat period (Days)</td>
<td>**38.75±10.5 (662)</td>
<td>**121.75±15 (56)</td>
</tr>
<tr>
<td>Kidding interval (Days)</td>
<td>**179±20 (662)</td>
<td>**209±22 (56)</td>
</tr>
</tbody>
</table>

*p<0.05, ** p<0.01

Age at puberty: The average age at first sign of heat of crossbred and Black Bengal goats was 222.5±5.5 and 196.5±7.5 days respectively, here the duration was greater in crossbred than Black Bengal goats and statistically significant (P<0.05). BBGs was reported early (200 days) maturing goats than CBGs (225 days) (Banerjee, 2004). Somewhat variation occurs due to various causes like presence of buck in the herd (Devendra & Burns, 1983), plan of nutrition, availability of forages and temperature.

Age at first kidding: In Black Bengal goat the average age at first kidding was 360.5±10 days whereas in crossbred goats it was 411.5±15.5 day. So, reproductive performance of Black Bengal goats was higher than crossbred goats and statistically significant (P<0.05). This result is agreed with Epstein & Hertz (1964) which depends on photoperiod, kidding season and nutritional status.

Post partum heat period: The average post partum heat period of Black Bengal and crossbred goats were 38.75±10.5 and 121.75±15 days respectively and differences are highly significant (P<0.01). Lower the post partum heat period higher the reproductive performance, so, the reproductive performance of Black Bengal goat was better than crossbred goat. This result is in agreement with the study of Shill et al. (2003).

Kidding interval: The average kidding interval in Black Bengal and Crossbred goats were 179±20 and 270±22 days respectively and differences are highly significant (P<0.01). Kidding interval of Black Bengal goat was lower that is the reproductive performance is better in Black Bengal goat than the crossbred goat. This result is in agreement with the study of Shill et al. (2003).

Table 2: Different types of litter size per kidding

<table>
<thead>
<tr>
<th>Birth types (Litter size)</th>
<th>Black Bengal goat</th>
<th>Crossbred goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (n)</td>
<td>Percentage</td>
<td>Frequency (n)</td>
</tr>
<tr>
<td>Single</td>
<td>140</td>
<td>21.14</td>
</tr>
<tr>
<td>Twin</td>
<td>373</td>
<td>56.34</td>
</tr>
<tr>
<td>Triplet</td>
<td>135</td>
<td>20.39</td>
</tr>
<tr>
<td>Quadruplet</td>
<td>14</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Litter size: The usual number of kids at one time in Black Bengal goats vary from single to quadruplet of which twin were the most frequent (56.32%) and quadruplet were the least frequent (2.11%) litter size. On the other hand, litter size of crossbred goat was either single (75%) or twin (25%). This result is in agreement with the study of Hussain et al. (1995) and Banerjee (2004).

Productive performance

Table 3: Productive performances of Black Bengal and Crossbred goat

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Black Bengal goat</th>
<th>Crossbred goat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight (Kg)</td>
<td>*1.60±.50 (662)</td>
<td>*1.90±.75 (56)</td>
</tr>
<tr>
<td>Body weight gain after 365 days (Kg)</td>
<td>**20.25±2.5 (50)</td>
<td>**29.5±3.5 (18)</td>
</tr>
<tr>
<td>Milk production (Litter/day)</td>
<td>**99.25±10 (662)</td>
<td>**Nourished only its kids (662)</td>
</tr>
<tr>
<td>Lactation length (Days)</td>
<td>**179±20 (662)</td>
<td>**209±22 (56)</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01
Birth weight: The average birth weight of Black Bengal goat and Crossbred goats were 1.60±.50 and 1.90±.75 respectively and differences are statistically significant (P<0.05). The birth weight of BBGs and CBGs were 1.5 kg and 2.0 kg respectively under traditional farming condition of sub-continent (Banerjee, 2004).

Body weight gain: The average body weight gain after 365 days in Black Bengal and Crossbred goats were 20.25±2.5 and 29.50±3.5 kg respectively and differences are statistically significant (P<0.05), which agreed with Banerjee (2004).

Milk production: The average milk production in Crossbred goat was 1.05±.50 liter/day, whereas in Black Bengal goat, it produces milk that only nourished its kids and differences are highly significant (P<0.01). This result of milk production is agreed with the result of Hussain et al. (1995) and Banerjee (2004). Due to genetic factor Black Bengal goats yield very poor amount of milk (Payne, 2000).

Lactation Period: Lactation period of Crossbred goats and Black Bengal goats were 99.25±10 and 65.50±7.5 days respectively and differences are statistically significant (P<0.05). This result is agreed with the result of Shill et al. (2003).

Acknowledgments: Guidance, help and co-operation received from many persons during the tenure of this research are gratefully acknowledged. The author would like to express special thanks to cowboy Jewel for his help during the survey. Deep sense of gratitude and thanks to Vice-Chancellor of Chittagong Veterinary and Animal Sciences University, Dr. Nitish Chandra Debnath and to Dr. Md. Ahasanul Haque, Professor, Department of Physiology, Biochemistry and Pharmacology for supervision, scholastic guidance, valuable suggestions and constant encouragement during the entire period of the research work.

References

DFID (Department of Foreign Integrated Development), 2000. Halving World poverty by 2015, economic growth, equity and security. Strategies for achieving the international development targets. DFID strategic paper.
Hussain, S.S. 1999. Sustainable genetic improvement of economic traits of Black Bengal goats through selective and cross breeding. BAU Res. Prog. 10: 72-80

Manuscript received on 20.09.07, accepted on 29.11.07