Pattern of PML/RARa BCR Isoforms in Acute Promyelocytic Leukemia (APL) Patients in Bangladesh - A Single Centre Study

Hossen MSM¹, Jubaida N², Tarek M³, Naznin L⁴, Dity NJ⁵

DOI: https://doi.org/10.3329/bafmj.v58i1.84968

ABSTRACT

Background: Acute Promyelocytic Leukemia (APL) is a well-defined subtype of AML accounting for 5-13% of all AML cases and is identified by a balanced reciprocal translocation between chromosome 15 and 17 [t(15;17)(q24;q21)] which ultimately causes formation of PML-RARα oncoprotein. This translocation results in 3 isoforms on the PML gene including L-long form (located at intron 3) termed bcr1, S-short form (located at intron 6) known as bcr2, and V form (located at exon 6) known as bcr3. To ascertain the pattern of different breakpoints of PML/RARα fusion gene among Bangladeshi APL patients was the aim of this study.

Methods: In this study 60 APL patients diagnosed positive for PML-RARα fusion gene who were referred to AFIP, Dhaka Cantonment were included as subjects. They were analyzed for the detection of three possible PML-RARα isoforms by utilizing Real Time Polymerase Chain Reaction (RT-PCR) technology.

Results: The patients included in this study have age ranged from 9 years to 72 years, 35 years is the mean of age. In the study group, 39 (65%) were male and female patients were 21 (35%). The bcr1 isoform was found in 4 (6.67%) patients. No single bcr2 isoform was found in any patient. But in 3 patients having bcr2 isoform were found along with bcr1 (5.0%) and in 1 (1.66%) patient it was present in addition to bcr3. The bcr3 isoform was found in 19 (31.67%) patients and in 33 (55.0%) patients all of the isoforms were present.

Conclusion: The key elements for the proper management of APL include early diagnosis and treatment initiation, proper supportive care, and recognition and management of therapy associated complications. Genetic testing is one of the most accurate methods for the diagnosis of this disease and ultimately can help in advancement of the disease management.

Keywords: Acute myeloid leukemia, Acute promyelocytic leukemia, Molecular genetics, PML/RARa ber isoforms.

1. Lt Col Mohammad Shameem Montasir Hossen, MBBS, FCPS (Haematology), DCP, MCPS (Clinical Pathology). Classified Specialist in Pathology, Armed Forces Institute of Pathology, Dhaka Cantonment, 2. Maj Gen Nishat Jubaida, MBBS, FCPS (Microbiology), DCP, Commandant, Armed Forces Institute of Pathology, Dhaka Cantonment, 3. Col Monwar Tarek, MBBS, FCPS (Haematology), DCP, MCPS (Clinical Pathology). Classified Specialist in Pathology, Armed Forces Institute of Pathology, Dhaka Cantonment, 4. Col Lubna Naznin, MBBS, MCPS (Cl.Path), DCP, FCPS (Biochemistry), Classified Specialist in Pathology, BGB Hospital, Dhaka, 5. Nushrat Jahan Dity, BSc, Msc. in Biotechnology and Genetic engineering, Scientific Officer, Armed Forces Institute of Pathology, Dhaka Cantonment.

Correspondence: Lt Col Mohammad Shameem Montasir Hossen, FCPS (Haematology), DCP, MCPS (Clinical Pathology). Classified Specialist in Pathology, Armed Forces Institute of Pathology, Dhaka Cantonment. E-mail: shameemmontasir@yahoo.com. Cell Phone: 01731511901

Received: 08 May 2025 Accepted: 11 August 2025

INTRODUCTION

Acute myeloid leukemia (AML) is a neoplasm of hematopoietic origin identified by the appearance of malignant clone of myeloid cells with maturation arrest at the level of blast. Basing on the morphology and cytochemical staining the French-American-British (FAB) group has identified eight subtypes of AML (M0-M7). Among them AML-M3 is known as Acute Promyelocytic Leukemia (APL). It is a well-defined subtype of AML accounting for 5-13% of all AML cases and is identified by a balanced reciprocal translocation between chromosome 15 and 17 [t(15;17)(g24;g21)]which ultimately causes formation PML-RARa oncoprotein.^{1,2} This chimeric fusion protein obstructs myeloid differentiation at the promyelocytic stage while preventing apoptosis and promoting proliferation leukemic progenitor cells.3 Karyotyping or fluorescence in situ hybridization (FISH) is applied to identify this translocation while polymerase chain reaction (PCR) is used to detect the transcript of a suspected APL patient. Among different bcr isoforms a connection has been suggested regarding clinical presentation or response to treatment in APL patients.^{4,5}

Signs and symptoms of patients having APL are generally associated with cytopenias. Most patient usually present with generalized weakness, easy fatigue and fever. Many patients during physical examination found to have hemorrhagic manifestations such as petechiae, purpura or ecchymotic lesion of the skin. Gum bleeding, epistaxis, retinal hemorrhages can also occur. The hemorrhagic complications are often out of proportion to the degree of thrombocytopenia which reflects the underlying biological properties transformed promyelocytes.6

Identification of PML-RARa is the authenticated marker for the diagnosis of APL. More than

98% of patients of APL have this translocation. All trans retinoic acid (ATRA) is the central component used in the treatment of APL with a healing rate of >80%.⁷

To ascertain the pattern of different breakpoints of PML/RAR α fusion gene among Bangladeshi APL patients was the aim of this study.

To our knowledge, we are the first to study the pattern of different breakpoints of PML/RARa fusion gene among Bangladeshi APL patients.

MATERIALS AND METHODS

From June, 2021 to December 2024 a total of 60 cases of APL, aged 9-72 years and both genders were included in the study.

About 2 ml of whole blood obtained in Ethylenediaminetetraacetic acid (EDTA) bottle/vacutainer from all subjects. Then Genomic Ribonucleic acid (RNA) was extracted by QIAamp RNA Blood Mini Kit (QIAGEN®, USA). The quality and quantity of extracted RNA was measured by Nano Drop spectrophotometer 2000.

A ready to use kit named PML-RARa bcr1, 2, 3 one-step detection kit (EntroGen, Inc., USA) was used to detect isoforms of PML-RARa fusion gene. One single PCR protocol was used amplify all isoforms according manufacturer's instruction. Reverse transcription polymerase chain reaction (RT-PCR) detected the type of fusion gene formed from PML-RARa rearrangement. It was performed in Rotor-Gene Q (QIAGEN®, USA). There were 2 dyes selected for this test, FAM and VIC respectively. The VIC dye for internal control gene (ABL) and FAM for isoforms (bcr1, bcr2 and bcr3). If the Ct value of internal control is within the range of $18 \le \text{Ct} \le 22$ and the mutant's Ct value is ≤ 39 then that specific breakpoint is considered detected.

RESULTS

The age of the patients ranged from 9 years to 72 years with a mean of 35 years. There were 39 (65%) male and 21 (35%) female patients in the study group. The bcr1 isoform was found in 4 (6.67%) patients. No single bcr2 isoform was found in any patient. But in 3 patients bcr2 isoform found along with bcr1 (5.0%) and in 1 (1.66%) patient it was present in addition to bcr3. The bcr3 isoform was found in 19 (31.67%) patients and in 33 (55.0%) patients all of the isoforms were present. The frequency distribution according to gender and isoforms shown in Table-1, Table-2 and Table-3 respectively. The overall breakpoint distribution has been shown in Figure-1.

To evaluate the correlation between age group (Table 4)which is a continuous variable and break point which is a categorical variable, we have used single factor one way ANOVA as the data is normally distributed with almost equal variance, does not have any drastic outlier and the groups are independent of each other. Here, the level of significance is 0.05.

In the ANOVA table of age groups and break point categories (Table 5) we can see, as the Fcal > Ftab, the null hypothesis can be rejected at 0.05 level of significance and we can conclude that all break point categories are not equal throughout all age groups and differ significantly.

TABLE-1: Frequency distribution of male age group

Age group	Frequency	Percentage	
10-19	06	15.38	
20-29	11	28.21	
30-39	04	10.26	
40-49	08	20.51	
50-59	07	17.95	
60-69	02	5.13	
70-79	01	2.56	
Total	39	100.00	

TABLE-2: Frequency distribution of female age group

Age group	Frequency	Percentage	
01-10	04	19.05	
11-20	04	19.05	
21-30	02	9.52	
31-40	03	14.29	
41-50	04	19.05	
51-60	04	19.05	
Total	21	100	

TABLE-3: Frequency distribution of break point with percentage

Break point	Frequency	Percentage	
BCR1	04	6.67	
BCR3	19	31.67	
BCR1&2	03	5.0	
BCR2&3	01	1.66	
BCR1,2&3	33	55.0	
Total	60	100	

TABLE-4: Frequency distribution of age groups by break point groups

Age	Break point group				Total	
group	BCR1	BCR3	BCR1&2	BCR2&3	BCR1,2&3	Total
1-10	00	01	00	00	04	05
11-20	02	03	01	00	05	11
21-30	01	04	00	00	06	11
31-40	00	01	00	01	05	07
41-50	00	06	00	00	07	13
51-60	01	03	22	00	05	11
61-70	00	00	00	00	01	01
71-80	00	01	00	00	00	01
Total	04	19	03	01	33	60

TABLE-5: ANOVA table of age groups and break point categories

Туре	SS	d.f.	MS	F-value	
Regression	1477.46	4	369.37	24.08	
Error	536.92	35	15.34		

Here, d.f. = Degrees of freedom

SS = Sum of square

MS = Mean of square

$$F_{cal} = 24.08$$

$$F_{tab} = F_{4,35,0.05} = 2.641$$

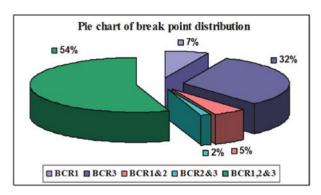


Figure-1: Pie chart of break point distribution

DISCUSSION

Among the subtypes of acute myeloid leukemia, APL is relatively rare.⁸ It comprises approximately 5% to 13% of adult AML. It is uncommon in children with a median age of 47 years. It is usually not preceded by myelodysplastic syndrome but may have a history of prior cytotoxic therapy.⁶ Acute presentation is usual with symptoms such as weakness, lethargy, fever and bleeding manifestations. Sometimes patient may present with features of disseminated intravascular coagulation due to severe hypercoagulable state having bleeding as the most prominent clinical manifestation.⁶⁻¹⁶

For diagnosis complete blood count, peripheral blood film. bone marrow study immunophenotyping for acute leukemia panel is required. Coagulation profile along with some other biochemical tests such as serum uric acid, serum electrolytes, liver function tests, serum calcium, S.LDH etc. are also done. For confirmation of diagnosis molecular techniques are applied among which qPCR is the most popular which can measure the leukemia load of APL patients in respect to their PML-RARa ber isoforms. For molecular targeted therapy and for monitoring minimal residual disease (MRD) molecular techniques play an important role.17

The 3 isoforms on the PML gene includes L-long form (located at intron 3) termed bcr1, S-short form (located at intron 6) known as *bcr2*, and V form (located at exon 6) known as *bcr3*. The *bcr2* has been reported to be connected to a shorter remission period and comprehensive survival in comparison to the *bcr1* in a study by Gonzales et al. Distinct breakpoints show unique response to ATRA. A number of European and USA studies have reported the frequency of breakpoint sites in the *PML* gene from to be approximately 50–55% for *bcr1*, 8–20% for *bcr3* and 27–49% for *bcr2*. BCR 3 has been found to be most frequent in a study by Dutta et al from India. In

The age of the patients in our study ranged from 9 years to 72 years with a mean of 35 years. There were 39 (65%) male and 29 (35%) female patients in the study group. The male to female ratio was (1.9:1). In 2014 similar gender distribution (1.5:1) was also found by Chatterjee et al. and Sazawal et al. in 2009 (61.76% vs. 38.24%) among the patients of India.^{4,18} Though Douer et al. showed female prevalence in their study (46.43% vs. 53.57%).¹⁵

The most frequent isoform of PML-RARa fusion gene was the combination of all three breakpoints i.e., bcr1, bcr 2 and bcr3 which was detected in 33 (55.5%) cases followed by bcr3 in 19 (31.67%) and bcr1 in 4 (6.67%) patients. In India and Pakistan, the most frequent isoform is bcr3.7 BCR3 isoform heve been found to be the most frequent in Indian population by Chatterjee et al. in 2014 (38.09%) and Dutta et al. in 2008 (72.7%).^{4,16} The results of these studies do not go with those of our study where we detected combination of all 3 breakpoints i.e., bcr1, bcr2 and bcr3 being the most common isoform.

We found bcr3 isoform as the second highest. BCR3 is not sensitive to ATRA and is also linked to bad outcome; in a number of cases high TLC and CNS relapse occurs.⁴

In this study, the prevalence for only bcr1 was 4 (6.67%) patients. Unlikely, bcr1 was found as the most frequent PML-RARα isoform in studies published in western countries.⁷

In our study, the prevalence for only bcr2 was 0% in APL patients. Siahbani et. al. also showed similar result for bcr2 isoform in their study.¹⁹ The prevalence of the bcr2 isoform was comparatively very low, in accordance with previous studies.^{16,19-21} But this isoform was present along with bcr1 and bcr3 in 3 patients and in 1 patient respectively.

CONCLUSION

The key elements for the proper management of APL include early diagnosis and treatment initiation, proper supportive care, and recognition and management of therapy associated complications. Genetic testing is one of the most accurate methods for the diagnosis of this disease and ultimately can help in advancement of the disease management.

REFERRENCES

- 1. Golomb HM, Rowley JD, Vardiman JW, Testa JR, Butler A. "Microgranular" acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity.
- 2. Liquori A, Ibañez M, Sargas C, Sanz MA, Barragán E, Cervera J. Acute promyelocytic leukemia: a constellation of molecular events around a single PML-RARA fusion gene. Cancers. 2020 Mar 8;12(3):624.
- 3. Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison Ket al. Arsenic trioxide as an inducer of apoptosis and loss of PML/RARα protein in acute promyelocytic leukemia cells. JNCI: Journal of the National Cancer Institute. 1998 Jan 21;90(2):124-33.

- 4. Chatterjee T, Gupta S, Sharma S, Ganguli P. Distribution of different PML/RARα bcr isoforms in Indian acute promyelocytic leukemia (APL) patients and clinicohematological correlation. Mediterranean journal of hematology and infectious diseases. 2014;6(1).
- 5. Gonzalez M, Barragan E, Bolufer P, Chillon C, Colomer D, Borstein R, et al. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RARα isoforms: a study of the PETHEMA group. British journal of haematology. 2001 Jul;114(1):99-103.
- 6. Greer JP, Arber DA, Glader B, List AF, Means Jr RT, Paraskevas F, et al. Wintrobe's Clinical Hemnatology. Asia Book Registry. 2019 Oct 9.
- 7. Khan M, Khan SA, Altaf C, Malik HS, Ahmed P, Nisar H. 3 ISOFORMS OF PML-RARa IN ACUTE PROMYELOCYTIC LEUKAEMIA. Pakistan Armed Forces Medical Journal. 2018 Dec 31;68(6):1677-82.
- 8. Bruzzese A, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Morelli R, Rossi T, Neri A, Morabito F, Gentile M. Therapy-Related Acute Promyelocytic Leukemia: Case Series and Current Insights. European Journal of Haematology. 2025 Jan;114(1):195-8.
- 9. Yoo ES. Recent advances in the diagnosis and management of childhood acute promyelocytic leukemia. Korean journal of pediatrics. 2011 Mar;54(3):95.
- 10. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood, The Journal of the American Society of Hematology. 2012 Jan 5;119(1):34-43.

- 11. Matasar MJ, Ritchie EK, Consedine N, Magai C, Neugut AI. Incidence rates of acute promyelocytic leukemia among Hispanics, blacks, Asians, and non-Hispanic whites in the United States. European journal of cancer prevention. 2006 Aug 1;15(4):367-70.
- 12. Estey E, Thall P, Kantarjian H, Pierce S, Kornblau S, Keating M. Association between increased body mass index and a diagnosis of acute promyelocytic leukemia in patients with acute myeloid leukemia. Leukemia. 1997 Oct;11(10):1661-4.
- 13. Gilbert RD, Karabus CD, Mills AE. Acute promyelocytic leukemia. A childhood cluster. Cancer. 1987 Mar 1;59(5):933-5.
- 14. Baba SM, Shah ZA, Pandith AA, Jan A, Mir KA, Aziz SA, et al. Influence of bcr-3 PML-RAR α transcript on outcome in Acute Promyelocytic Leukemia patients of Kashmir treated with all-trans retinoic acid and/or arsenic tri-oxide. Cancer Genetics. 2019 Feb 1;231:14-21.
- 15. Douer D, Santillana S, Ramezani L, Samanez C, Slovak ML, Lee MS, et al. Acute promyelocytic leukaemia in patients originating in Latin America is associated with an increased frequency of the bcr1 subtype of the PML/RARα fusion gene. British journal of haematology. 2003 Aug;122(4):563-70.
- 16. Dutta P, Sazawal S, Kumar R, Saxena R. Does acute promyelocytic leukemia in Indian patients have biology different from the West?. Indian Journal of Pathology and Microbiology. 2008 Jul 1;51(3):437-9.

- 17. Safiya E. Distribution of PML-RARA isoforms in Acute promyelocytic leukemia patients from a tertiary hospital in KZN, South Africa using qPCR (Doctoral dissertation).
- 18. Sazawal S, Kumar B, khizer Hasan S, Dutta P, Kumar R, Chaubey R, Mir R, Saxena R. Haematological & molecular profile of acute myelogenous leukaemia in India. Indian Journal of Medical Research. 2009 Mar 1;129(3):256-61.
- 19. Siahbani S, Safaei A, Faghih M, Hosseini M, Fendereski A, Valibeigi B, Monabati A. Different Isoforms of PML-RARA Chimeric Protein in Patients with Acute Promyelocytic Leukemia: Survival Analysis per Demographic Characteristics, Clinicohematological Parameters and Cytogenetic Findings. Iranian Journal of Pathology. 2023;18(4):456.
- 20. Jurcic JG, Nimer SD, Scheinberg DA, DeBlasio T, Warrell Jr RP, Miller Jr WH. Prognostic significance of minimal residual disease detection and PML/RAR-α isoform type: long-term follow-up in acute promyelocytic leukemia. Blood, The Journal of the American Society of Hematology. 2001 Nov 1;98(9):2651-6.
- 21. Nath S, Bhattacharyya J, Chandra P, Saxena R, Sazawal S, Saikia KK. Clinicopathological significance of common genetic alterations in patients with acute promyelocytic leukemia. Hematology/Oncology and Stem Cell Therapy. 2020 Jul 30.