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ARTICLE INFO. ABSTRACT

Keywords: Chemical toxicity is challenging to mitigate, necessitating a revisit to seed compound
screening. Safety is crucial in approving drugs, pesticides, and cosmetics, necessitating
the identification of safety biomarkers, such as toxicogenomic biomarkers (ToxBG), to
predict potential toxicity. In this regard, we proposed a sequence of computational and
bioinformatics approaches to identify key/hub ToxBG (HToxBG) for predicting chemical
toxicity. In this sequence, we initially identified ToxBGs using statistical approaches,
such as t-test, Wilcoxon signed-rank test (WSR-test), and linear model for microarray

chemical toxicity,
toxicogenomic biomarker,
statistical methods, machine
learning approaches,
bioinformatics approaches,

protein-protein interaction data analysis (LIMMA), based on the chemically treated and control samples of gene
network. expression data collected from the online database “Toxygates.” In the treatment group,

. rat samples were treated with chemicals (acetaminophen, bromobenzene, coumarin,
Received : 28 August 2025 methapyrilene, and nitrofurazone) with three dose levels, and gene expression data were
Revised : 24 October 2025 collected at multiple time points. These statistical approaches, including the t-test, WSR-

test, and LIMMA, identified 3,856, 3,232, and 3,377 ToxBGs, respectively. Of these,

Accepted : 24 December 2025 2,877 were common and considered second-stage ToxBGs. This study validated the

Published : 05 January 2026 second-stage ToxBGs using four machine learning (ML) approaches. Among these ML

Lo approaches, the support vector machine (SVM) achieved higher accuracy in classifying
Citation: treated and control samples, yielding sensitivity of 0.98, specificity of 0.97, accuracy
Hasan, M. N., M. S. Alam of 0.98, and AUC (0.99) compared to other methods. The second-stage ToxBGs were
and M. M. Rahman. 2026. A also co-clustered with their associated chemicals. The protein-protein interaction

(PPI) network analysis predicted that the second-stage ToxBGs were enriched in the

multi-stage computational and biological pathways that perform important functions. Additionally, these ToxBGs were

bioinformatics - framework  for also enriched in different diseases like liver cirrhosis, HIV coinfection, gastric cancer,
the identification and validation generalized hypotonia, neoplasm of the liver, etc. Out of 2877 common ToxBGs, 160 key/
of hub toxicogenomic hub ToxBGs (HToxBGs) have been identified, 70 genes associated with disease states,
biomarkers. Ann. Bangladesh and 90 involved in critical biological pathways, enabling the study of chemical toxicity.
Agric. 29(2): 93-109 Therefore, the proposed sequence of computational and bioinformatics approaches can be

used to identify HToxBGs and predict chemical toxicity.
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Introduction

Toxicogenomics examines the role of genes
and chemicals, medications, or environmental
stressors in the development of disease in
people, animals, and plants by combining
transcript, protein, and metabolite profiling
with traditional toxicology. Several toxicants’
actions and illness-causing effects have
been made clear by the patterns of changed
molecular expression brought on by particular
exposures or disease consequences (Waters
and Fostel, 2004; Afshari et al., 2011; Hasan
et al., 2018). This health hazards are due to
the toxicity of the toxins (small molecules,
peptides, or proteins), environmental stressors
(drought, heat, salinity, heavy metal, biotic
stress) and chemical agents (drugs, gasoline,
alcohol, pesticides, fuel oil, and cosmetics) in
organism (NRC, 2007; Afshari et al., 2011;
Hasan ef al., 2019). Last century’s industrial
activities significantly increased the quantity
of heavy metals to which people are exposed.
Arsenic, cadmium, chromium, lead, and
mercury have been the most frequently found
heavy metals to cause poisoning in humans.
Chromium, cadmium, and arsenic are among
the harmful metals that can lead to genomic
instability. They have been thought to be
carcinogenic due to defects in DNA repair
after the three metals produce oxidative stress
and DNA damage (Azeh Engwa et al., 2019;
Balali-Mood et al., 2021). Pesticides used in
Chile’s agriculture sector have neurotoxic
effects that raise the risk of Parkinson’s and
Alzheimer’s disease in workers who are
exposed to high levels of these chemicals.

(Lucero et al., 2019).
emotional stress, and physicochemical agents

Similarly, noise,

are examples of environmental risk factors
that significantly affect human health. This
exposure to the environment may cause 14
alterations in non-coding RNAs (ncRNAs)
as well as epigenetic reprogramming (Miguel
et al., 2020). The unintended consequence
of a medicine that causes death or morbidity
with symptoms severe enough to make a
patient seek medical attention and/or need
hospitalization is known as a drug-induced
disease (Krueger, 2006). The most frequent
cause of acute liver failure in the western
world is still drug-induced liver damage
(DILI). The medicine in question must be
stopped immediately upon the onset of
DILI, particularly if there is jaundice and/or
increased transaminases (Laster and Satoskar,
2015). The availability of sensitive, specific,
and broadly applicable biomarkers of toxic
effects, and the term ToxBG refers to genes
induced by toxicants. Toxicogenomics has
been applied at every level of chemical risk
assessment, and it is believed that changes
in gene expression may be employed as
biomarkers of harmful effects (Hasan et al.,
2018). Successively, functional analysis of
these ToxBGs can efficiently predict the
extent of toxicity, probable health hazards, and
disease-causing ability that will appear over
time. Therefore, the identification of ToxBGs
and their functional analysis will guide the
prediction of chemical/drug/environmental
stress toxicity before phenotypic changes
appear, allowing for preventive measures
to be taken. To address these issues in this
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study, an attempt is made to identify ToxBGs
using statistical and ML approaches, and
their functional analysis using integrated
bioinformatics analysis.

Materials and Methods

Gene expression data collection from
chemically treated and control rat samples

To examine the toxicity of chemicals, we
use genome-wide gene expression data from
the Japanese Toxicogenomics Project (TGP)
(Uehara et al.,, 2010). Here, we consider
genome-wide in vivo gene expression data
from treatment and control samples of
the rat’s (Rattus norvegicus) liver. In the
treatment samples, a homogeneous group
of rats was treated with three dose levels of
chemicals: acetaminophen, bromobenzene,
coumarin, methapyrilene, and nitrofurazone.
Thereafter, gene expression data from treated
rat liver (in vivo conditions) were collected at
four time intervals (3 hours, 6 hours, 9 hours,
and 24 hours), which constitute 60 treated
samples. Additionally, in the experiment,
there was a control sample against each of
the treated samples, which constituted 60
control samples. We have downloaded gene
expression data for these samples from the
online toxicogenomic database “Toxygates”
(Nystrom-Persson et al., 2013, 2017) (https://
toxygates.nibiohn.go.jp/toxygates/#columns).

Identification and validation of the ToxBG
using statistical and ML approaches

In this section, firstly, we have identified
the ToxBGs using statistical approaches.
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The two-sample t-test under the assumption
of equal variances, WSR-test, and LIMMA
(Ritchie et al., 2015) were used for the
identification of ToxBGs. The downloaded
gene expression data were analyzed based
on the mentioned statistical approaches
using the base package and “limma” of the
R programming language software. ToxBGs
identified by the two-sample t-test, WSR-test,
and LIMMA were considered as the first-
stage ToxBG. However, the common genes
identified by these methods were declared as
the second-stage ToxBG. On the other hand,
for the validation of the identified second-
stage ToxBGs, we have used different ML
approaches like Linear Discriminant Analysis
(LDA) (Ye and Wang, 2006), Logistic
Regression (LR) (Boateng and Abaye, 2019),
Support Vector Machine (SVM) (Scholkopf,
2003; Fernandes de Mello and Antonelli
Ponti, 2018; Mohsin Abdulazeez et al.,
2020), and Random Forest (RF) (Dong et al.,
2020). We have evaluated the performance
of these ML approaches using the evaluation
metric accuracy, area under the curve (AUC),
sensitivity, and specificity. All the ML
and evaluation approaches were analyzed
using R packages “caret” and “pROC”,
respectively. Since the chemicals with similar
characteristics are associated with a set of
ToxBGs (Hamadeh ef al., 2002; Hasan et al.,
2019, 2025). Therefore, finding the chemicals
and their associated ToxBGs is another way
to interpret the toxicity of chemicals. In this
study, we have used robust hierarchical co-
clustering (Hasan et al., 2025) to identify the
gene-chemical association using rhcolcust
(Badsha et al., 2020) package in R.
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Bioinformatics approaches

To wunderstand the characteristics and
functions of the
an integrated bioinformatics analysis was

done. This bioinformatics analysis was also

second-stage ToxBGs,

used to narrow down the number of or to
find the most important or third/final stage
of ToxBGs. The bioinformatics analysis
includes functional and pathway enrichment
analysis, PPI network analysis, and disease
enrichment analysis.

Functional and pathway enrichment

analysis of ToxBG

The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Functional Gene
Ontology  (GO)
analysis is a popular method for identifying

pathway  enrichment
the pathways, molecular functions (MF),
biological processes (BP), and cellular
components (CC) (Kanehisa ef al., 2016). BP
is a change or series of changes that take place
throughout the cell’s granularity period and
are mediated by one or more gene products
for various biological purposes (Carbon et al.,
2021). Gene products’ biochemical actions
are known as MFs. A gene product’s active
location within a cell is known as the CC
(Carbon et al., 2021). A set of experimentally
verified pathway maps known as the KEGG
pathway illustrates our understanding of
the networks of molecular
reactions, and relationships
metabolism,
information processing, organismal systems,
environmental information processing, human

interactions,
involved in
functions,

cellular genetic

diseases, and drug development (Kanehisa et
al., 2023). We performed ToxBG functional
and pathway enrichment analysis using the
NetworkAnalyst tool with GO and KEGG
databases (Xia et al., 2014). To assess the
statistical significance of the functional
enrichment analysis, Fisher’s exact test was
used, with a cut-off adjusted p-value<0.05.
Once more, we used three well-known tools,
DAVID (Huang et al., 2007), EnrichR (Chen
et al., 2013), and Metascape (Zhou et al.,
2019) to perform functional and pathway
enrichment analysis utilizing GO and KEGG
databases. And finally, we suggested a
common, significantly enriched term (i.e.,
a term that is statistically significant and
enriched in every tool) to ensure the reliability
of the results.

PPI network analysis of ToxBG

PPIs are the physical attraction of two or more
protein molecules brought on by biochemical
events that are guided by the hydrophobic
effect, electrostatic forces, and hydrogen
bonds. In most cases, a protein cannot
function without interacting with one or more
other proteins (Seychell and Beck, 2021).
According to Braun and Gingras (2012)
(Braun and Gingras, 2012), the PPIs aid in
the creation of bigger protein complexes
that carry out particular tasks. Numerous
molecular and biological activities are carried
out by it, including protein function, cell-to-
cell contacts, metabolic and developmental
control, the occurrence of illness, and the
invention of therapies. An undirected graph
is used to depict a PPI network, with nodes
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denoting proteins and their interactions
denoted by edges. The top-ranked hub
protein is a node that has the most important
interactions, linkages, or edges with other
HToxBGs/proteins
can be investigated using the PPI network
analysis of ToxBG. To identify HToxBG
that enriched to functional pathways and
diseases through PPI network. The PPI
network of ToxBG was built in this study
using the STRING database (Szklarczyk et
al., 2019). The PPI network was visualized,
and topological studies were conducted using
Cytoscape 3.8.0 and NetworkAnalyst (Xia et
al.,2014). A medium confidence score of 900
was utilized as the PPI cutoff value. Using a

nodes. Consequently,

topological degree of measurement (> 25),
the HToxBGs in the PPI network are located.

Results

First stage ToxBG identification by statistical
approaches

The t-test identified 3856 biomarker genes,
the WSR-test identified 3232 biomarker
genes, and LIMMA identified 3377 biomarker
genes, and they were considered as the first
stage ToxBG for measuring the toxicity of
the mentioned chemicals. The common 2877
biomarker gene for all the mentioned test-
statistic was considered as the second-stage
ToxBG (Figure 1). In Figure 1, we showed
the t-test, WSR-test, and LIMMA identified
first-stage ToxBGs and common second-
stage ToxBGs. The co-cluster (Figure 2)
showed the association between the second-
stage ToxBGs and chemicals. From the
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bottom-left corner of Figure 2, the ToxBGs
and chemicals were clustered chronologically
according to ascending order of numeric.

t test WSR_test

LIMMA

Figure 1. Venn diagram of the ToxBGs identified
by the t-test, WSR-test, and LIMMA, based on
p-value < 0.01, and common biomarker genes
identified by all the tests.

Validation of the identified ToxBG by the
ML approaches

We validated the second-stage common
ToxBGs by the ML approaches like LDA,
LR, SVM, and RF. In this regard, accuracy,
AUC, sensitivity, and specificity were used as
performance evaluation metrics. In Table 1,
we presented different performance evaluation
scores against different ML approaches. The
performance evaluation scores (accuracy =
0.9806, AUC = 0.9995, sensitivity = 0.9833,
specificity = 0.9722) were highest for the
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Figure 2. Co-cluster or association between second-stage ToxBGs and chemicals with different doses
and time points. In the figure, the horizontal axis aligns gene clusters, and the vertical axis aligns chemical

clusters with different doses and time points.

SVM (Table 1). Therefore, we can conclude
that the SVM is the better ML approach
for classifying the case (chemically treated
sample) and control sample based on the
second-stage common ToxBGs. Additionally,
based on the results of accuracy, AUC,
sensitivity, and specificity (Table 1), it could
be concluded that the identified ToxBGs can
efficiently classify the treated and control
group of samples, and the identified second-
stage ToxBGs are the candidate HToxBGs.

Identification of the third stage ToxBG using
bioinformatics approaches

The statistical approaches identified 2877
common second-stage ToxBGs, which is a

very large number. Measuring the toxicity
of chemicals based on this large number of
ToxBGs is very challenging. Therefore, we
narrowed down this large number of ToxBGs
based on the hub gene identification technique
using the KEGG pathway enrichment
These

bioinformatics approaches are described in

and disease enrichment analysis.

the subsequent sections.

Identification of the third stage ToxBG using
KEGG pathway enrichment analysis

The pathway enrichment analysis was
done using the DAVID online platform for
functional enrichment and pathway analysis.
The second stage ToxBGs were significantly
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Table 1. Second stage common ToxBGs validation by the performance evaluation metrics

of the ML approaches

ML Approaches Performance evaluation metrics
Accuracy AUC Sensitivity Specificity
RF 0.8694 0.9654 0.9759 0.5500
LR 0.5333 0.5544 0.5537 0.4722
SVM 0.9806 0.9995 0.9833 0.9722
LDA 0.9125 0.9609 0.9574 0.7778
enriched in the ro03008: Ribosome 3). The results of the string database were

biogenesisineukaryotes, mo01100: Metabolic
pathways, rno03015: mRNA surveillance
pathway, 1mo03020: RNA polymerase,
mo00100: Steroid biosynthesis, mo04216:
Ferroptosis, rmo03013: Nucleocytoplasmic
transport, rno00900: Terpenoid backbone
and rno00480: Glutathione
metabolism pathways. Thereafter, protein-

biosynthesis,

protein interaction network analysis was
done for ToxBGs enriched in the mentioned
pathway using the string database (Figure

used to find HToxBGs for declaring the third
stage ToxBGs. The 90 third-stage HToxBGs
were presented in Table 2, and the network of
HToxBGs for each of the significant pathways
was given in Figure 4.

Identification of the third-stage ToxBG
using disease enrichment analysis

The common ToxBGs identified by the
statistical approaches were then analyzed
using the string database and Cytoscape to get

Table 2. HToxBGs for significantly enriched pathways that were extracted from the

protein-protein interaction network

mo03008: mo01100:  rno03015: no03020: rno00100: rno04216: mo03013: no00900: no00480:
Ribosome Metabolic mRNA RNA Steroid Ferroptosis  Nucleocytoplasmic ~ Terpenoid Glutathione
biogenesis in  pathways  surveillance ~ polymerase  biosynthesis transport backbone metabolism
eukaryotes pathway biosynthesis

Natl0 Sqle Ncbpl Polr2¢ Msmol Hmox!1 Nup153 Fdps Gsr
Nmd3 Cyp51 Eif4a3 Polr2f Lss Ftll Ranbp2 Hmger Gss
Nop58 Hmger Rnpsl Polr2e Cyp51 Tfrc Eif4a3 Mvd Gstpl
Utpl8 Hmgesl Upf3b Polrla Fdftl Steap3 Nup93 Idil Gstml
Utplda Fdps Casc3 Polr3e Dher24 Slc40al Nup54 Mvk Hpgds
Wdr3 Fdftl Magoh Polrlc Tm7sf2 Sle7all Nup160 Acat2 Gstm3
Pwp2 Acat2 Alyref Polr3c Nsdhl Pcbp2 Nup58 Pmvk Mgst2
Wdr43 Mvd Cpsfo Crep Sqle Gele Alyref Hmgesl Gstm4
Gnl3 Lss Clpl Polr3d Scsd Gelm Ncebpl Dhdds Gsta3
Mphosph10 Mvk Ddx39b Polrlb Ebp Tp53 Pom121 Nusl Prdx6
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Figure 3. PPI network analysis using the string database of the different significant KEGG pathway-
enriched ToxBGs. The enrichment analysis was done using the DAVID online bioinformatics database
tool. In figure A) rno03008: Ribosome biogenesis in eukaryotes, B) rno01100: Metabolic pathways, C)
rno03015: mRNA surveillance pathway, D) rno03020: RNA polymerase, E) rno00100: Steroid biosynthesis,
F) ro04216: Ferroptosis, G) rno03013: Nucleocytoplasmic transport, H) rno00900: Terpenoid backbone
biosynthesis, and I) rno00480: Glutathione metabolism.
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Figure 4. The PPI network of the HToxBGs for different pathways. In the figure A) rno03008:
Ribosome biogenesis in eukaryotes, B) rno01100: Metabolic pathways, C) rno03015: mRNA surveillance
pathway, D) rno03020: RNA polymerase, E) rno00100: Steroid biosynthesis, F) rno04216: Ferroptosis, G)
rno03013: Nucleocytoplasmic transport, H) rno00900: Terpenoid backbone biosynthesis, and I) rno00480:
Glutathione metabolism.
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the third stage ToxBGs that create diseases. Table 3 and Figure 6, we showed the third
In Figure 5, we presented the PPI network of stage HToxBGs. We identified 70 HToxBGs
the second-stage ToxBGs that significantly in the third stage for disease causation.
enriched different diseases. Similarly, in

C
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@ m@
@zmo @/9

Figurere 5. PPI network analysis using the string database of the different significant diseases
enriched by ToxBGs. The enrichment analysis was done using the Enrichr online bioinformatics database
tool. In the figure, A) Liver Cirrhosis, B) HIV Coinfection, C) Progressive microcephaly, D) Hereditary
Diffuse Gastric Cancer, E) Generalized hypotonia, F) Malignant neoplasm of liver, and G) Disease
Exacerbation.
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Table 3. HToxBGs for significantly enriched diseases that were extracted from the PPI

network
Liver HIV Progressive Hereditary Generalized Malignant Disease
Cirrhosis Coinfection microcephaly Diffuse Gastric hypotonia  neoplasm of the Exacerbation
Cancer liver
Aldhlal Cet5 Tsenls Tp53 Pc Tp53 Rps6
Hmox1 Cet3 Tsen?2 Myc Suox Cendl Nop56
Igf1 Psma5 Cipl Cendl Glul Myc Myc
Pxdn Psmc5 Tsen54 Cdhl Acaca Igf1 Bopl
Hmgcr Eif4al Slcla4 Rps6 Acat? Esrl Wdr46
Myc Psme3 Aco? Jun Aco2 Jun Pa2g4
Haol Psmd6 Ampd?2 Hmox1 Hics Hsp90aal Rrp9
Cxcll2 Odcl Asns Casp8 Atic Cdhl Esrl
Srebf1 Psmdl13 Slc2al Mapkl Aldh5al Hmox1 Cdhl
Abat Psmd3 TsenlS Fgfir2 Tsfim Kdr Kdmla
A B C
o - . it —--M ~ i - Sz .ﬂlm ampaz
ey 1 AT - b e / g
L] - s
D - E F
- R it o - S -
= o > 1
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Figure 6. PPI network of 10 HToxBGs using Cytoscape of different significant diseases enriched by the
ToxBGs. The enrichment analysis was done using the Enrichr online bioinformatics database tool. In
the figure, A) Liver Cirrhosis, B) HIV Coinfection, C) Progressive microcephaly, D) Hereditary Diffuse
Gastric Cancer, E) Generalized hypotonia, F) Malignant neoplasm of liver, and G) Disease Exacerbation.
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Final stage ToxBG declaration

In the second-stage, we identified 2877
common ToxBGs using statistical approaches,
namely the two-sample t-test, WSR-test, and
LIMMA. The identified ToxBGs IDs were
then converted to the official gene name. We
functionally annotated these ToxBGs using
the DAVID online database platform and
Enrichr online database to identify which
ToxBGs were significantly enriched in the
KEGG pathways and diseases. PPI network
analysis of the significantly enriched ToxBGs
to the pathways and diseases was done using
the string database, and 10 HToxBGs for
each of the significant pathways and diseases
were discovered using Cytoscape. A total
of 90 HToxBGs for the nine significantly
enriched pathways and 70 of HToxBGs for
the seven significantly enriched diseases
were discovered at the final stage of ToxBGs
Finally, we declared 90
HToxBGs for pathway enrichment analysis
and 70 of HToxBGs for disease enrichment
analysis, totaling 160 ToxBGs as the final
stage ToxBGs for predicting chemicals/drugs
toxicity.

1dentification.

Discussion

Pharmaceutical, pesticide, and environmental
chemical researchers are very interested in
the early prediction of chemical/drug adverse
effects because toxicity is one of the main
causes of drug attrition. The study of chemical
toxicity requires an understanding of the
regulatory pathways and cell signaling that
a drug candidate affects. (Barel and Herwig,

2018;Fiizietal.,2021). The identified ToxBGs
or HToxBGs enriched in the chemical-treated
perturbed pathway rmo03008: Ribosome
biogenesis in eukaryotes is essential to the
molecular life of all cells. The synthesis of
ribosomes is also one of the most energy-
intensive cellular functions. The strictly
controlled process of ribosome biogenesis is
closely related to other essential biological
functions, such as cell division and growth
(Thomson ef al., 2013). A metabolic pathway
in biochemistry is a connected set of chemical
events that take place inside a cell. Metabolites
are the reactants, products, and intermediates
of an enzymatic reaction that are altered by a
series of chemical reactions that are catalyzed
by enzymes (Boyle, 2005). In addition to
being necessary for energy consumption,
these metabolic pathways are also necessary
for specific effector functions such as

phagocytosis, degranulation, chemotaxis,
reactive oxygen species (ROS) generation,
and neutrophil extracellular traps (Stojkov
et al., 2022). Our identified ToxBGs were
enriched in the ToxBGs metabolic pathway.
The identified ToxBGs were also enriched
in another important pathway, rno00480:
Glutathione metabolism. The most prevalent
low molecular weight thiol is glutathione
(also known as gamma-glutamyl-cysteinyl-
glycine, or GSH), and the main redox pair in
mammalian cells is GSH/glutathione disulfide.
Protein glutathionylation, signal transduction,
cytokine production and immunological
response, DNA and protein synthesis, gene
expression, cell proliferation and apoptosis,

and antioxidant defense are all regulated
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Glutathione
contributes to oxidative stress, which is a

by glutathione. deficiency
major factor in aging and the etiology of
numerous illnesses, such as kwashiorkor,
seizures, Alzheimer’s disease, Parkinson’s
disease, liver disease, cystic fibrosis, sickle
cell anemia, HIV, AIDS, cancer, heart attacks,
strokes, and diabetes (Wu et al., 2004). The
rest of the pathways significantly enriched
by the ToxBGs are also important for the rat
and human stabilizing biological conditions,
and up- or downregulation of the ToxBGs in
the respective pathways creates diseases and
other health hazards. On the other hand, the
liver, a part of the gastrointestinal tract, is one
of the most important organs in the human
body that performs over 500 functions to
promote physiological homeostasis (Faccioli
et al., 2022). Conversely, the identified
ToxBGs or HToxBGs were enriched in
chemical-induced diseases. Among these,
severe liver scarring (fibrosis), loss of organ
function, and dire consequences associated
with portal hypertension (high blood pressure
in the hepatic portal vein and its branches) are
characteristics of cirrhosis (Fallowfield ef al.,
2021). Thus, chronic hepatitis, liver cirrhosis,
and hepatocellular cancer are frequently
caused by hepatitis B virus (HBV) infection.
Ten percent of individuals with HIV also
have chronic co-infection with HBV due
to common mechanisms of transmission.
Comparing HIV/HBV coinfection to chronic
HBYV mono-infection, the former hastens the
development of cirrhosis, end-stage liver
disease, or hepatocellular carcinoma (Cheng
et al., 2021). An inactivating mutation in the
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E-cadherin gene (CDHI1) on chromosome
16 is the most common cause of hereditary
diffuse gastric cancer (HDGC), an inherited
genetic disease (Stewart and Wild 2014). A
person’s risk of stomach cancer is greatly
increased if they inherit an inactive copy
of the CDHI gene. To prevent this cancer,
people with these mutations frequently
choose to have a preventive gastrectomy,
which involves removing the stomach entirely
(Stewart and Wild 2014). Mutations in CDH1
are also associated with a high risk of lobular
breast cancers, and may be associated with a
mildly elevated risk of colon cancer (Van der
Post et al., 2015). The identified ToxBGs or
HToxBGs were enriched in other chemically
induced diseases also (Table 3). On the other
hand, hub genes are those that interact with
numerous other genes in the gene network
and are frequently essential for biological
processes and gene regulation. In addition,
hub genes were described as the most
closely associated with disease. Therefore,
the proposed sequence of computational and
bioinformatics approaches can be applied to
identify and evaluate the HToxBGs, or the
final stage of ToxBGs, for predicting the
potential toxicity of chemicals or drugs.

Conclusion

Finally, we can conclude that the differential
expression of ToxBGs may perturb the
respective pathway, which causes diseases.
ToxBGs that
diseases—their differential expression is

are directly enriched in

responsible for those diseases. On the other
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hand, HToxBGs also play the key role in
regulating their neighboring genes that
regulate the disease state. Thus, the suggested
sequence of computational and bioinformatics
techniques can be used to detect and assess
HtoxBGs and to forecast the possible toxicity
of chemicals or medications.
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