

Annals of Bangladesh Agriculture

Journal homepage: gau.edu.bd/aba

ORIGINAL ARTICLE

Effects of biosynthesized zinc oxide nanoparticles as feed additives on growth and hematological parameters of striped dwarf catfish (*Mystus vittatus*)

Md. Mahadi Hasan¹, Md. Shah Newaz¹, Md. Arif Shahariar^{1,} Md. Zunaed Hossain¹, Riad Ahmed¹ and Mohammad Shafiqul Alam^{1*}

Department of Genetics and Fish Breeding, Gazipur Agricultural University, Gazipur 1706, Bangladesh

ARTICLE INFO.

Keywords:

ZnONPs, *Mystus vittatus*, growth performance, hematological parameters, survivability

Received: 15 March 2025 Revised: 12 June 2025 Accepted: 30 June 2025 Published: 6 July 2025

Citation:

Hasan M. M., M. S. Newaz, M. A. Shahariar, M. Z. Hossain R. Ahmed and M. S. Alam. 2025. Effects of biosynthesized zinc oxide nanoparticles as feed additives on growth and hematological parameters of striped dwarf catfish (*Mystus vittatus*). Ann. Bangladesh Agric. 29(1): 89-103

ABSTRACT

Striped dwarf catfish (Mystus vittatus) is a valued freshwater species in South Asia for its taste, nutritional profile, and year-round availability. This study evaluated the effects of biosynthesized zinc oxide nanoparticles (ZnONPs) on the growth performance and hematological parameters of M. vittatus. A total of 960 fish (80/aquarium) were reared in twelve aquariums, and fed diets containing ZnONPs at 0 (T₀), 50 (T₁), 80 (T₂), and 110 (T₂) mg/kg for 75 days. Treatment T₃ showed the highest weight gain (233.33%), specific growth rate (1.60%/day), and protein efficiency ratio (2.01±0.002), along with the lowest feed conversion ratio (FCR) (p<0.05). Hematological parameters (RBC, Hb, WBC, HCT, etc.) varied numerically, but statistical tests (ANOVA and Kruskal-Wallis) showed no significant differences (p>0.05). Values at 80 mg/kg appeared more stable, though not statistically validated. Effect size analysis indicated large variance explained by treatment for key indices ($\eta^2 = 0.31 - 0.39$ for RBC, WBC, Hb, HCT). These values suggest biologically meaningful differences that were not statistically confirmed, likely due to small sample size. By contrast, indices with low effect sizes showed minimal treatment influence, indicating real stability across diets. The survival rate (67.50±0.73%) improved with increasing ZnONPs concentrations, reaching the highest in T_a (p < 0.05). Although mortality was a bit higher, likely due to artificial aquarium conditions and early-stage sensitivity, ZnONPs supplementation still showed a positive effect. These findings suggest that dietary ZnONPs at 110 mg/kg improved growth and survivability in *M. vittatus* without adverse hematological effects.

ISSN 1025-482X (Print)/2521-5477 (Online) © 2025 ABA. Published by GAU. This is an open access article under the CC BY-NC-ND license

^{*}Corresponding Author: Department of Genetics and Fish Breeding, Gazipur Agricultural University, Gazipur 1706, Bangladesh. Email: msalambd@gau.edu.bd

Introduction

Modernization of the aquaculture industry promises increased biomass production utilizing advanced techniques to meet the nutritional requirements of the growing population (Boyd et al., 2020). However, the industry encounters significant economic losses due to the emergence of infectious diseases caused by various pathogens (Patil et al., 2025). The application of antibiotics can be considered an efficient technology for instant solutions to the drawback. Still, they can lead to the emergence of antibiotic-resistant pathogens and environmental contamination as the main receptors of antibiotics can last even after the treatment and are discharged into the environment (Romero et al., 2012; Michael et al., 2013). Utilization of probiotics, prebiotics, plant extracts, and synbiotics poses an alternative measure of antibiotics in fish due to their growth performance, survival rate, and immune response-enhancing attributes (Harikrishnan et al., 2019; Rohani et al., 2022). However, most commercial probiotics available on the market are non-native to many countries, including Bangladesh, Pakistan, and Myanmar, and their effectiveness is often dependent on specific species and environmental conditions (Hossain et al., 2023). Therefore, adequately efficient techniques should be introduced across all fish species and environments. One such promising approach is the use of nanoparticlebased technology. This technology offers several advantages, including enhanced bioavailability, lower dosage requirements,

reduced antibiotic residues, and decreased environmental contamination (Rakhi al., 2022). Moreover, they suggested that nanoparticle-based trace minerals can meet fish dietary mineral requirements more effectively. Nanoparticles can modulate key physiological functions across aquaculture species. For example, dietary silver nanoparticles (10-15 µg/kg) improved growth, immune-gene expression, and resistance to Aeromonas hydrophila in rohu (Labeo rohita) (Popoola et al., 2023). Likewise, selenium nanoparticles (~1 mg/kg) enhanced growth performance and improved fillet fatty-acid profiles in Nile tilapia (Oreochromis niloticus) (Moges et al., 2022). More recently, green-synthesized ZnO nanoparticles (≈60 mg/kg) promoted growth, intestinal integrity, and immune responses in Nile tilapia (Alafnan et al., 2024). In another study, Shahariar et al. (2024) suggested 30 mg/kg gold nanoparticles as a promoting agent of growth, survivability, and hematological parameters in striped dwarf catfish (M. vittatus).

Among various nanoparticles, ZnONPs are extensively known and used for their efficacy in improving fish health and growth (Asad *et al.*, 2024). Moreover, they are nontoxic, biocompatible, drug carriers, and antipathogenic in nature (Krithika *et al.*, 2017). These outstanding features led the researcher to utilize ZnONPs as feed additives for several fish and aquatic species (Faiz *et al.*, 2015; Kumar *et al.*, 2022, 2023). Thangapandiyan and Monika (2019) reported a positive correlation of growth and metabolic activity with the rising

concentration of dietary ZnONPs in rohu (*L. rohita*). ZnONPs at 20 mg/kg was shown to be effective in growth promotion, oxidative stress relief, and immunity improvement (Kumar *et al.*, 2018), while 30 mg/kg ZnONPs-enriched diet supported better growth and protein utilization in *Siganus rivulatus* (Sallama *et al.*, 2020). Moreover, dietary supplementation of zinc oxide nanoparticles (ZnONPs) at 30 and 60 µg/g feed enhanced the resistance of Nile tilapia (*O. niloticus*) against *A. hydrophila* infection, resulting in a significantly higher survival rate (Sherif *et al.*, 2023).

Striped dwarf catfish (M. vittatus) typically inhabits marginal vegetation zones in lakes and swamps with muddy substrates, and demonstrates omnivorous feeding behavior, consuming a variety of plants, insect larvae, shrimps, mollusks, zooplankton, and small fish (FishBase; Gupta, 2014). This species is valued for its palatable taste and rich nutritional profile, including protein, micronutrients, vitamins, and minerals that are often limited in other foods (Molla et al., 2008). It was previously categorized as a vulnerable species due to a 36.6% decline in catch from natural habitats in Bangladesh between 1960 and 2000. While the striped dwarf catfish (M. vittatus) is currently classified as Least Concern by the IUCN, evidence indicates that its population size and range are gradually declining, necessitating management interventions to ensure its longterm survival in the wild (Mawa et al., 2022). In addition, this small indigenous species, locally known as "Tengra", is increasingly recognized for its aquaculture potential,

particularly in polyculture systems within seasonal ponds, where it performs well under short-cycle farming practices (Hasan *et al.*, 2023). Therefore, this study was designed to evaluate the effects of biosynthesized ZnO nanoparticles as dietary supplements on the growth performance, survivability, and hematological responses of *M. vittatus*.

Materials and Methods

Experimental diet formulation

The experimental diets were prepared by biosynthesized incorporating ZnONPs into a commercial feed (Mega Feed, Spectra Hexa Feeds Limited, Code No. 001) which, according to the feed packet, contained approximately 37% protein, 24% carbohydrate, 8% lipid, 16% ash, 12% moisture, 4% fiber, 2.1% calcium, and 0.8% phosphorus, (values given as approximate maximum levels), with a pellet diameter of 0.6 mm. ZnONPs were added at concentrations of 0 (T_0 , control), 50 (T_1), 80 (T_2), and 110 (T₃) mg/kg of feed. Biosynthesized ZnONPs, derived from seaweed extract, were obtained from the Department of Plant Pathology, Gazipur Agricultural University. Initially, all feeds (T₀, T₁, T₂, and T₃) were ground into powder to ensure homogeneous mixing. For proper mixing with the commercial diet, the ZnONPs were blended with deionized water using an ultrasound bath (Elma 17013, Elma Schmidbauer, Germany) for 10 min at 37 KHz (Shahariar et al., 2024). The ZnONPs-water mixture was then added to the feed powder (except for T₀), pelleted, and sun-dried. The

prepared diets were stored under refrigeration at approximately 4-10°C until use.

Experimental design

The experimental fish were collected from a hatchery one week before the experiment and were acclimatized to the tank conditions at the experimental site to minimize handling and transport stress. The feeding trial was carried out in 12 rectangular glass aquariums $(60 \text{ cm} \times 45 \text{ cm} \times 45 \text{ cm})$, each holding 70 liters of water (Afrin et al., 2023). Each treatment was replicated three times, with individual aquariums serving as replicates. Thus, the experimental unit was the tank (n =3 per treatment), not individual fish. Among them, only the control group (T0) received the commercial diet containing 0 mg/kg of biosynthesized ZnONPs whereas the other three groups $(T_1, T_2, \text{ and } T_3)$ were provided diets supplemented with 50, 80, and 110 mg/ kg of biosynthesized ZnONPs, respectively. Initially, 80 fish were weighed and placed in each aquarium. The fish were fed three times daily (early morning, afternoon, and late

night) until satiation. Approximately 30% of the water in each aquarium was replenished weekly. Each aquarium was continuously aerated with an air stone connected to a central air compressor.

Water quality monitoring

Temperature, dissolved oxygen (DO), ammonia, pH, and total dissolved solids (TDS) in each aquarium were measured at 9:00 a.m. every five days throughout the study period.

Fish growth monitoring and sampling design

Every fifteen days, 20 fish from each aquarium were randomly caught using a scoop net, and their body weight and length were recorded for growth performance analysis. Measurements from the 20 fish were averaged within each tank at each sampling point. These tank means were then used in the statistical analysis, ensuring that replication was based on the three tanks per treatment. Using formulas from earlier studies (Shahariar *et al.*, 2024), the growth parameters and survival rate were calculated:

Weight Gain (WG%) =
$$\frac{\text{Mean final fish weight - Mean initial fish weight}}{\text{Mean initial fish weight}} \times 100$$
Specific Growth Rate (SGR%/day) =
$$\frac{\text{In (Mean final fish weight) - In (Mean initial fish weight)}}{\text{No of days of the experiment}} \times 100$$
Feed Conversion Ratio (FCR) =
$$\frac{\text{Total feed consumption}}{\text{Total body weight gains of fish}} \times 100$$
Protein Efficiency Ratio (PER %) =
$$\frac{\text{Total weight gain (g)}}{\text{Amount of protein intake (g)}} \times 100$$

Condition Factor (g/cm³), CF =
$$\frac{\text{Mean final body weight}}{\text{Mean final body length}^3} \times 100$$

Survival Rate (SR%) = $\frac{\text{No of the live fishes}}{\text{No of the fish introduces}} \times 100$

Analysis of hematological parameters

At the end of the 75-day trial, approximately 10–15 fish were randomly sampled from each tank for blood collection. Owing to the small size of fish, this number varied slightly between tanks. Blood indices from fish within a tank were averaged to generate one tank-level value, with tanks treated as the experimental unit (n = 3 per treatment). After removing excess water with a dry cloth, blood was collected from the caudal peduncle region using a sterile syringe and transferred into an EDTA (Ethylenediaminetetraacetic Acid) tubes. Hematological parameters were analyzed immediately using a fully automated hematology analyzer (Mindray BC-2300).

Statistical data analysis

All statistical analyses were performed using R software (version 4.3.1; R Core Team, 2023). Prior to analysis, the dataset was checked for normality using the Shapiro–Wilk test and for homogeneity of variance using Levene's test (*car* package). When the assumptions of normal distribution and equal variance were satisfied, the data were analyzed by one-way analysis of variance (ANOVA) to evaluate the effects of dietary treatments. In cases where significant differences were observed, Tukey's Honestly Significant Difference (HSD) test

was applied as a post hoc procedure to separate means at a 5% probability level (p < 0.05). Results were expressed as mean \pm standard error of the mean (SEM), and different superscript letters were used in tables to denote statistically significant differences among treatments. All analyses were conducted on tank means (n = 3 per treatment), avoiding pseudoreplication. This design yields ANOVA degrees of freedom of F (3,8) for treatment effects. Graphical representations, including bar plots and boxplots with error bars, were generated using the ggplot2 package in R for clear visualization of treatment effects.

Results

Growth performance

The growth performance of *M. vittatus* subjected to different dietary levels of ZnONPs over a 75-day feeding period is summarized in Table 1 and visualized in Fig. 1. For all treatments, fish of statistically similar initial weights (0.45±0.001 g) were taken to ensure the homogeneity of experimental fish at the start.

A marked improvement in growth performance was observed with increasing levels of ZnONPs in the diet. The final body weight (FW) increased significantly in a dosedependent manner across the treatments. The highest final weight was recorded in fish fed with 110 mg/kg ZnONPs, reaching 1.5±0.001 g, which was significantly greater than other treatments. These results indicate that dietary ZnONPs supplementation enhanced somatic growth in *M. vittatus*.

The weight gain percentage (WG%) showed a similar trend, with T_3 achieving the highest gain of 233.33±0.27%, significantly greater than T_2 (210.76±0.15%), T_1 (189.72±0.92%), and the control (148.57±6.05%). This trend was further reflected in the specific growth rate (SGR%/day), which ranged from 1.21±0.03%/day in T_0 to 1.60±0.001%/day in T_3 , indicating enhanced growth efficiency with increasing levels of ZnONPs.

The feed conversion ratio (FCR) showed a significantly decreasing trend (p < 0.05) from 2.11 ± 0.83 in T_0 to 1.33 ± 0.001 in T_3 , suggesting improved feed utilization in fish fed with ZnONPs. Conversely, protein efficiency ratio (PER) increased with ZnONPs supplementation, with T₃ exhibiting the highest value (2.01±0.002), indicating better protein assimilation in fish receiving higher doses of ZnONPs. The condition factor (CF) showed no significant variation among the treatments, suggesting that the overall health and well-being of the fish were maintained uniformly across treatments. Survival rate (SR%) was positively influenced by ZnONPs inclusion, increasing from 55.83±0.42% in the control to $67.50\pm0.73\%$ in T₃. Although overall survivability remained relatively low across

treatments, likely due to artificial aquarium conditions and the early life-stage sensitivity of this species, ZnONPs supplementation reduced mortality compared to the control, especially in T3. This suggests a potential role of ZnONPs in enhancing the resilience and health of *M. vittatus* under experimental conditions.

Hematological metrics

The major hematological metrics are presented in Table 2. Red blood cell (RBC) counts ranged from $0.48\pm0.12 \times 10^6/\mu L$ (T₂) to 0.81 ± 0.98 $\times 10^6/\mu L$ (T₁), with no significant variation. Hemoglobin (Hb) concentrations remained statistically similar, varying from 3.63±0.47 g/dL to 4.80±0.40 g/dL. White blood cell (WBC) counts, indicative of immune status, showed non-significant differences, ranging from $9.67\pm3.57 \times 10^3/\mu L$ to $19.53\pm3.25 \times 10^3/\mu L$ μL. This suggests that dietary ZnONPs did not trigger immune stress or hematological dysfunction. Hematocrit (HCT) values were highest in T_1 (7.89±0.92%) and lowest in T_{2} (4.37±1.12%), but differences were not significant. Plateletcrit (PCT%) remained low and similar across all treatments. Other erythrocytic indices, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), showed no significant changes. Although numerical variations were observed (e.g., MCHC ranged from 61.29±1.99 g/dL in T₁ to 88.73±13.05 g/dL in T₂), these were not statistically significant, and did not indicate anemia or hemolytic stress.

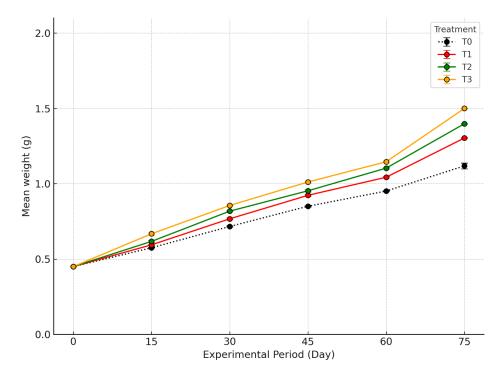


Fig. 1. Growth curve of M. vittatus fed with ZnONPs supplemented diets.

Table 1. Growth performance of M. vittatus across different treatments (Mean \pm SEM)

Factors		Treatments			
	T ₀ (Control)	T ₁ (50 mg/kg)	T ₂ (80 mg/kg)	T ₃ (110 mg/kg)	
IW (g)	0.45±0.001a	$0.45{\pm}0.0^{a}$	0.45±0.001a	0.45±0.001a	
FW (g)	$1.119{\pm}0.003^{\rm d}$	$1.304{\pm}0.00^{\circ}$	$1.398{\pm}0.007^{\rm b}$	1.5±0.001 ^a	
WG (%)	$148.57{\pm}6.05^{\rm d}$	189.72±0.92°	210.76 ± 0.15^{b}	$233.33{\pm}0.27^a$	
SGR (%/day)	$1.21{\pm}0.03^{\text{d}}$	$1.42{\pm}0.0004^{c}$	$1.51{\pm}0.0006^{b}$	$1.60{\pm}0.001^{a}$	
FCR	$2.11{\pm}0.83^a$	$1.65{\pm}0.0008^{b}$	$1.49{\pm}0.001^{\circ}$	$1.33{\pm}0.001^{\rm d}$	
PER	$1.29{\pm}0.52^{\scriptscriptstyle d}$	$1.65{\pm}0.007^{\circ}$	$1.83{\pm}0.001^{b}$	$2.01{\pm}0.002^{\rm a}$	
CF	0.65 ± 0.069^a	$0.55{\pm}0.014^{\rm a}$	$0.64{\pm}0.062^a$	$0.60{\pm}0.033^{\mathrm{a}}$	
SR%	55.83±0.42°	59.17 ± 0.83^{b}	$65.00{\pm}1.44^a$	$67.50{\pm}0.73^a$	

^{*}Data in the same row bearing different superscript letters differ significantly (P<0.05). IW = Initial weight, FW = Final weight, WG% = Weight Gain Percentage, SGR = Specific Growth Rate (%/day), FCR = Feed Conversion Ratio, PER = Protein Efficiency Ratio, CF = Condition Factor, SR% = Survival Rate Percentage.

 68.9 ± 8.83

MCHC (g/dL)

Parameters	Treatments				
	T ₀ (Control)	T ₁ (50 mg/kg)	T ₂ (80 mg/kg)	T ₃ (110 mg/kg)	
RBC (×10 ⁶ /μL)	0.6±0.09	0.81±0.10	0.48±0.12	0.72±0.16	
Hb (g/dL)	4.07 ± 0.38	4.8 ± 0.40	3.63 ± 0.47	4.4 ± 0.51	
WBC ($\times 10^3/\mu$ L)	11.7±1.21	19.53±3.25	9.67±3.57	12.83 ± 5.01	
HCT (%)	6.17 ± 1.09	7.89 ± 0.92	4.37±1.12	7.87 ± 1.79	
PCT (%)	0.16 ± 0.03	0.20 ± 0.08	0.23 ± 0.07	0.11 ± 0.04	
MCV (fL)	104 ± 1.90	97.34±3.87	92.47±4.64	109.1 ± 9.61	
MCH (pg)	70.87±7.70	59.50±2.55	80.43±9.80	66.36±14.54	

Table 2. Hematological parameters of M. vittatus under different treatments (Mean \pm SEM, n = 3 per treatment)

RBC = Red Blood Cell, Hb = Hemoglobin, WBC = White Blood Cell, HCT = Hematocrit, PCT = Plateletcrit, MCV = mean corpuscular volume, MCH = mean corpuscular hemoglobin, and MCHC = mean corpuscular hemoglobin concentration.

61.29±1.99

Hematological indices (WBC, hemoglobin, RBC, and HCT) did not differ significantly among treatments (one-way ANOVA: WBC F (3.8) = 1.46, p = 0.296; Hb F = 1.25, p = 0.354; RBC F = 1.40, p = 0.312; HCT F = 1.73, p = 0.237; Kruskal–Wallis: all p > 0.15). With n = 3 per treatment and noticeable withingroup variability, tests had limited statistical power. Effect size analysis showed large variance explained by treatment for HCT (η² = 0.394), WBC (0.354), RBC (0.344), and Hb (0.319). These values suggest biologically meaningful differences among treatments that were not statistically confirmed, likely due to small sample size. In contrast, indices with lower effect sizes reflected little treatment influence, indicating true stability across diets (Supplementary Tables S1). Beyond hypothesis testing, effect sizes with 95% confidence intervals were wide and overlapping, and linear/quadratic trend analyses across ZnONP dose levels were non-significant (Supplementary Tables S2-S5). Numerical values suggested slightly more stable hematological profiles at 80 mg/kg, but these differences were not statistically significant. Overall, ZnONPs at the tested dietary concentrations did not significantly alter hematological health. At the same time, supplementation up to 110 mg/kg diet improved growth, feed utilization, and survival.

88.73±13.05

63.13±16.82

Discussion

Nanoparticles have drawn researchers' attention for their wide applications across various sectors, and their development has opened promising opportunities for advancement in aquaculture (Suvagiya et al., 2024). Today's aquaculture aims to produce more yield within a shorter period. Nanotechnology increases the growth, survival rate, and immunity of the target organisms, thereby supporting this goal (Rakhi et al., 2022). Among multiple uses, the inclusion of nanoparticles in fish diets boosted aquaculture production due to their growthpromoting attribute.

In the present study, supplementation of ZnONPs at 50, 80, and 110 mg/kg was positively correlated with the growth rate. A similar result was reported by Zahran et al. (2024), who examined the growth performance of O. niloticus fed with algal-sourced zinc nanoparticles. In their study, fish exposed to the highest dose (60 mg/kg) demonstrated the highest growth performance compared to other treatments. In another study on O. niloticus, basal diet with 500 mg/kg bacterial zinc nanoparticles yielded the highest growth compared to others (Alsulami and El-Saadony, 2024). Sherif et al. (2023) reported that inclusion of ZnONPs at a level of 60 µg/g feed increased phagocytic activity, phagocytic index, serum bactericidal activity, lysozyme, and respiratory burst activity in O. niloticus. In a study on broiler chickens, Ahmadi et al. (2013) discovered that a diet supplemented

with 90 mg/kg of ZnONPs promoted the highest growth, while the control group exhibited significantly lower growth. They proposed that the enhanced growth resulted from the unique physicochemical properties of ZnONPs. Another study compared the effects of bulk zinc oxide and ZnONPs on broiler growth. Similar to the present findings, birds that consumed a ZnONPssupplemented diet gained significantly more weight than those fed a diet containing bulk zinc oxide (Radi et al., 2021). Badawi et al. (2017) reported that Zinc is vital to over 300 enzymes linked with energy, nucleic acid, and protein metabolism. Moreover, ZnONPs can bolster metabolism by triggering insulin and growth hormone gene activity (Ibrahim et al., 2017). Similar to the weight gain pattern, the reduction of FCR and acceleration of PER proceeded with raising ZnONPs. The survival rate percentage (SR%) showed a significant difference, being highest at T_3 (67.50 \pm 0.73) and lowest at T_0 (55.83 \pm 0.42). It should be noted, however, that overall survivability across treatments was somewhat low, which can be attributed to the artificial aquarium conditions and the inherent sensitivity of M. vittatus during its early life stages (Hossain et al., 2006). Additional handling stress during repeated growth sampling may also have contributed to mortality. Nevertheless, the increased SR% was positively correlated with the higher concentrations of ZnONPs, with notably reduced mortality in T3 compared to the control. This trend is consistent with

the findings of Thangapandiyan and Monika (2019), who also reported improved survival with ZnONPs supplementation.

Although the group means of RBC, Hb, WBC, and HCT varied numerically, both parametric and non-parametric tests showed no significant differences among treatments (p > 0.05). Similar outcomes have been reported in other nanoparticle studies where hematological indices remained stable. For example, O. niloticus exposed to iron-oxide nanoparticles showed no significant changes in hemoglobin, hematocrit, or erythrocyte and leukocyte counts compared to controls (Mohamed et al., 2021). In mammals, administration of Fe-doped ZnO also produced no significant differences in several red cell indices (MCV, MCH, MCHC, RDW) relative to controls (Zhou et al., 2019). Likewise, in a tilapia feeding trial, dietary zinc nanoparticles did not significantly alter hemoglobin concentration (Sivakumar et al., 2020). Although statistical analyses did not confirm significant differences, the 80 mg/kg group showed relatively consistent hematological indices, which may indicate a trend toward physiological stability. This observation, however, requires confirmation with larger sample sizes. On the other hand, studies on common carp have shown significant reductions in RBC and Hb at higher nanoparticle exposures, indicating that hematological responses can vary with species, dose, and exposure conditions (Mumtaz et al., 2021; Khan et al., 2018). Taken together with our present data (n = 3 per treatment), the absence of significant treatment effects on

RBC, Hb, WBC, and HCT appears biologically reasonable and suggests that moderate levels of dietary ZnONPs do not impair hematological health in *M. vittatus*. Effect size analysis supported this interpretation: large values for RBC, WBC, Hb, and HCT indicate possible biological responses that were not statistically validated, while low effect sizes in other indices suggest true stability across treatments.

The results also demonstrated a statistically significant enhancement in the growth and survival rates of *M. vittatus* across all tested ZnONP doses. The highest dose yielded the greatest improvements in growth performance and survivability, indicating that ZnONPs were non-toxic even at elevated concentrations and can be regarded as an effective feed additive for aquaculture applications.

Conclusions

The experimental results indicate that dietary supplementation of zinc oxide nanoparticles at 110 mg/kg produced the highest growth performance and survival rate in M. vittatus, making this dose most beneficial from production standpoint. Hematological analysis, however, showed that fish at 80 mg/kg had numerically more stable blood indices (RBC, WBC, Hb, HCT), although differences were not statistically these significant. This suggests that while 110 mg/ kg maximized growth and survival, 80 mg/kg may represent a physiologically stable option. It should also be acknowledged that overall mortality was somewhat higher than expected,

mainly due to artificial rearing conditions and species-specific vulnerability at early life stages. Thus, the optimal level may depend on production goals: 110 mg/kg for short-term growth and yield, and 80 mg/kg for long-term health and sustainability. Overall, the study demonstrates that ZnONPs enhanced growth and survivability in *M. vittatus* without evidence of adverse hematological effects.

Supplementary Materials

Supplementary Tables S1-S5

Acknowledgments

We gratefully acknowledge the financial support from Gazipur Agricultural University (GAU), and the Atomic Energy Centre (AEC), Dhaka, for assistance with nanoparticle characterization during this research. We also acknowledge Professor Mahidul Islam Masum from the Department of Plant Pathology, GAU, for providing the ZnONPs used in this study.

Conflict of Interest

The authors affirm that no financial or commercial relationships that might be construed as a potential conflict of interest existed during the course of the research.

Author Contributions

Methodology, Formal Analysis, and Writing

– Original Draft: Md. Mahadi Hasan. Review
and Editing: Md. Shah Newaz, Md. Arif

Shahariar, Md. Zunaed Hossain and Riad Ahmed. Conceptualization, Methodology, Analysis, Project Administration, Review and Editing, and Funding Acquisition: Mohammad Shafiqul Alam

Ethics approval and consent to participants

The Institutional Animal Research Ethics Committee (AREC) of the Gazipur Agricultural University declares that the experiments were carried out according to the committee guidelines, and performed with their knowledge and permission (Ref. No. FVMAS/AREC/2023/31).

References

Afrin, R., R. F. Rakhi, A. Sultana, M. A. Shahariar, M. S. Hossain, M. S. Alam and M. S. Alam. 2023. Domestication and inter-species interaction of Bangladeshi native and exotic ornamental fishes in the captive condition. *Egypt J. Aquat. Biol. Fish.* 27: 349–367.

Ahmadi, F., Y. Ebrahimnezhad, N. M. Sis and J. G. Ghalehkandi. 2013. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. *Int. J. Biosci.* 3(7): 23-29.

Alafnan, A., Z. I. Elbialy, R. A. Mohamed, and H. K. Mahmoud. 2024. Greensynthesized zinc oxide nanoparticles improve growth, intestinal morphology, and immune status of

- Nile tilapia (*Oreochromis niloticus*). *Aquaculture* 575: 739894.
- Asad, F., N. Batool, A. Nadeem, S. Bano, N. Anwar, R. Jamal and S. Ali. 2024. Fe-NPs and Zn-NPs: Advancing aquaculture performance through nanotechnology. *Biol. Trace Elem. Res.* 202(6): 2828-2842.
- Alsulami, M. N. and M. T. El-Saadony. 2024. The enhancing effect of bacterial zinc nanoparticles on performance, immune response, and microbial load of Nile tilapia (*Oreochromis niloticus*) by reducing the infection by *Trichodina heterodentata*. *Pak. Vet. J.* 44(3): 599-610.
- Badawi, M., M. Ali and A. Behairy. 2017. Effects of zinc sources supplementation on performance of broilers chickens. *J. Am. Sci.* 13(7): 35–43.
- Boyd, C. E., L. R. D'Abramo, B. D. Glencross, D. C. Huyben, L. M. Juarez, G. S. Lockwood and W. C. Valenti. 2020. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. *J. World Aquac. Soc.* 51(3): 578-633.
- Faiz, H., A. Zuberi, S. Nazir, M. Rauf and N. Younus. 2015. Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int. J.

- Agric. Biol. 17: 568-574.
- FishBase. 2025. *Mystus vittatus* summary. FishBase. [Accessed on: 2025-08-24]. Available at: https://www.fishbase.se/summary/speciessummary.php?id=5137
- Gupta, S. 2014. Feeding and breeding biology of *Mystus vittatus*: A review. *Int. J. Fish. Aquat. Stud.* 2(1): 128-130.
- Harikrishnan, R., G. Devi, B. A. Paray, M. K. Al-Sadoon, S. H. Hoseinifar and E. Gokul. 2019. Study the immunomodulation of anthracenedione in striped dwarf catfish, *Mystus vittatus* against pathogenic bacteria, *Aeromonas hydrophila*. Fish. Shellfish Immunol. 95: 117–127.
- Hasan, K. R., S. Ahamed, M. H. Mou and Y. Mahmud. 2023. Culture technique of Tengra (*Mystus vittatus*) with short-cycle fish species in the drought-prone northern region of Bangladesh. *Arch. Agric. Environ. Sci.* 8(3): 370–376.
- Hossain, M. K., M. Shahjahan, Z. A. Kari and G. Téllez-Isaías. 2023. Trends in the Use of Probiotics in Aquaculture of Bangladesh—Present State, Problems, and Prospects. *Aquac. Res.* 2023:5566980.
- Hossain, Q. Z., M. A. Hossain, and S. Parween. 2006. Induced breeding and fry nursing of *Mystus vittatus* (Bloch 1797). *Khulna Univ. Studies*. 7(2): 45-50.
- Ibrahim, D., H. Ali and S. El-Mandrawy. 2017. Effects of different zinc sources

- on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. *Zagazig Vet. J.* 45(3): 292–304.
- Khan, M. Z., F. Rizvi, A. Khan and M. K. Saleemi (2018). Effect of zinc oxide nanoparticles on hematological indices in common carp (*Cyprinus carpio*). *Pak. Vet. J.* 38(2): 173–177.
- Krithika, G., R. Saraswathy, M. Muralidhar, D. Thulasi, N. Lalitha, P. Kumararaja, A. Nagavel, A. Balaji and R. Jayavel. 2017. Zinc oxide nanoparticlessynthesis, characterization and antibacterial activity. *J. Nanosci. Nanotechnol.* 17(8): 5209–5216.
- Kumar, N., D. K. Singh, N. K. Chandan, S. T. Thorat, P. B. Patole, A. Gite and K. S. Reddy. 2023. Nano-zinc enhances gene regulation of non-specific immunity and antioxidative status to mitigate multiple stresses in fish. *Sci. Rep.* 13: 5015.
- Kumar, N., K. K. Krishnani, and N. P. Singh. 2018. Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. *Biol. Trace Elem. Res.* 186: 267–278.
- Kumar, N., S. Kumar, A. K. Singh, A. Gite, P. B. Patole and S. T. Thorat. 2022. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular

- signature in fish. *J. Trace Elem. Med. Biol.* 74: 127076.
- Mawa, Z., M. Y. Hossain, M. R. Hasan, M. A. Rahman, S. Tanjin, and J. Ohtomi. 2022. Life history traits of *Mystus vittatus* in the Ganges River, Bangladesh: recommendation for its sustainable management considering climate change. *Int. J. Biometeorol.* 66(5): 927-943.
- Michael, I., L. Rizzo, C. S. McArdell, C. M.
 Manaia, C. Merlin, T. Schwartz,
 C. Dagot and D. Fatta-Kassinos. 2013.
 Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. *Water Res.* 47 (3): 957–995.
- Moges, F. D., H. Hamdi, A. Al-Barty, A. A. Zaid, M. Sundaray, S. K. S. Parashar and B. Das. 2022. Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile tilapia, *Oreochromis niloticus*. PLoS One. 17(6): e0268348.
- Mohamed, A. A. R., H. R. Ali and A. T. Abdallah. 2021. Hematological and biochemical responses of Nile tilapia (*Oreochromis niloticus*) exposed to iron oxide nanoparticles. *Aquac. Res.* 52(4): 1625-1635.
- Mumtaz, S., A. Farooq, and H. Rehman 2021. Hematological and histopathological alterations in common carp (*Cyprinus carpio*) following zinc oxide nanoparticle exposure. *Fish Physiol*.

Biochem. 47(3): 915-926.

- Molla, A., C. Saha, M. Ahsan, S. Talukder and M. Alam. 2008. Physico-chemical and microbiological investigation of the lipid from Bangladeshi fresh water fish *Mystus vittatus*. *Univ. J. Zool., Rajshahi Univ.* 26: 21–25.
- Patil, P. K., R. Geetha, S. S. Mishra, T. J. Abraham, H. G. Solanki, S. R. Krupesha Sharma and J. K. Jena. 2025. Unveiling the economic burden of diseases in aquatic animal food production in India. *Front. Sustain. Food Syst.* 9: 1480094.
- Popoola, O. M., B. K. Behera and V. Kumar. 2023. Dietary silver nanoparticles as immunostimulant on rohu (*Labeo rohita*): Effects on the growth, cellular ultrastructure, immune-gene expression, and survival against *Aeromonas hydrophila*. Fish Shellfish *Immunol*. Rep. 4: 100080.
- R Core Team. 2023. R: A language and environment for statistical computing.

 Version 4.3.1. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/
- Radi, A. M., N. M. A. Azeem and E. S. El-Nahass. 2021. Comparative effects of zinc oxide and zinc oxide nanoparticle as feed additives on growth, feed choice test, tissue residues, and histopathological changes in broiler chickens. *Environ. Sci. Pollut.*

Res. 28: 5158-5167.

- Rakhi, R. F., M. A. Shahariar and M. S. Alam. 2022. Nanoparticles (NPs) in aquaculture industry: current status and future perspectives. *Ann. Bangladesh Agric*. 26: 113–125.
- Rohani, M. F., S. M. Islam, M. K. Hossain, Z. Ferdous, M. A. Siddik, M. Nuruzzaman, U. Padeniya, C. Brown and M. Shahjahan. 2022. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: upgrading growth, reproduction, immunity and disease resistance in fish. *Fish. Shellfish Immunol.* 120: 569–589.
- Romero, J., C. G. Feijoó and P. Navarrete. 2012. Antibiotics in aquaculture – use, abuse and alternatives. In: Carvalho, E., S. D. Gianmarco and R. J. Silva (eds.). *Health and Environ. in Aquac. InTech, Rijeka, Croatia*, pp. 159-198.
- Sallama, A. E., A. T. Mansour, A. S. Alsaqufi, M.E.S. Salema and M. M. M. El-Fekya. 2020. Growth performance, antioxidative status, innate immunity, and ammonia stress resistance of *Siganus rivulatus* fed diet supplemented with zinc and zinc nanoparticles. *Aquac. Rep.* 18: 100410.
- Shahariar, M. A., M. Z. Hossain, J. F. Urmi, M. M. Hasan, M. M. I. Masum, A. A. Shah, M. Hasan, Z. Rahman and M. S. Alam. 2024. Biosynthesis of gold nanoparticles and its impacts on striped dwarf catfish (*Mystus vittatus*) as feed additives. *Aquac. Rep.* 39:

102446.

- Sherif, A. H., M. Abdelsalam, N. G. Ali and K. F. Mahrous. 2023. Zinc oxide nanoparticles boost the immune responses in *Oreochromis niloticus* and improve disease resistance to *Aeromonas hydrophila* infection. *Biol. Trace Elem. Res.* 201(2): 927-936.
- Sivakumar, P., V. Kumar and P. Rajendran. 2020. Dietary supplementation of zinc nanoparticles and its effect on hematological parameters in tilapia (*Oreochromis niloticus*). Aquac. Int. 28(5): 1907-1918.
- Suvagiya, A., G. Parmar, M. Chavda and H. A. Joshi. 2024. Survey of current

- research on the green synthesis of silver nanoparticles (AgNPs) and their antimicrobial properties. *J. Microbiol Relate. Res.* 10(2): 89–95.
- Thangapandiyan, S. and S. Monika. 2019.

 Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish *Labeo rohita*. *Biol. Trace Elem. Res.* 195: 636–647.
- Zahran, E., S. Elbahnaswy, A. I. Mansour, E. Risha, A. Mustafa, A. S. Alqahtani, M. G. E. Sebaei and F. Ahmed. 2024. Dietary algal-sourced zinc nanoparticles promote growth performance, intestinal integrity,