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Chemical toxicity is challenging to mitigate, necessitating a revisit to seed compound 
screening. Safety is crucial in approving drugs, pesticides, and cosmetics, necessitating 
the identification of safety biomarkers, such as toxicogenomic biomarkers (ToxBG), to 
predict potential toxicity. In this regard, we proposed a sequence of computational and 
bioinformatics approaches to identify key/hub ToxBG (HToxBG) for predicting chemical 
toxicity. In this sequence, we initially identified ToxBGs using statistical approaches, 
such as t-test, Wilcoxon signed-rank test (WSR-test), and linear model for microarray 
data analysis (LIMMA), based on the chemically treated and control samples of gene 
expression data collected from the online database “Toxygates.” In the treatment group, 
rat samples were treated with chemicals (acetaminophen, bromobenzene, coumarin, 
methapyrilene, and nitrofurazone) with three dose levels, and gene expression data were 
collected at multiple time points. These statistical approaches, including the t-test, WSR-
test, and LIMMA, identified 3,856, 3,232, and 3,377 ToxBGs, respectively. Of these, 
2,877 were common and considered second-stage ToxBGs. This study validated the 
second-stage ToxBGs using four machine learning (ML) approaches. Among these ML 
approaches, the support vector machine (SVM) achieved higher accuracy in classifying 
treated and control samples, yielding sensitivity of 0.98, specificity of 0.97, accuracy 
of 0.98, and AUC (0.99) compared to other methods. The second-stage ToxBGs were 
also co-clustered with their associated chemicals. The protein-protein interaction 
(PPI) network analysis predicted that the second-stage ToxBGs were enriched in the 
biological pathways that perform important functions. Additionally, these ToxBGs were 
also enriched in different diseases like liver cirrhosis, HIV coinfection, gastric cancer, 
generalized hypotonia, neoplasm of the liver, etc. Out of 2877 common ToxBGs, 160 key/
hub ToxBGs (HToxBGs) have been identified, 70 genes associated with disease states, 
and 90 involved in critical biological pathways, enabling the study of chemical toxicity. 
Therefore, the proposed sequence of computational and bioinformatics approaches can be 
used to identify HToxBGs and predict chemical toxicity.
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Introduction 

Toxicogenomics examines the role of genes 
and chemicals, medications, or environmental 
stressors in the development of disease in 
people, animals, and plants by combining 
transcript, protein, and metabolite profiling 
with traditional toxicology. Several toxicants’ 
actions and illness-causing effects have 
been made clear by the patterns of changed 
molecular expression brought on by particular 
exposures or disease consequences (Waters 
and Fostel, 2004; Afshari et al., 2011; Hasan 
et al., 2018). This health hazards are due to 
the toxicity of the toxins (small molecules, 
peptides, or proteins), environmental stressors 
(drought, heat, salinity, heavy metal, biotic 
stress) and chemical agents (drugs, gasoline, 
alcohol, pesticides, fuel oil, and cosmetics) in 
organism (NRC, 2007; Afshari et al., 2011; 
Hasan et al., 2019). Last century’s industrial 
activities significantly increased the quantity 
of heavy metals to which people are exposed. 
Arsenic, cadmium, chromium, lead, and 
mercury have been the most frequently found 
heavy metals to cause poisoning in humans. 
Chromium, cadmium, and arsenic are among 
the harmful metals that can lead to genomic 
instability. They have been thought to be 
carcinogenic due to defects in DNA repair 
after the three metals produce oxidative stress 
and DNA damage (Azeh Engwa et al., 2019; 
Balali-Mood et al., 2021). Pesticides used in 
Chile’s agriculture sector have neurotoxic 
effects that raise the risk of Parkinson’s and 
Alzheimer’s disease in workers who are 
exposed to high levels of these chemicals. 

(Lucero et al., 2019).  Similarly, noise, 
emotional stress, and physicochemical agents 
are examples of environmental risk factors 
that significantly affect human health. This 
exposure to the environment may cause 14 
alterations in non-coding RNAs (ncRNAs) 
as well as epigenetic reprogramming (Miguel 
et al., 2020). The unintended consequence 
of a medicine that causes death or morbidity 
with symptoms severe enough to make a 
patient seek medical attention and/or need 
hospitalization is known as a drug-induced 
disease (Krueger, 2006). The most frequent 
cause of acute liver failure in the western 
world is still drug-induced liver damage 
(DILI). The medicine in question must be 
stopped immediately upon the onset of 
DILI, particularly if there is jaundice and/or 
increased transaminases (Laster and Satoskar, 
2015). The availability of sensitive, specific, 
and broadly applicable biomarkers of toxic 
effects, and the term ToxBG refers to genes 
induced by toxicants. Toxicogenomics has 
been applied at every level of chemical risk 
assessment, and it is believed that changes 
in gene expression may be employed as 
biomarkers of harmful effects (Hasan et al., 
2018). Successively, functional analysis of 
these ToxBGs can efficiently predict the 
extent of toxicity, probable health hazards, and 
disease-causing ability that will appear over 
time. Therefore, the identification of ToxBGs 
and their functional analysis will guide the 
prediction of chemical/drug/environmental 
stress toxicity before phenotypic changes 
appear, allowing for preventive measures 
to be taken. To address these issues in this 
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study, an attempt is made to identify ToxBGs 
using statistical and ML approaches, and 
their functional analysis using integrated 
bioinformatics analysis.      

Materials and Methods 

Gene expression data collection from 
chemically treated and control rat samples  

To examine the toxicity of chemicals, we 
use genome-wide gene expression data from 
the Japanese Toxicogenomics Project (TGP) 
(Uehara et al., 2010). Here, we consider 
genome-wide in vivo gene expression data 
from treatment and control samples of 
the rat’s (Rattus norvegicus) liver. In the 
treatment samples, a homogeneous group 
of rats was treated with three dose levels of 
chemicals: acetaminophen, bromobenzene, 
coumarin, methapyrilene, and nitrofurazone. 
Thereafter, gene expression data from treated 
rat liver (in vivo conditions) were collected at 
four time intervals (3 hours, 6 hours, 9 hours, 
and 24 hours), which constitute 60 treated 
samples. Additionally, in the experiment, 
there was a control sample against each of 
the treated samples, which constituted 60 
control samples.  We have downloaded gene 
expression data for these samples from the 
online toxicogenomic database “Toxygates” 
(Nyström-Persson et al., 2013, 2017) (https://
toxygates.nibiohn.go.jp/toxygates/#columns).

Identification and validation of the ToxBG 
using statistical and ML approaches 

In this section, firstly, we have identified 
the ToxBGs using statistical approaches. 

The two-sample t-test under the assumption 
of equal variances, WSR-test, and LIMMA 
(Ritchie et al., 2015) were used for the 
identification of ToxBGs. The downloaded 
gene expression data were analyzed based 
on the mentioned statistical approaches 
using the base package and “limma” of the 
R programming language software. ToxBGs 
identified by the two-sample t-test, WSR-test, 
and LIMMA were considered as the first-
stage ToxBG. However, the common genes 
identified by these methods were declared as 
the second-stage ToxBG. On the other hand, 
for the validation of the identified second-
stage ToxBGs, we have used different ML 
approaches like Linear Discriminant Analysis 
(LDA) (Ye and Wang, 2006), Logistic 
Regression (LR) (Boateng and Abaye, 2019), 
Support Vector Machine (SVM) (Schölkopf, 
2003; Fernandes de Mello and Antonelli 
Ponti, 2018; Mohsin Abdulazeez et al., 
2020), and Random Forest (RF) (Dong et al., 
2020). We have evaluated the performance 
of these ML approaches using the evaluation 
metric accuracy, area under the curve (AUC), 
sensitivity, and specificity. All the ML 
and evaluation approaches were analyzed 
using R packages “caret” and “pROC”, 
respectively. Since the chemicals with similar 
characteristics are associated with a set of 
ToxBGs (Hamadeh et al., 2002; Hasan et al., 
2019, 2025). Therefore, finding the chemicals 
and their associated ToxBGs is another way 
to interpret the toxicity of chemicals. In this 
study, we have used robust hierarchical co-
clustering (Hasan et al., 2025) to identify the 
gene-chemical association using rhcolcust 
(Badsha et al., 2020) package in R.    
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Bioinformatics approaches 

To understand the characteristics and 
functions of the second-stage ToxBGs, 
an integrated bioinformatics analysis was 
done. This bioinformatics analysis was also 
used to narrow down the number of or to 
find the most important or third/final stage 
of ToxBGs. The bioinformatics analysis 
includes functional and pathway enrichment 
analysis, PPI network analysis, and disease 
enrichment analysis. 

Functional and pathway enrichment 
analysis of ToxBG 

The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Functional Gene 
Ontology (GO) pathway enrichment 
analysis is a popular method for identifying 
the pathways, molecular functions (MF), 
biological processes (BP), and cellular 
components (CC) (Kanehisa et al., 2016). BP 
is a change or series of changes that take place 
throughout the cell’s granularity period and 
are mediated by one or more gene products 
for various biological purposes (Carbon et al., 
2021). Gene products’ biochemical actions 
are known as MFs. A gene product’s active 
location within a cell is known as the CC 
(Carbon et al., 2021). A set of experimentally 
verified pathway maps known as the KEGG 
pathway illustrates our understanding of 
the networks of molecular interactions, 
reactions, and relationships involved in 
metabolism, cellular functions, genetic 
information processing, organismal systems, 
environmental information processing, human 

diseases, and drug development (Kanehisa et 
al., 2023).  We performed ToxBG functional 
and pathway enrichment analysis using the 
NetworkAnalyst tool with GO and KEGG 
databases (Xia et al., 2014).  To assess the 
statistical significance of the functional 
enrichment analysis, Fisher’s exact test was 
used, with a cut-off adjusted p-value<0.05. 
Once more, we used three well-known tools, 
DAVID (Huang et al., 2007), EnrichR (Chen 
et al., 2013), and Metascape (Zhou et al., 
2019) to perform functional and pathway 
enrichment analysis utilizing GO and KEGG 
databases. And finally, we suggested a 
common, significantly enriched term (i.e., 
a term that is statistically significant and 
enriched in every tool) to ensure the reliability 
of the results. 

PPI network analysis of ToxBG 

PPIs are the physical attraction of two or more 
protein molecules brought on by biochemical 
events that are guided by the hydrophobic 
effect, electrostatic forces, and hydrogen 
bonds. In most cases, a protein cannot 
function without interacting with one or more 
other proteins (Seychell and Beck, 2021). 
According to  Braun and Gingras (2012) 
(Braun and Gingras, 2012), the PPIs aid in 
the creation of bigger protein complexes 
that carry out particular tasks. Numerous 
molecular and biological activities are carried 
out by it, including protein function, cell-to-
cell contacts, metabolic and developmental 
control, the occurrence of illness, and the 
invention of therapies. An undirected graph 
is used to depict a PPI network, with nodes 
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denoting proteins and their interactions 
denoted by edges. The top-ranked hub 
protein is a node that has the most important 
interactions, linkages, or edges with other 
nodes. Consequently, HToxBGs/proteins 
can be investigated using the PPI network 
analysis of ToxBG. To identify HToxBG 
that enriched to functional pathways and 
diseases through PPI network. The PPI 
network of ToxBG was built in this study 
using the STRING database (Szklarczyk et 
al., 2019). The PPI network was visualized, 
and topological studies were conducted using 
Cytoscape 3.8.0 and NetworkAnalyst (Xia et 
al., 2014). A medium confidence score of 900 
was utilized as the PPI cutoff value. Using a 
topological degree of measurement (> 25), 
the HToxBGs in the PPI network are located.

Results  

First stage ToxBG identification by statistical 
approaches 

The t-test identified 3856 biomarker genes, 
the WSR-test identified 3232 biomarker 
genes, and LIMMA identified 3377 biomarker 
genes, and they were considered as the first 
stage ToxBG for measuring the toxicity of 
the mentioned chemicals. The common 2877 
biomarker gene for all the mentioned test-
statistic was considered as the second-stage 
ToxBG (Figure 1). In Figure 1, we showed 
the t-test, WSR-test, and LIMMA identified 
first-stage ToxBGs and common second-
stage ToxBGs. The co-cluster (Figure 2) 
showed the association between the second-
stage ToxBGs and chemicals. From the 

bottom-left corner of Figure 2, the ToxBGs 
and chemicals were clustered chronologically 
according to ascending order of numeric.        

Figure 1. Venn diagram of the ToxBGs identified 
by the t-test, WSR-test, and LIMMA, based on 
p-value < 0.01, and common biomarker genes 
identified by all the tests. 

Validation of the identified ToxBG by the 
ML approaches 

We validated the second-stage common 
ToxBGs by the ML approaches like LDA, 
LR, SVM, and RF. In this regard, accuracy, 
AUC, sensitivity, and specificity were used as 
performance evaluation metrics. In Table 1, 
we presented different performance evaluation 
scores against different ML approaches. The 
performance evaluation scores (accuracy = 
0.9806, AUC = 0.9995, sensitivity = 0.9833, 
specificity = 0.9722) were highest for the 
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SVM (Table 1). Therefore, we can conclude 
that the SVM is the better ML approach 
for classifying the case (chemically treated 
sample) and control sample based on the 
second-stage common ToxBGs. Additionally, 
based on the results of accuracy, AUC, 
sensitivity, and specificity (Table 1), it could 
be concluded that the identified ToxBGs can 
efficiently classify the treated and control 
group of samples, and the identified second-
stage ToxBGs are the candidate HToxBGs. 

Identification of the third stage ToxBG using 
bioinformatics approaches           

The statistical approaches identified 2877 
common second-stage ToxBGs, which is a 

very large number. Measuring the toxicity 
of chemicals based on this large number of 
ToxBGs is very challenging. Therefore, we 
narrowed down this large number of ToxBGs 
based on the hub gene identification technique 
using the KEGG pathway enrichment 
and disease enrichment analysis. These 
bioinformatics approaches are described in 
the subsequent sections.    

Identification of the third stage ToxBG using 
KEGG pathway enrichment analysis  

The pathway enrichment analysis was 
done using the DAVID online platform for 
functional enrichment and pathway analysis. 
The second stage ToxBGs were significantly 

Figure 2. Co-cluster or association between second-stage ToxBGs and chemicals with different doses 
and time points. In the figure, the horizontal axis aligns gene clusters, and the vertical axis aligns chemical 
clusters with different doses and time points. 
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enriched in the rno03008: Ribosome 
biogenesis in eukaryotes, rno01100: Metabolic 
pathways, rno03015: mRNA surveillance 
pathway, rno03020: RNA polymerase, 
rno00100: Steroid biosynthesis, rno04216: 
Ferroptosis, rno03013: Nucleocytoplasmic 
transport, rno00900: Terpenoid backbone 
biosynthesis, and rno00480: Glutathione 
metabolism pathways. Thereafter, protein-
protein interaction network analysis was 
done for ToxBGs enriched in the mentioned 
pathway using the string database (Figure 

3). The results of the string database were 
used to find HToxBGs for declaring the third 
stage ToxBGs. The 90 third-stage HToxBGs 
were presented in Table 2, and the network of 
HToxBGs for each of the significant pathways 
was given in Figure 4.    

Identification of the third-stage ToxBG 
using disease enrichment analysis  

The common ToxBGs identified by the 
statistical approaches were then analyzed 
using the string database and Cytoscape to get 

Table 1. Second stage common ToxBGs validation by the performance evaluation metrics 
of the ML approaches

ML Approaches Performance evaluation metrics
Accuracy AUC Sensitivity Specificity 

RF 0.8694  0.9654  0.9759  0.5500  
LR 0.5333  0.5544  0.5537  0.4722  
SVM 0.9806  0.9995  0.9833  0.9722  
LDA 0.9125  0.9609  0.9574  0.7778  

Table 2. HToxBGs for significantly enriched pathways that were extracted from the 
protein-protein interaction network 
rno03008:
Ribosome 
biogenesis in 
eukaryotes

rno01100:
Metabolic 
pathways

rno03015:
mRNA 

surveillance 
pathway

rno03020:
RNA 

polymerase

rno00100:
Steroid 

biosynthesis

rno04216:
Ferroptosis

rno03013:
Nucleocytoplasmic 

transport

rno00900:
Terpenoid 
backbone 

biosynthesis

rno00480:
Glutathione 
metabolism

Nat10 Sqle Ncbp1 Polr2c Msmo1 Hmox1 Nup153 Fdps Gsr

Nmd3 Cyp51 Eif4a3 Polr2f Lss Ftl1 Ranbp2 Hmgcr Gss

Nop58 Hmgcr Rnps1 Polr2e Cyp51 Tfrc Eif4a3 Mvd Gstp1

Utp18 Hmgcs1 Upf3b Polr1a Fdft1 Steap3 Nup93 Idi1 Gstm1

Utp14a Fdps Casc3 Polr3e Dhcr24 Slc40a1 Nup54 Mvk Hpgds

Wdr3 Fdft1 Magoh Polr1c Tm7sf2 Slc7a11 Nup160 Acat2 Gstm3

Pwp2 Acat2 Alyref Polr3c Nsdhl Pcbp2 Nup58 Pmvk Mgst2

Wdr43 Mvd Cpsf6 Crcp Sqle Gclc Alyref Hmgcs1 Gstm4

Gnl3 Lss Clp1 Polr3d Sc5d Gclm Ncbp1 Dhdds Gsta3

Mphosph10 Mvk Ddx39b Polr1b Ebp Tp53 Pom121 Nus1 Prdx6
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Figure 3. PPI network analysis using the string database of the different significant KEGG pathway-
enriched ToxBGs. The enrichment analysis was done using the DAVID online bioinformatics database 
tool. In figure A) rno03008: Ribosome biogenesis in eukaryotes, B) rno01100: Metabolic pathways, C) 
rno03015: mRNA surveillance pathway, D) rno03020: RNA polymerase, E) rno00100: Steroid biosynthesis, 
F) rno04216: Ferroptosis, G) rno03013: Nucleocytoplasmic transport, H) rno00900: Terpenoid backbone 
biosynthesis, and I) rno00480: Glutathione metabolism.
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Figure 4. The PPI network of the HToxBGs for different pathways. In the figure A) rno03008: 
Ribosome biogenesis in eukaryotes, B) rno01100: Metabolic pathways, C) rno03015: mRNA surveillance 
pathway, D) rno03020: RNA polymerase, E) rno00100: Steroid biosynthesis, F) rno04216: Ferroptosis, G) 
rno03013: Nucleocytoplasmic transport, H) rno00900: Terpenoid backbone biosynthesis, and I) rno00480: 
Glutathione metabolism.



102     A multi-stage computational and bioinformatics framework

the third stage ToxBGs that create diseases. 
In Figure 5, we presented the PPI network of 
the second-stage ToxBGs that significantly 
enriched different diseases. Similarly, in 

Table 3 and Figure 6, we showed the third 
stage HToxBGs. We identified 70 HToxBGs 
in the third stage for disease causation. 

Figurere 5. PPI network analysis using the string database of the different significant diseases 
enriched by ToxBGs. The enrichment analysis was done using the Enrichr online bioinformatics database 
tool. In the figure, A) Liver Cirrhosis, B) HIV Coinfection, C) Progressive microcephaly, D) Hereditary 
Diffuse Gastric Cancer, E) Generalized hypotonia, F) Malignant neoplasm of liver, and G) Disease 
Exacerbation. 
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Table 3. HToxBGs for significantly enriched diseases that were extracted from the PPI 
network

Liver 
Cirrhosis

HIV 
Coinfection

Progressive 
microcephaly

Hereditary 
Diffuse Gastric 

Cancer

Generalized 
hypotonia

Malignant 
neoplasm of the 

liver

Disease 
Exacerbation

Aldh1a1 Cct5 Tsen15 Tp53 Pc Tp53 Rps6
Hmox1 Cct3 Tsen2 Myc Suox Ccnd1 Nop56
Igf1 Psma5 Clp1 Ccnd1 Glul Myc Myc
Pxdn Psmc5 Tsen54 Cdh1 Acaca Igf1 Bop1
Hmgcr Eif4a1 Slc1a4 Rps6 Acat2 Esr1 Wdr46
Myc Psme3 Aco2 Jun Aco2 Jun Pa2g4
Hao1 Psmd6 Ampd2 Hmox1 Hlcs Hsp90aa1 Rrp9
Cxcl12 Odc1 Asns Casp8 Atic Cdh1 Esr1
Srebf1 Psmd13 Slc2a1 Mapk1 Aldh5a1 Hmox1 Cdh1
Abat Psmd3 Tsen15 Fgfr2 Tsfm Kdr Kdm1a

Figure 6. PPI network of 10 HToxBGs using Cytoscape of different significant diseases enriched by the 
ToxBGs. The enrichment analysis was done using the Enrichr online bioinformatics database tool. In 
the figure, A) Liver Cirrhosis, B) HIV Coinfection, C) Progressive microcephaly, D) Hereditary Diffuse 
Gastric Cancer, E) Generalized hypotonia, F) Malignant neoplasm of liver, and G) Disease Exacerbation. 
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Final stage ToxBG declaration   

In the second-stage, we identified 2877 
common ToxBGs using statistical approaches, 
namely the two-sample t-test, WSR-test, and 
LIMMA. The identified ToxBGs IDs were 
then converted to the official gene name. We 
functionally annotated these ToxBGs using 
the DAVID online database platform and 
Enrichr online database to identify which 
ToxBGs were significantly enriched in the 
KEGG pathways and diseases. PPI network 
analysis of the significantly enriched ToxBGs 
to the pathways and diseases was done using 
the string database, and 10 HToxBGs for 
each of the significant pathways and diseases 
were discovered using Cytoscape. A total 
of 90 HToxBGs for the nine significantly 
enriched pathways and 70 of HToxBGs for 
the seven significantly enriched diseases 
were discovered at the final stage of ToxBGs 
identification. Finally, we declared 90 
HToxBGs for pathway enrichment analysis 
and 70 of HToxBGs for disease enrichment 
analysis, totaling 160 ToxBGs as the final 
stage ToxBGs for predicting chemicals/drugs 
toxicity. 

Discussion  

Pharmaceutical, pesticide, and environmental 
chemical researchers are very interested in 
the early prediction of chemical/drug adverse 
effects because toxicity is one of the main 
causes of drug attrition. The study of chemical 
toxicity requires an understanding of the 
regulatory pathways and cell signaling that 
a drug candidate affects. (Barel and Herwig, 

2018; Füzi et al., 2021). The identified ToxBGs 
or HToxBGs enriched in the chemical-treated 
perturbed pathway rno03008: Ribosome 
biogenesis in eukaryotes is essential to the 
molecular life of all cells. The synthesis of 
ribosomes is also one of the most energy-
intensive cellular functions. The strictly 
controlled process of ribosome biogenesis is 
closely related to other essential biological 
functions, such as cell division and growth 
(Thomson et al., 2013). A metabolic pathway 
in biochemistry is a connected set of chemical 
events that take place inside a cell. Metabolites 
are the reactants, products, and intermediates 
of an enzymatic reaction that are altered by a 
series of chemical reactions that are catalyzed 
by enzymes (Boyle, 2005). In addition to 
being necessary for energy consumption, 
these metabolic pathways are also necessary 
for specific effector functions such as 
phagocytosis, degranulation, chemotaxis, 
reactive oxygen species (ROS) generation, 
and neutrophil extracellular traps (Stojkov 
et al., 2022). Our identified ToxBGs were 
enriched in the ToxBGs metabolic pathway. 
The identified ToxBGs were also enriched 
in another important pathway, rno00480: 
Glutathione metabolism. The most prevalent 
low molecular weight thiol is glutathione 
(also known as gamma-glutamyl-cysteinyl-
glycine, or GSH), and the main redox pair in 
mammalian cells is GSH/glutathione disulfide. 
Protein glutathionylation, signal transduction, 
cytokine production and immunological 
response, DNA and protein synthesis, gene 
expression, cell proliferation and apoptosis, 
and antioxidant defense are all regulated 
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by glutathione. Glutathione deficiency 
contributes to oxidative stress, which is a 
major factor in aging and the etiology of 
numerous illnesses, such as kwashiorkor, 
seizures, Alzheimer’s disease, Parkinson’s 
disease, liver disease, cystic fibrosis, sickle 
cell anemia, HIV, AIDS, cancer, heart attacks, 
strokes, and diabetes (Wu et al., 2004). The 
rest of the pathways significantly enriched 
by the ToxBGs are also important for the rat 
and human stabilizing biological conditions, 
and up- or downregulation of the ToxBGs in 
the respective pathways creates diseases and 
other health hazards. On the other hand, the 
liver, a part of the gastrointestinal tract, is one 
of the most important organs in the human 
body that performs over 500 functions to 
promote physiological homeostasis (Faccioli 
et al., 2022). Conversely, the identified 
ToxBGs or HToxBGs were enriched in 
chemical-induced diseases. Among these, 
severe liver scarring (fibrosis), loss of organ 
function, and dire consequences associated 
with portal hypertension (high blood pressure 
in the hepatic portal vein and its branches) are 
characteristics of cirrhosis (Fallowfield et al., 
2021). Thus, chronic hepatitis, liver cirrhosis, 
and hepatocellular cancer are frequently 
caused by hepatitis B virus (HBV) infection. 
Ten percent of individuals with HIV also 
have chronic co-infection with HBV due 
to common mechanisms of transmission. 
Comparing HIV/HBV coinfection to chronic 
HBV mono-infection, the former hastens the 
development of cirrhosis, end-stage liver 
disease, or hepatocellular carcinoma (Cheng 
et al., 2021). An inactivating mutation in the 

E-cadherin gene (CDH1) on chromosome 
16 is the most common cause of hereditary 
diffuse gastric cancer (HDGC), an inherited 
genetic disease (Stewart and Wild 2014). A 
person’s risk of stomach cancer is greatly 
increased if they inherit an inactive copy 
of the CDH1 gene. To prevent this cancer, 
people with these mutations frequently 
choose to have a preventive gastrectomy, 
which involves removing the stomach entirely 
(Stewart and Wild 2014). Mutations in CDH1 
are also associated with a high risk of lobular 
breast cancers, and may be associated with a 
mildly elevated risk of colon cancer (Van der 
Post et al., 2015). The identified ToxBGs or 
HToxBGs were enriched in other chemically 
induced diseases also (Table 3). On the other 
hand, hub genes are those that interact with 
numerous other genes in the gene network 
and are frequently essential for biological 
processes and gene regulation. In addition, 
hub genes were described as the most 
closely associated with disease. Therefore, 
the proposed sequence of computational and 
bioinformatics approaches can be applied to 
identify and evaluate the HToxBGs, or the 
final stage of ToxBGs, for predicting the 
potential toxicity of chemicals or drugs. 

Conclusion 

Finally, we can conclude that the differential 
expression of ToxBGs may perturb the 
respective pathway, which causes diseases. 
ToxBGs that are directly enriched in 
diseases—their differential expression is 
responsible for those diseases. On the other 
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hand, HToxBGs also play the key role in 
regulating their neighboring genes that 
regulate the disease state. Thus, the suggested 
sequence of computational and bioinformatics 
techniques can be used to detect and assess 
HtoxBGs and to forecast the possible toxicity 
of chemicals or medications. 
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