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Abstract

Tackling the unprecedented challenges faced by oceans due to pollution, 
climate change, and over-exploitation requires sustainable solutions for 
monitoring, predicting, and conserving marine resources. The emergence 
of artificial intelligence (AI) plays a pivotal role in advancing marine 
science and research, enabling efficient extraction of valuable information 
to aid in policy formulation. This systematic review assesses the role of AI 
transformation to address the crucial challenges arised in ocean resource 
exploration, conservation and monitoring. This review identifies four 
shortcomings in real-world implementation such as biases of geographical 
data, over-reliance on synthetic datasets, computational constraints, gaps in 
model interpretability. To address the geographic biases, it is required to 
have benchmark datasets on diverse marine ecosystems. The integration of 
AI development reveals that illegal fishing detection can be detected 
successfully with 99% precision, the coral reef can be mapped with 80% 
accuracy, the ship fuel can be saved about 6.64% with optimization using 
reinforcement learning (RL). This review thoroughly highlights AI-based 
technology methodologies relevant to selecting suitable techniques for 
specific applications in marine resource management. By analyzing past 
studies, this work identifies research gaps to explore in future studies, 
including availability of data, model interpretability, ethical risks, and cost 
effectiveness. A three-tiered action framework has been proposed in this 
review: international data-sharing protocol establishment, marine AI 
system standard certification and multidisciplinary innovations hub 
creation to mitigate the gap between conventional and AI approach.  
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.
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 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 
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promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

                                           85VOLUME 6, ISSUE 1, DEC 2025

Dube
(2024)

Gaw et al., (2014) +
Ojemaye & Petrik (2019)

Trégarot et al.,
(2024)

This review
work

Gülmez et al.,
(2023)

Ocean Governance

Ocean Science and Technology

Maritime Security

Climate Change

Marine Ecology

Maritime Transportation
and Logistics

Scopes

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 
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promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 1: Novelty of My Review Work

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 2: Detection of Illegal Fishing and Maritime Potential Threats Based on
ML and Remote Sensing Techniques

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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Objectives Methods Results LimitationsLocation

(Do Nascimento,
Alves, et al.,
2024)

Not specified
(global)

99% precision
(illegal fishing),
92% (suspicious
activities).

Limited real-
world validation;
reliance on
synthetic data.

Stack ensemble
model + active
learning; JDL
model framework.

Logistic
regression,
decision trees,
RF, NN, GB,
RNN + ensemble
methods.

Generalizability
to various types/
regions of vessels.

Detect illegal
fishing/suspicious
activities using
AIS data and
expert rules.

(Do Nascimento,
De Farias, et al.,
2024)

Improve detection
of illegal fishing
through ensemble
learning.

Not specified
(global)

The ensemble
methods
(weighted/
stacking)
outperformed
individual models.

(Zhou et al.,
2025)

Predict ship types
(focus: fishing
vessels) using
AIS port-visit
sequences.

Southeast
Asia

KD tree + ML
algorithms
(port-visit
features).

Identified 17
cases of illegal
behavior.

Low AIS refresh
rate; misreporting
of issues.

(Vasudevan &
Chola, 2024)

Identify
transshipment
events using
spatial-temporal
ML.

Not specified
(global)

Ensemble
classifiers +
k-fold
stratified CV.

F1 score:
0.998

Need for external
factors (e.g.,
weather) +
multisensory data.

(Tsuda et al.,
2023)

Detect night
fishers via VIIRS
DNB with ML.

East China
Sea

Two-step ML
model for
imbalanced
DNB data.

Comparable to
existing VIIRS
algorithms;
detected light
use trends.

Cloud/moonlight
interference;
requires radar
validation.

Limited to
S-AIS-equipped
vessels; misses
small-scale
fisheries.

(De Souza et al.,
2016)

(Akinbulire et
al., 2017)

(Brown et al.,
2024)

(Mujtaba &
Mahapatra,
2022)

Forecast IUU
fishing spatio-
temporally for
tuna fisheries.

North America
(Atlantic)

Spatiotemporal
prediction
algorithm.

MAE: 0.085;
captured IUU
trends.

Limited to
historical data
(1950–2014);
needs real-time
integration.

Detect IUU
fishing using
fraudulent AIS
beacon analysis.

Southeast
Asia

Movement /
positional
characteristics
as indicators
of IUU.

Regional bias;
limited ground
truth for
validation.

Semi-supervised
classification,
clustering,
and NN.

Simulate the
pursuit of illegal
fishing vessels
through
reinforcement
learning.

Simulation-
based

Captured
evaders within
preset time.

Simplified
simulations vs.
real-world
dynamics.

Fuzzy Actor
Critic Learning
(pursuer-evader
scenarios).

Map global
fishing effort by
gear type (trawl,
longline, purse
seine).

Global Accuracies: 83%
(trawler/
longliner), 97%
(purse seiner).

HMM (trawlers),
DM (longliners),
and speed/time
filters (purse
seines).

Authors

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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90 Smart Ocean: A Comprehensive Review of Artificial Intelligence

Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 3: NLP-driven Approaches in Marine Judiciary and MPA Research

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 4: Reinforcement Learning Approaches for AUV Path Optimization

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 5: Ocean Current and Wave Prediction Using Deep-Learning Approaches

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 6: AI Approaches for Maritime Security Applications

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.

References

A, S., & S, M. (2025). Studies on Underwater Image Processing Using Artificial 
Intelligence Technologies. IEEE Access, 13, 3929–3969. https://doi.org/10.1109/ 
ACCESS.2024.3524593.

Abimbola, B., Tan, Q., & De La Cal Marín, E. A. (2024). Sentiment analysis of 
Canadian maritime case law: A sentiment case law and deep learning approach. 
International Journal of Information Technology, 16(6), 3401–3409. https://doi. 
org/10.1007/s41870-024-01820-2.

Abinaya, N. S., Susan, D., & Sidharthan, R. K. (2022). Deep learning-based 
segmental analysis of fish for biomass estimation in an occulted environment. 
Computers and Electronics in Agriculture, 197, 106985. https://doi.org/10.1016/ 
j.compag.2022.106985

Akinbulire, T., Schwartz, H., Falcon, R., & Abielmona, R. (2017). A reinforcement 
learning approach to tackle illegal, unreported and unregulated fishing. 2017 IEEE 
Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/ 
10.1109/SSCI.2017.8285315

Atesongun, A., & Gulsen, M. (2024). A Hybrid Forecasting Structure Based on 
Arima and Artificial Neural Network Models. Applied Sciences, 14(16), 7122. 
https://doi.org/10.3390/app14167122

Awasthi, A., Krpalkova, L., & Walsh, J. (2024). Deep Learning-Based Boolean, 
Time Series, Error Detection, and Predictive Analysis in Container Crane 
Operations. Algorithms, 17(8), 333. https://doi.org/10.3390/a17080333

Azad, A. S., Sokkalingam, R., Daud, H., Adhikary, S. K., Khurshid, H., Mazlan, S. 
N. A., & Rabbani, M. B. A. (2022). Water Level Prediction through Hybrid 
SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir 
Case Study. Sustainability, 14(3), 1843. https://doi.org/10.3390/su14031843

Bakar, N. N. A., Bazmohammadi, N., Çimen, H., Uyanik, T., Vasquez, J. C., & Guerrero, J. 
M. (2022). Data-driven ship berthing forecasting for cold ironing in maritime transportation. 
Applied Energy, 326, 119947. https://doi.org/10.1016/j. apenergy.2022.119947

Balliett, J. F. (2014). Oceans. Routledge. https://doi.org/10.4324/97813 15702049

Balogun, A.-L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR 
and LSTM neural network: Assessing the impact of ensemble Ocean-Atmospheric 
processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 
653–674. https://doi.org/10.1080/19475705.2021.1887372

Bergamin, L., Di Bella, L., Romano, E., D’Ambrosi, A., Di Fazio, M., Gaglianone, 
G., Medeghini, L., Pierdomenico, M., Pierfranceschi, G., Provenzani, C., Rampazzo, 
R., Rinaldi, S., & Spagnoli, F. (2024). Habitat partitioning and first microplastic 
detection in the Argentarola marine cave (Tyrrhenian Sea, Italy). Regional Studies 
in Marine Science, 74, 103547. https://doi.org/10.1016/j.rsma. 2024.103547

Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., 
Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan 
Rosli, W. I. (2022). Potent Bioactive Compounds From Seaweed Waste to Combat 
Cancer Through Bioinformatics Investigation. Frontiers in Nutrition, 9, 889276. 
https://doi.org/10.3389/fnut.2022.889276.

Bhopale, P., Kazi, F., & Singh, N. (2019). Reinforcement Learning Based Obstacle 
Avoidance for Autonomous Underwater Vehicle. Journal of Marine Science and 
Application, 18(2), 228–238. https://doi.org/10.1007/s11804-019-00089-3.

Brown, S., Katz, D., Korotovskikh, D., & Kullman, S. (2024). Detecting Illegal, 
Unreported, and Unregulated Fishing through AIS Data and Machine Learning 
Approaches. 2024 Systems and Information Engineering Design Symposium 
(SIEDS), 319–324. https://doi.org/10.1109/SIEDS61124.2024.10534704

Caharija, W., Dalseg, E. S., Bent O. A., H., & Stahl, A. (2021). Echosounder 
tracking with monocular camera for biomass estimation. OCEANS 2021: San 
Diego – Porto, 1–9. https://doi.org/10.23919/OCEANS44145.2021.9705820

Capolupo, A., Lonero, M., Maltese, A., & Tarantino, E. (2024). Spectral 
discrimination and separability analysis of beach macroplatisc litter from 
high-resolution RPAS images. In C. M. Neale, A. Maltese, C. Nichol, & C. R. 
Bostater (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology 
XXVI (p. 27). SPIE. https://doi.org/10.1117/12.3033835

Carvache-Franco, M., Bagarić, L., Carvache-Franco, O., & Carvache-Franco, W. 
(2025). Segmentation by recreation experiences of demand in coastal and marine 
destinations: A study in Galapagos, Ecuador. PLOS ONE, 20(1), e0316614. 
https://doi.org/10.1371/journal.pone.0316614

Carvache-Franco, M., Carvache-Franco, W., & Manner-Baldeon, F. (2021). 
Market Segmentation Based on Ecotourism Motivations in Marine Protected 
Areas and National Parks in the Galapagos Islands, Ecuador. Journal of Coastal 
Research, 37(3). https://doi.org/10.2112/JCOASTRES-D-20-00076.1

Carvache-Franco, M., Víquez-Paniagua, A. G., Carvache-Franco, W., Pérez-Orozco, 
A., & Carvache-Franco, O. (2022). Segmentation by Motivations in Sustainable 

Coastal and Marine Destinations: A Study in Jacó, Costa Rica. Sustainability, 
14(14), 8830. https://doi.org/10.3390/su14148830

Carvache-Franco, W., Carvache-Franco, M., & Hernández-Lara, A. B. (2021). 
From motivation to segmentation in coastal and marine destinations: A study from 
the Galapagos Islands, Ecuador. Current Issues in Tourism, 24(16), 2325–2341. 
https://doi.org/10.1080/13683500.2020.1811651

Chen, Q., Zhang, J., Gao, J., Lau, Y.-Y., Liu, J., Poo, M. C.-P., & Zhang, P. (2024). 
Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian 
Networks. Journal of Marine Science and Engineering, 12(7), 1088. https://doi. 
org/10.3390/jmse12071088

Crain, C. M., Halpern, B. S., Beck, M. W., & Kappel, C. V. (2009). Understanding 
and Managing Human Threats to the Coastal Marine Environment. Annals of the 
New York Academy of Sciences, 1162(1), 39–62. https://doi.org/10.1111/j.1749 
-6632.2009.04496.x

De Souza, E. N., Boerder, K., Matwin, S., & Worm, B. (2016). Improving Fishing 
Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. 
PLOS ONE, 11(7), e0158248. https://doi.org/10.1371/journal.pone.0158248

Do Nascimento, V. D., Alves, T. A. O., De Farias, C. M., & Dutra, D. L. C. (2024). 
A Hybrid Framework for Maritime Surveillance: Detecting Illegal Activities 
through Vessel Behaviors and Expert Rules Fusion. Sensors, 24(17), 5623. 
https://doi.org/10.3390/s24175623

Do Nascimento, V. D., De Farias, C. M., Dutra, D. L. C., & Alves, T. A. O. (2024). 
Ensemble Learning Approaches for Detecting Fishing Activity in Maritime Surveillance: 
A Performance Evaluation. 2024 27th International Conference on Information Fusion 
(FUSION), 1–8. https://doi.org/10.23919/FUSION59988. 2024.10706287

Domingo, M. C. (2021). Deep Learning and Internet of Things for Beach 
Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels 
Beach. Applied Sciences, 11(22), 10735. https://doi.org/10.3390/ app112210735

Dube, K. (2024). A Comprehensive Review of Climatic Threats and Adaptation of 
Marine Biodiversity. Journal of Marine Science and Engineering, 12(2), 344. 
https://doi.org/10.3390/jmse12020344

Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. V. V. S., Ninoria, S. Z., Wajid, 
M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for 
prediction of white spot disease among shrimp farmers. Scientific Reports, 12(1), 
20876. https://doi.org/10.1038/s41598-022-25109-1

Ezzeddini, L., Affes, N., Ktari, J., Frikha, T., Halima, R. B., & Hamam, H. (2024). 
Smart Maritime Surveillance: Leveraging YOLO Detection and Blockchain 
traceability for Vessel Monitoring. Journal of Information Assurance and Security, 
19(6), 233–248. https://doi.org/10.2478/ias-2024-0016

Faltynkova, A., & Wagner, M. (2023). Developing and testing a workflow to 
identify microplastics using near infrared hyperspectral imaging. Chemosphere, 
336, 139186. https://doi.org/10.1016/j.chemosphere.2023.139186

Gaudêncio, S. P., & Pereira, F. (2022). Predicting Antifouling Activity and 
Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided 
Drug Design Approach. Marine Drugs, 20(2), 129. https://doi. org/10.3390/md20020129

Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends 
of pharmaceuticals in the marine and coastal environment. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130572. 
https://doi.org/10.1098/rstb.2013.0572

Gebejes, A., Hrovat, B., Semenov, D., Kanyathare, B., Itkonen, T., Keinänen, M., 
Koistinen, A., Peiponen, K.-E., & Roussey, M. (2024). Hyperspectral imaging for 
identification of irregular-shaped microplastics in water. Science of The Total 
Environment, 944, 173811. https://doi.org/10.1016/j.scitotenv.2024.173811

Guillén, J., García-Olivares, A., Ojeda, E., Osorio, A., Chic, O., & González, R. 
(2008). Long-Term Quantification of Beach Users Using Video Monitoring. 
Journal of Coastal Research, 246, 1612–1619. https://doi.org/10.2112/07-0886.1

Gülmez, S., Denktaş Şakar, G., & Baştuğ, S. (2023). An overview of maritime 
logistics: Trends and research agenda. Maritime Policy & Management, 50(1), 
97–116. https://doi.org/10.1080/03088839.2021.1962557

Gutiérrez-Estrada, J. C., Pulido-Calvo, I., Castro-Gutiérrez, J., Peregrín, A., 
López-Domínguez, S., Gómez-Bravo, F., Garrocho-Cruz, A., & De La 
Rosa-Lucas, I. (2022). Fish abundance estimation with imaging sonar in 
semi-intensive aquaculture ponds. Aquacultural Engineering, 97, 102235. 
https://doi.org/10.1016/j.aquaeng.2022.102235

Hadi, B., Khosravi, A., & Sarhadi, P. (2022). Deep reinforcement learning for 
adaptive path planning and control of an autonomous underwater vehicle. Applied 
Ocean Research, 129, 103326. https://doi.org/10.1016/j.apor.2022.103326

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang, H. (2021). Fault Detection 
With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sensors 
Journal, 21(19), 21903–21912. https://doi.org/10.1109/JSEN.2021. 3105226

Immas, A., Do, N., & Alam, M.-R. (2021). Real-time in situ prediction of ocean currents. 
Ocean Engineering, 228, 108922. https://doi.org/10.1016/j.oceaneng. 2021.108922

Jian, J., Liu, L., Zhang, Y., Xu, K., & Yang, J. (2023). Optical Remote Sensing 
Ship Recognition and Classification Based on Improved YOLOv5. Remote 
Sensing, 15(17), 4319. https://doi.org/10.3390/rs15174319

Jing, C., Dong, M., Du, M., Zhu, Y., & Fu, J. (2020). Fine-Grained Spatiotemporal 
Dynamics of Inbound Tourists Based on Geotagged Photos: A Case Study in Beijing, 
China. IEEE Access, 8, 28735–28745. https://doi.org/10.1109/ACCESS. 2020.2972309

Kaur, G., Braveen, M., Krishnapriya, S., Wawale, S. G., Castillo-Picon, J., 
Malhotra, D., & Osei-Owusu, J. (2023). Machine Learning Integrated Multivariate 
Water Quality Control Framework for Prawn Harvesting from Fresh Water Ponds. 
Journal of Food Quality, 2023, 1–9. https://doi.org/10.1155/2023/3841882

Kaur, G., & Chopra, K. (2025). India’s cobalt quest: Navigating geopolitics in the 
Indo-Pacific. The Round Table, 114(1), 94–96. https://doi.org/10.1080/00358533 
.2025.2455755

Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable 
Anomaly Detection Framework for Maritime Main Engine Sensor Data. Sensors, 
21(15), 5200. https://doi.org/10.3390/s21155200

Kristmundsson, J., Patursson, Ø., Potter, J., & Xin, Q. (2023). Fish Monitoring in 
Aquaculture Using Multibeam Echosounders and Machine Learning. IEEE 
Access, 11, 108306–108316. https://doi.org/10.1109/ACCESS.2023.3320949

Kusumaningrum, R., Khoerunnisa, S. F., Khadijah, K., & Syafrudin, M. (2024). 
Exploring Community Awareness of Mangrove Ecosystem Preservation through 
Sentence-BERT and K-Means Clustering. Information, 15(3), 165. https://doi.org/ 
10.3390/info15030165

Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., 
McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K. I., Bailey, D., 
Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., 
Carreiro-Silva, M., Colaço, A., Eblé, M. C., Fowler, A. M., … Weller, R. A. 
(2019). Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 
6, 241. https://doi.org/10.3389/fmars.2019.00241

Li, H., Chen, L., Zhang, F., & Cai, Z. (2025). Graph-learning-based machine 
learning improves prediction and cultivation of commercial-grade marine 
microalgae Porphyridium. Bioresource Technology, 416, 131728. https://doi.org/ 
10.1016/j.biortech.2024.131728

Li, Z., Zhao, S., Lu, Y., Song, C., Huang, R., & Yu, K. (2024). Deep 
Learning-Based Automatic Estimation of Live Coral Cover from Underwater 
Video for Coral Reef Health Monitoring. Journal of Marine Science and 
Engineering, 12(11), 1980. https://doi.org/10.3390/jmse12111980

Liu, L., Zhang, Y., Ma, Z., & Wang, H. (2023). An analysis on the spatiotemporal 
behavior of inbound tourists in Jiaodong Peninsula based on Flickr geotagged 
photos. International Journal of Applied Earth Observation and Geoinformation, 
120, 103349. https://doi.org/10.1016/j.jag.2023.103349

Liza, J. I., Majumder, S. C., & Rahman, Md. H. (2025). Scrutinizing the impact of 
blue economy factors on the economic growth in Bangladesh: An empirical study. 
Marine Policy, 173, 106542. https://doi.org/10.1016/j.marpol.2024.106542

Milstein, A., Islam, M. S., Wahab, M. A., Kamal, A. H. M., & Dewan, S. (2005). 
Characterization of water quality in shrimp ponds of different sizes and with 
different management regimes using multivariate statistical analysis. Aquaculture 
International, 13(6), 501–518. https://doi.org/10.1007/s10499-005-9001-6

Mora-Cross, M., & Calderon-Ramirez, S. (2024). Uncertainty Estimation in Large 
Language Models to Support Biodiversity Conservation. Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 6: Industry Track), 368–378. 
https://doi.org/10.18653/v1/2024.naacl-industry.31

Moradi, M. H., Brutsche, M., Wenig, M., Wagner, U., & Koch, T. (2022). Marine 
route optimization using reinforcement learning approach to reduce fuel 
consumption and consequently minimize CO2 emissions. Ocean Engineering, 
259, 111882. https://doi.org/10.1016/j.oceaneng.2022.111882

Mujtaba, D. F., & Mahapatra, N. R. (2022). Deep Learning for Spatiotemporal 
Modeling of Illegal, Unreported, and Unregulated Fishing Events. 2022 
International Conference on Computational Science and Computational 
Intelligence (CSCI), 423–425. https://doi.org/10.1109/CSCI58124.2022.00082

Nemade, B., Maharana, K. K., Kulkarni, V., Mondal, S., Ghantasala, G. S. P., 
Al-Rasheed, A., Getahun, M., & Soufiene, B. O. (2024). IoT-based automated 
system for water-related disease prediction. Scientific Reports, 14(1), 29483. 
https://doi.org/10.1038/s41598-024-79989-6

Ojemaye, C. Y., & Petrik, L. (2019). Pharmaceuticals in the marine environment: A 
review. Environmental Reviews, 27(2), 151–165. https://doi.org/10.1139/er- 2018-0054

Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species 
using machine learning models. Aquaculture Reports, 20, 100660. https://doi.org/ 
10.1016/j.aqrep.2021.100660

Palmieri, R., Gasbarrone, R., Bonifazi, G., Piccinini, G., & Serranti, S. (2024). 
Hyperspectral Imaging for Detecting Plastic Debris on Shoreline Sands to Support 
Recycling. Applied Sciences, 14(23), 11437. https://doi.org/10.3390/app142311437

Panboonyuen, T. (2024). SEA-ViT: Sea Surface Currents Forecasting Using 
Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling 
(Version 2). arXiv. https://doi.org/10.48550/ARXIV.2409.16313

Pataranutaporn, P., Doudkin, A., & Maes, P. (2025). OceanChat: The Effect of 
Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change 
(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2502.02863

Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., 
Sandin, S., & Cignoni, P. (2022). TagLab: AI‐assisted annotation for the fast and 
accurate semantic segmentation of coral reef orthoimages. Journal of Field 
Robotics, 39(3), 246–262. https://doi.org/10.1002/rob.22049

Qi, L., Li, B., Chen, L., Wang, W., Dong, L., Jia, X., Huang, J., Ge, C., Xue, G., & 
Wang, D. (2019). Ship Target Detection Algorithm Based on Improved Faster 
R-CNN. Electronics, 8(9), 959. https://doi.org/10.3390/electronics8090959

Qin, J., Song, C., Tang, M., Zhang, Y., & Wang, J. (2019). Exploring the Spatial 
Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. 
Sustainability, 11(20), 5822. https://doi.org/10.3390/su11205822

Rizzo, A., Serranti, S., Cucuzza, P., Lisco, S., Marsico, A., Bonifazi, G., & 
Mastronuzzi, G. (2024). Application of hyperspectral imaging and machine 
learning for the automatic identification of microplastics on sandy beaches. In D. 
W. Messinger & M. Velez-Reyes (Eds.), Algorithms, Technologies, and 
Applications for Multispectral and Hyperspectral Imaging XXX (p. 33). SPIE. 
https://doi.org/10.1117/12.3013227

Roy, A., Fablet, R., & Bertrand, S. L. (2022). Using generative adversarial 
networks ( GAN ) to simulate central‐place foraging trajectories. Methods in 
Ecology and Evolution, 13(6), 1275–1287. https://doi.org/10.1111/2041-210X.13853

Sauder, J., Banc‐Prandi, G., Meibom, A., & Tuia, D. (2024). Scalable semantic 3D 
mapping of coral reefs with deep learning. Methods in Ecology and Evolution, 
15(5), 916–934. https://doi.org/10.1111/2041-210X.14307

Schneider, S., & Zhuang, A. (2020). Counting Fish and Dolphins in Sonar Images 
Using Deep Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV. 
2007.12808

Shen, Y., Xuan, B., Hu, H., Wu, Y., Zhao, N., & Yang, Z. (2024). A Decomposed- 
Ensemble Prediction Framework for Gate-In Operations at Container Terminals. 
Journal of Marine Science and Engineering, 13(1), 45. https://doi.org/10.3390/ 
jmse13010045

Shi, J., Su, T., Li, X., Wang, F., Cui, J., Liu, Z., & Wang, J. (2023). A 
Machine-Learning Approach Based on Attention Mechanism for Significant Wave 
Height Forecasting. Journal of Marine Science and Engineering, 11(9), 1821. 
https://doi.org/10.3390/jmse11091821

Shu, Y., Yu, B., Liu, W., Yan, T., Liu, Z., Gan, L., Yin, J., & Song, L. (2024). 
Investigation of ship energy consumption based on neural network. Ocean & 
Coastal Management, 254, 107167. https://doi.org/10.1016/j.ocecoaman.2024.107167

Sinha, A., & Abernathey, R. (2021). Estimating Ocean Surface Currents With 
Machine Learning. Frontiers in Marine Science, 8, 672477. https://doi.org/ 
10.3389/fmars.2021.672477

Song, H., Mehdi, S. R., Zhang, Y., Shentu, Y., Wan, Q., Wang, W., Raza, K., & Huang, 
H. (2021). Development of Coral Investigation System Based on Semantic Segmentation 
of Single-Channel Images. Sensors, 21(5), 1848. https://doi.org/ 10.3390/s21051848

Su, J., Lin, Z., Xu, F., Fathi, G., & Alnowibet, K. A. (2024). A hybrid model of 
ARIMA and MLP with a Grasshopper optimization algorithm for time series 
forecasting of water quality. Scientific Reports, 14(1), 23927. https://doi.org/ 
10.1038/s41598-024-74144-7

Sun, Y., Cheng, J., Zhang, G., & Xu, H. (2019). Mapless Motion Planning System 
for an Autonomous Underwater Vehicle Using Policy Gradient-based Deep 
Reinforcement Learning. Journal of Intelligent & Robotic Systems, 96(3–4), 
591–601. https://doi.org/10.1007/s10846-019-01004-2

Taneepanichskul, N., Hailes, H. C., & Miodownik, M. (2024). Using hyperspectral 
imaging to identify and classify large microplastic contamination in industrial 
composting processes. Frontiers in Sustainability, 5, 1332163. https://doi.org/ 
10.3389/frsus.2024.1332163

Tarling, P., Cantor, M., Clapés, A., & Escalera, S. (2022). Deep learning with 
self-supervision and uncertainty regularization to count fish in underwater images. 
PLOS ONE, 17(5), e0267759. https://doi.org/10.1371/journal.pone.0267759

Taroual, K., Nachtane, M., Adeli, K., Faik, A., Boulzehar, A., Saifaoui, D., & 
Tarfaoui, M. (2025). Hybrid marine energy and AI-driven optimization for 
hydrogen production in coastal regions. International Journal of Hydrogen 
Energy, 118, 80–92. https://doi.org/10.1016/j.ijhydene.2025.03.091

Thongniran, N., Vateekul, P., Jitkajornwanich, K., Lawawirojwong, S., & 
Srestasathiern, P. (2019). Spatio-Temporal Deep Learning for Ocean Current 
Prediction Based on HF Radar Data. 2019 16th International Joint Conference on 
Computer Science and Software Engineering (JCSSE), 254–259. https://doi.org/ 
10.1109/JCSSE.2019.8864215

Tian, C., Ma, J., Zhang, C., & Zhan, P. (2018). A Deep Neural Network Model for 
Short-Term Load Forecast Based on Long Short-Term Memory Network and 
Convolutional Neural Network. Energies, 11(12), 3493. https://doi.org/ 
10.3390/en11123493

Trégarot, E., D’Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., 
Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., 
Kersting, D. K., Maréchal, J.-P., Meesters, E., O’Leary, B. C., Pérez, G., 
Seijo-Núñez, C., Simide, R., … De Juan, S. (2024). Effects of climate change on 
marine coastal ecosystems – A review to guide research and management. 
Biological Conservation, 289, 110394. https://doi.org/10.1016/j.biocon.2023.110394

Tsuda, M. E., Miller, N. A., Saito, R., Park, J., & Oozeki, Y. (2023). Automated 
VIIRS Boat Detection Based on Machine Learning and Its Application to 
Monitoring Fisheries in the East China Sea. Remote Sensing, 15(11), 2911. 
https://doi.org/10.3390/rs15112911

Vasudevan, R., & Chola, C. (2024). AI Based Approach for Transshipment 
Detection in the Maritime Domain. 2024 5th International Conference on 
Innovative Trends in Information Technology (ICITIIT), 1–6. https://doi.org/ 
10.1109/ICITIIT61487.2024.10580624

Viñals, M. J., Orozco Carpio, P. R., Teruel, P., & Gandía-Romero, J. M. (2024). 
Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets 
Through Digital Technologies. Urban Science, 8(4), 190. https://doi.org/ 
10.3390/urbansci8040190

Vyshnav, K., Sooryanarayanan, R., & Madhav, T. V. (2024). Analysis of 
Underwater Coral Reef Health Using Neural Networks. OCEANS 2024 - 
Singapore, 01–06. https://doi.org/10.1109/OCEANS51537.2024.10682334

Wang, J., & Tabeta, S. (2023). Four-channel generative adversarial networks can 
predict the distribution of reef-associated fish in the South and East China Seas. 
Ecological Informatics, 78, 102321. https://doi.org/10.1016/j.ecoinf.2023.102321

Wang, Z., Hou, G., Xin, Z., Liao, G., Huang, P., & Tai, Y. (2024). Detection of 
SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on 
Improved YOLOv5. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 17, 5804–5823. https://doi.org/10.1109/ 
JSTARS.2024.3370722

Wang, Z., Kasongo Dahouda, M., Hwang, H., & Joe, I. (2025). Explanatory 
LSTM-AE-Based Anomaly Detection for Time Series Data in Marine 
Transportation. IEEE Access, 13, 23195–23208. https://doi.org/10.1109/ACCESS. 
2025.3535695

Wang, Z., Zhang, S., Feng, X., & Sui, Y. (2021). Autonomous underwater vehicle 
path planning based on actor-multi-critic reinforcement learning. Proceedings of 
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering, 235(10), 1787–1796. https://doi.org/10.1177/0959651820937085

Xiong, B., Sun, Z., Wang, J., Leng, X., & Ji, K. (2022). A Lightweight Model for 
Ship Detection and Recognition in Complex-Scene SAR Images. Remote Sensing, 
14(23), 6053. https://doi.org/10.3390/rs14236053

Yabin, L., Jun, Y., & Zhiyi, H. (2020). Improved Faster R-CNN Algorithm for Sea 
Object Detection Under Complex Sea Conditions. International Journal of 
Advanced Network, Monitoring and Controls, 5(2), 76–82. https://doi.org/ 
10.21307/ijanmc-2020-020

Yao, Q., Shi, Y., Li, H., Wen, J., Xi, J., & Wang, Q. (2020). Understanding the 
Tourists’ Spatio-Temporal Behavior Using Open GPS Trajectory Data: A Case 
Study of Yuanmingyuan Park (Beijing, China). Sustainability, 13(1), 94. 
https://doi.org/10.3390/su13010094

Yasir, M., Shanwei, L., Mingming, X., Hui, S., Hossain, M. S., Colak, A. T. I., 
Wang, D., Jianhua, W., & Dang, K. B. (2023). Multi-scale ship target detection 
using SAR images based on improved Yolov5. Frontiers in Marine Science, 9, 
1086140. https://doi.org/10.3389/fmars.2022.1086140

Yilmaz, M., Çakir, M., Oral, O., Oral, M. A., & Arslan, T. (2022). Using machine 
learning technique for disease outbreak prediction in rainbow trout ( 
Oncorhynchus mykiss ) farms. Aquaculture Research, 53(18), 6721–6732. 
https://doi.org/10.1111/are.16140

Zeng, B., Yu, T., He, Y., & Wang, J. (2025). Comparative analysis of inbound 
tourist flows of different groups: The case of Japan. Current Issues in Tourism, 
28(3), 376–399. https://doi.org/10.1080/13683500.2023.2301475

Zhang, A., Wang, W., Bi, W., & Huang, Z. (2024). A path planning method based 
on deep reinforcement learning for AUV in complex marine environment. Ocean 
Engineering, 313, 119354. https://doi.org/10.1016/j.oceaneng.2024.119354

Zhang, J., Jin, J., Ma, Y., & Ren, P. (2023). Lightweight object detection algorithm 
based on YOLOv5 for unmanned surface vehicles. Frontiers in Marine Science, 9, 
1058401. https://doi.org/10.3389/fmars.2022.1058401

Zhang, L., Duan, W., Cui, X., Liu, Y., & Huang, L. (2024). Surface current 
prediction based on a physics-informed deep learning model. Applied Ocean 
Research, 148, 104005. https://doi.org/10.1016/j.apor.2024.104005

Zhang, T., Yang, Y., Liu, Y., Liu, C., Zhao, R., Li, D., & Shi, C. (2024). Fully 
automatic system for fish biomass estimation based on deep neural network. 
Ecological Informatics, 79, 102399. https://doi.org/10.1016/j.ecoinf.2023.102399

Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., & Wu, F. (2019). 
Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the 
Intestinal Tracts of Fish. Environmental Science & Technology, 53(9), 5151–5158. 
https://doi.org/10.1021/acs.est.8b07321

Zhao, Z., Xiao, X., Yang, W., Yin, S., Ding, X., Gao, H., & Gao, Y. (2024). 
Multi-objective optimization of an integrated energy system based on enhanced 
NSGA-II. Journal of Physics: Conference Series, 2788(1), 012005. https://doi.org/ 
10.1088/1742-6596/2788/1/012005

Zheng, Z., Zhang, J., Vu, T.-A., Diao, S., Tim, Y. H. W., & Yeung, S.-K. (2023). 
MarineGPT: Unlocking Secrets of Ocean to the Public (Version 1). arXiv. 
https://doi.org/10.48550/ARXIV.2310.13596

Zhou, Y., Davies, R., Wright, J., Ablett, S., & Maskell, S. (2025). Identifying 
Behaviours Indicative of Illegal Fishing Activities in Automatic Identification 
System Data. Journal of Marine Science and Engineering, 13(3), 457. https://doi. 
org/10.3390/jmse13030457

Zou, H.-H., He, P.-J., Peng, W., Lan, D.-Y., Xian, H.-Y., Lü, F., & Zhang, H. 
(2025). Rapid detection of colored and colorless macro- and micro-plastics in 
complex environment via near-infrared spectroscopy and machine learning. 
Journal of Environmental Sciences, 147, 512–522. https://doi.org/10.1016/j.jes. 
2023.12.004



Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 7: AI-based Vessel Detection Systems for Maritime Surveillance

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.

References

A, S., & S, M. (2025). Studies on Underwater Image Processing Using Artificial 
Intelligence Technologies. IEEE Access, 13, 3929–3969. https://doi.org/10.1109/ 
ACCESS.2024.3524593.

Abimbola, B., Tan, Q., & De La Cal Marín, E. A. (2024). Sentiment analysis of 
Canadian maritime case law: A sentiment case law and deep learning approach. 
International Journal of Information Technology, 16(6), 3401–3409. https://doi. 
org/10.1007/s41870-024-01820-2.

Abinaya, N. S., Susan, D., & Sidharthan, R. K. (2022). Deep learning-based 
segmental analysis of fish for biomass estimation in an occulted environment. 
Computers and Electronics in Agriculture, 197, 106985. https://doi.org/10.1016/ 
j.compag.2022.106985

Akinbulire, T., Schwartz, H., Falcon, R., & Abielmona, R. (2017). A reinforcement 
learning approach to tackle illegal, unreported and unregulated fishing. 2017 IEEE 
Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/ 
10.1109/SSCI.2017.8285315

Atesongun, A., & Gulsen, M. (2024). A Hybrid Forecasting Structure Based on 
Arima and Artificial Neural Network Models. Applied Sciences, 14(16), 7122. 
https://doi.org/10.3390/app14167122

Awasthi, A., Krpalkova, L., & Walsh, J. (2024). Deep Learning-Based Boolean, 
Time Series, Error Detection, and Predictive Analysis in Container Crane 
Operations. Algorithms, 17(8), 333. https://doi.org/10.3390/a17080333

Azad, A. S., Sokkalingam, R., Daud, H., Adhikary, S. K., Khurshid, H., Mazlan, S. 
N. A., & Rabbani, M. B. A. (2022). Water Level Prediction through Hybrid 
SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir 
Case Study. Sustainability, 14(3), 1843. https://doi.org/10.3390/su14031843

Bakar, N. N. A., Bazmohammadi, N., Çimen, H., Uyanik, T., Vasquez, J. C., & Guerrero, J. 
M. (2022). Data-driven ship berthing forecasting for cold ironing in maritime transportation. 
Applied Energy, 326, 119947. https://doi.org/10.1016/j. apenergy.2022.119947

Balliett, J. F. (2014). Oceans. Routledge. https://doi.org/10.4324/97813 15702049

Balogun, A.-L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR 
and LSTM neural network: Assessing the impact of ensemble Ocean-Atmospheric 
processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 
653–674. https://doi.org/10.1080/19475705.2021.1887372

Bergamin, L., Di Bella, L., Romano, E., D’Ambrosi, A., Di Fazio, M., Gaglianone, 
G., Medeghini, L., Pierdomenico, M., Pierfranceschi, G., Provenzani, C., Rampazzo, 
R., Rinaldi, S., & Spagnoli, F. (2024). Habitat partitioning and first microplastic 
detection in the Argentarola marine cave (Tyrrhenian Sea, Italy). Regional Studies 
in Marine Science, 74, 103547. https://doi.org/10.1016/j.rsma. 2024.103547

Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., 
Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan 
Rosli, W. I. (2022). Potent Bioactive Compounds From Seaweed Waste to Combat 
Cancer Through Bioinformatics Investigation. Frontiers in Nutrition, 9, 889276. 
https://doi.org/10.3389/fnut.2022.889276.

Bhopale, P., Kazi, F., & Singh, N. (2019). Reinforcement Learning Based Obstacle 
Avoidance for Autonomous Underwater Vehicle. Journal of Marine Science and 
Application, 18(2), 228–238. https://doi.org/10.1007/s11804-019-00089-3.

Brown, S., Katz, D., Korotovskikh, D., & Kullman, S. (2024). Detecting Illegal, 
Unreported, and Unregulated Fishing through AIS Data and Machine Learning 
Approaches. 2024 Systems and Information Engineering Design Symposium 
(SIEDS), 319–324. https://doi.org/10.1109/SIEDS61124.2024.10534704

Caharija, W., Dalseg, E. S., Bent O. A., H., & Stahl, A. (2021). Echosounder 
tracking with monocular camera for biomass estimation. OCEANS 2021: San 
Diego – Porto, 1–9. https://doi.org/10.23919/OCEANS44145.2021.9705820

Capolupo, A., Lonero, M., Maltese, A., & Tarantino, E. (2024). Spectral 
discrimination and separability analysis of beach macroplatisc litter from 
high-resolution RPAS images. In C. M. Neale, A. Maltese, C. Nichol, & C. R. 
Bostater (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology 
XXVI (p. 27). SPIE. https://doi.org/10.1117/12.3033835

Carvache-Franco, M., Bagarić, L., Carvache-Franco, O., & Carvache-Franco, W. 
(2025). Segmentation by recreation experiences of demand in coastal and marine 
destinations: A study in Galapagos, Ecuador. PLOS ONE, 20(1), e0316614. 
https://doi.org/10.1371/journal.pone.0316614

Carvache-Franco, M., Carvache-Franco, W., & Manner-Baldeon, F. (2021). 
Market Segmentation Based on Ecotourism Motivations in Marine Protected 
Areas and National Parks in the Galapagos Islands, Ecuador. Journal of Coastal 
Research, 37(3). https://doi.org/10.2112/JCOASTRES-D-20-00076.1

Carvache-Franco, M., Víquez-Paniagua, A. G., Carvache-Franco, W., Pérez-Orozco, 
A., & Carvache-Franco, O. (2022). Segmentation by Motivations in Sustainable 

Coastal and Marine Destinations: A Study in Jacó, Costa Rica. Sustainability, 
14(14), 8830. https://doi.org/10.3390/su14148830

Carvache-Franco, W., Carvache-Franco, M., & Hernández-Lara, A. B. (2021). 
From motivation to segmentation in coastal and marine destinations: A study from 
the Galapagos Islands, Ecuador. Current Issues in Tourism, 24(16), 2325–2341. 
https://doi.org/10.1080/13683500.2020.1811651

Chen, Q., Zhang, J., Gao, J., Lau, Y.-Y., Liu, J., Poo, M. C.-P., & Zhang, P. (2024). 
Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian 
Networks. Journal of Marine Science and Engineering, 12(7), 1088. https://doi. 
org/10.3390/jmse12071088

Crain, C. M., Halpern, B. S., Beck, M. W., & Kappel, C. V. (2009). Understanding 
and Managing Human Threats to the Coastal Marine Environment. Annals of the 
New York Academy of Sciences, 1162(1), 39–62. https://doi.org/10.1111/j.1749 
-6632.2009.04496.x

De Souza, E. N., Boerder, K., Matwin, S., & Worm, B. (2016). Improving Fishing 
Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. 
PLOS ONE, 11(7), e0158248. https://doi.org/10.1371/journal.pone.0158248

Do Nascimento, V. D., Alves, T. A. O., De Farias, C. M., & Dutra, D. L. C. (2024). 
A Hybrid Framework for Maritime Surveillance: Detecting Illegal Activities 
through Vessel Behaviors and Expert Rules Fusion. Sensors, 24(17), 5623. 
https://doi.org/10.3390/s24175623

Do Nascimento, V. D., De Farias, C. M., Dutra, D. L. C., & Alves, T. A. O. (2024). 
Ensemble Learning Approaches for Detecting Fishing Activity in Maritime Surveillance: 
A Performance Evaluation. 2024 27th International Conference on Information Fusion 
(FUSION), 1–8. https://doi.org/10.23919/FUSION59988. 2024.10706287

Domingo, M. C. (2021). Deep Learning and Internet of Things for Beach 
Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels 
Beach. Applied Sciences, 11(22), 10735. https://doi.org/10.3390/ app112210735

Dube, K. (2024). A Comprehensive Review of Climatic Threats and Adaptation of 
Marine Biodiversity. Journal of Marine Science and Engineering, 12(2), 344. 
https://doi.org/10.3390/jmse12020344

Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. V. V. S., Ninoria, S. Z., Wajid, 
M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for 
prediction of white spot disease among shrimp farmers. Scientific Reports, 12(1), 
20876. https://doi.org/10.1038/s41598-022-25109-1

Ezzeddini, L., Affes, N., Ktari, J., Frikha, T., Halima, R. B., & Hamam, H. (2024). 
Smart Maritime Surveillance: Leveraging YOLO Detection and Blockchain 
traceability for Vessel Monitoring. Journal of Information Assurance and Security, 
19(6), 233–248. https://doi.org/10.2478/ias-2024-0016

Faltynkova, A., & Wagner, M. (2023). Developing and testing a workflow to 
identify microplastics using near infrared hyperspectral imaging. Chemosphere, 
336, 139186. https://doi.org/10.1016/j.chemosphere.2023.139186

Gaudêncio, S. P., & Pereira, F. (2022). Predicting Antifouling Activity and 
Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided 
Drug Design Approach. Marine Drugs, 20(2), 129. https://doi. org/10.3390/md20020129

Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends 
of pharmaceuticals in the marine and coastal environment. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130572. 
https://doi.org/10.1098/rstb.2013.0572

Gebejes, A., Hrovat, B., Semenov, D., Kanyathare, B., Itkonen, T., Keinänen, M., 
Koistinen, A., Peiponen, K.-E., & Roussey, M. (2024). Hyperspectral imaging for 
identification of irregular-shaped microplastics in water. Science of The Total 
Environment, 944, 173811. https://doi.org/10.1016/j.scitotenv.2024.173811

Guillén, J., García-Olivares, A., Ojeda, E., Osorio, A., Chic, O., & González, R. 
(2008). Long-Term Quantification of Beach Users Using Video Monitoring. 
Journal of Coastal Research, 246, 1612–1619. https://doi.org/10.2112/07-0886.1

Gülmez, S., Denktaş Şakar, G., & Baştuğ, S. (2023). An overview of maritime 
logistics: Trends and research agenda. Maritime Policy & Management, 50(1), 
97–116. https://doi.org/10.1080/03088839.2021.1962557

Gutiérrez-Estrada, J. C., Pulido-Calvo, I., Castro-Gutiérrez, J., Peregrín, A., 
López-Domínguez, S., Gómez-Bravo, F., Garrocho-Cruz, A., & De La 
Rosa-Lucas, I. (2022). Fish abundance estimation with imaging sonar in 
semi-intensive aquaculture ponds. Aquacultural Engineering, 97, 102235. 
https://doi.org/10.1016/j.aquaeng.2022.102235

Hadi, B., Khosravi, A., & Sarhadi, P. (2022). Deep reinforcement learning for 
adaptive path planning and control of an autonomous underwater vehicle. Applied 
Ocean Research, 129, 103326. https://doi.org/10.1016/j.apor.2022.103326

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang, H. (2021). Fault Detection 
With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sensors 
Journal, 21(19), 21903–21912. https://doi.org/10.1109/JSEN.2021. 3105226

Immas, A., Do, N., & Alam, M.-R. (2021). Real-time in situ prediction of ocean currents. 
Ocean Engineering, 228, 108922. https://doi.org/10.1016/j.oceaneng. 2021.108922

Jian, J., Liu, L., Zhang, Y., Xu, K., & Yang, J. (2023). Optical Remote Sensing 
Ship Recognition and Classification Based on Improved YOLOv5. Remote 
Sensing, 15(17), 4319. https://doi.org/10.3390/rs15174319

Jing, C., Dong, M., Du, M., Zhu, Y., & Fu, J. (2020). Fine-Grained Spatiotemporal 
Dynamics of Inbound Tourists Based on Geotagged Photos: A Case Study in Beijing, 
China. IEEE Access, 8, 28735–28745. https://doi.org/10.1109/ACCESS. 2020.2972309

Kaur, G., Braveen, M., Krishnapriya, S., Wawale, S. G., Castillo-Picon, J., 
Malhotra, D., & Osei-Owusu, J. (2023). Machine Learning Integrated Multivariate 
Water Quality Control Framework for Prawn Harvesting from Fresh Water Ponds. 
Journal of Food Quality, 2023, 1–9. https://doi.org/10.1155/2023/3841882

Kaur, G., & Chopra, K. (2025). India’s cobalt quest: Navigating geopolitics in the 
Indo-Pacific. The Round Table, 114(1), 94–96. https://doi.org/10.1080/00358533 
.2025.2455755

Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable 
Anomaly Detection Framework for Maritime Main Engine Sensor Data. Sensors, 
21(15), 5200. https://doi.org/10.3390/s21155200

Kristmundsson, J., Patursson, Ø., Potter, J., & Xin, Q. (2023). Fish Monitoring in 
Aquaculture Using Multibeam Echosounders and Machine Learning. IEEE 
Access, 11, 108306–108316. https://doi.org/10.1109/ACCESS.2023.3320949

Kusumaningrum, R., Khoerunnisa, S. F., Khadijah, K., & Syafrudin, M. (2024). 
Exploring Community Awareness of Mangrove Ecosystem Preservation through 
Sentence-BERT and K-Means Clustering. Information, 15(3), 165. https://doi.org/ 
10.3390/info15030165

Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., 
McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K. I., Bailey, D., 
Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., 
Carreiro-Silva, M., Colaço, A., Eblé, M. C., Fowler, A. M., … Weller, R. A. 
(2019). Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 
6, 241. https://doi.org/10.3389/fmars.2019.00241

Li, H., Chen, L., Zhang, F., & Cai, Z. (2025). Graph-learning-based machine 
learning improves prediction and cultivation of commercial-grade marine 
microalgae Porphyridium. Bioresource Technology, 416, 131728. https://doi.org/ 
10.1016/j.biortech.2024.131728

Li, Z., Zhao, S., Lu, Y., Song, C., Huang, R., & Yu, K. (2024). Deep 
Learning-Based Automatic Estimation of Live Coral Cover from Underwater 
Video for Coral Reef Health Monitoring. Journal of Marine Science and 
Engineering, 12(11), 1980. https://doi.org/10.3390/jmse12111980

Liu, L., Zhang, Y., Ma, Z., & Wang, H. (2023). An analysis on the spatiotemporal 
behavior of inbound tourists in Jiaodong Peninsula based on Flickr geotagged 
photos. International Journal of Applied Earth Observation and Geoinformation, 
120, 103349. https://doi.org/10.1016/j.jag.2023.103349

Liza, J. I., Majumder, S. C., & Rahman, Md. H. (2025). Scrutinizing the impact of 
blue economy factors on the economic growth in Bangladesh: An empirical study. 
Marine Policy, 173, 106542. https://doi.org/10.1016/j.marpol.2024.106542

Milstein, A., Islam, M. S., Wahab, M. A., Kamal, A. H. M., & Dewan, S. (2005). 
Characterization of water quality in shrimp ponds of different sizes and with 
different management regimes using multivariate statistical analysis. Aquaculture 
International, 13(6), 501–518. https://doi.org/10.1007/s10499-005-9001-6

Mora-Cross, M., & Calderon-Ramirez, S. (2024). Uncertainty Estimation in Large 
Language Models to Support Biodiversity Conservation. Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 6: Industry Track), 368–378. 
https://doi.org/10.18653/v1/2024.naacl-industry.31

Moradi, M. H., Brutsche, M., Wenig, M., Wagner, U., & Koch, T. (2022). Marine 
route optimization using reinforcement learning approach to reduce fuel 
consumption and consequently minimize CO2 emissions. Ocean Engineering, 
259, 111882. https://doi.org/10.1016/j.oceaneng.2022.111882

Mujtaba, D. F., & Mahapatra, N. R. (2022). Deep Learning for Spatiotemporal 
Modeling of Illegal, Unreported, and Unregulated Fishing Events. 2022 
International Conference on Computational Science and Computational 
Intelligence (CSCI), 423–425. https://doi.org/10.1109/CSCI58124.2022.00082

Nemade, B., Maharana, K. K., Kulkarni, V., Mondal, S., Ghantasala, G. S. P., 
Al-Rasheed, A., Getahun, M., & Soufiene, B. O. (2024). IoT-based automated 
system for water-related disease prediction. Scientific Reports, 14(1), 29483. 
https://doi.org/10.1038/s41598-024-79989-6

Ojemaye, C. Y., & Petrik, L. (2019). Pharmaceuticals in the marine environment: A 
review. Environmental Reviews, 27(2), 151–165. https://doi.org/10.1139/er- 2018-0054

Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species 
using machine learning models. Aquaculture Reports, 20, 100660. https://doi.org/ 
10.1016/j.aqrep.2021.100660

Palmieri, R., Gasbarrone, R., Bonifazi, G., Piccinini, G., & Serranti, S. (2024). 
Hyperspectral Imaging for Detecting Plastic Debris on Shoreline Sands to Support 
Recycling. Applied Sciences, 14(23), 11437. https://doi.org/10.3390/app142311437

Panboonyuen, T. (2024). SEA-ViT: Sea Surface Currents Forecasting Using 
Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling 
(Version 2). arXiv. https://doi.org/10.48550/ARXIV.2409.16313

Pataranutaporn, P., Doudkin, A., & Maes, P. (2025). OceanChat: The Effect of 
Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change 
(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2502.02863

Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., 
Sandin, S., & Cignoni, P. (2022). TagLab: AI‐assisted annotation for the fast and 
accurate semantic segmentation of coral reef orthoimages. Journal of Field 
Robotics, 39(3), 246–262. https://doi.org/10.1002/rob.22049

Qi, L., Li, B., Chen, L., Wang, W., Dong, L., Jia, X., Huang, J., Ge, C., Xue, G., & 
Wang, D. (2019). Ship Target Detection Algorithm Based on Improved Faster 
R-CNN. Electronics, 8(9), 959. https://doi.org/10.3390/electronics8090959

Qin, J., Song, C., Tang, M., Zhang, Y., & Wang, J. (2019). Exploring the Spatial 
Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. 
Sustainability, 11(20), 5822. https://doi.org/10.3390/su11205822

Rizzo, A., Serranti, S., Cucuzza, P., Lisco, S., Marsico, A., Bonifazi, G., & 
Mastronuzzi, G. (2024). Application of hyperspectral imaging and machine 
learning for the automatic identification of microplastics on sandy beaches. In D. 
W. Messinger & M. Velez-Reyes (Eds.), Algorithms, Technologies, and 
Applications for Multispectral and Hyperspectral Imaging XXX (p. 33). SPIE. 
https://doi.org/10.1117/12.3013227

Roy, A., Fablet, R., & Bertrand, S. L. (2022). Using generative adversarial 
networks ( GAN ) to simulate central‐place foraging trajectories. Methods in 
Ecology and Evolution, 13(6), 1275–1287. https://doi.org/10.1111/2041-210X.13853

Sauder, J., Banc‐Prandi, G., Meibom, A., & Tuia, D. (2024). Scalable semantic 3D 
mapping of coral reefs with deep learning. Methods in Ecology and Evolution, 
15(5), 916–934. https://doi.org/10.1111/2041-210X.14307

Schneider, S., & Zhuang, A. (2020). Counting Fish and Dolphins in Sonar Images 
Using Deep Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV. 
2007.12808

Shen, Y., Xuan, B., Hu, H., Wu, Y., Zhao, N., & Yang, Z. (2024). A Decomposed- 
Ensemble Prediction Framework for Gate-In Operations at Container Terminals. 
Journal of Marine Science and Engineering, 13(1), 45. https://doi.org/10.3390/ 
jmse13010045

Shi, J., Su, T., Li, X., Wang, F., Cui, J., Liu, Z., & Wang, J. (2023). A 
Machine-Learning Approach Based on Attention Mechanism for Significant Wave 
Height Forecasting. Journal of Marine Science and Engineering, 11(9), 1821. 
https://doi.org/10.3390/jmse11091821

Shu, Y., Yu, B., Liu, W., Yan, T., Liu, Z., Gan, L., Yin, J., & Song, L. (2024). 
Investigation of ship energy consumption based on neural network. Ocean & 
Coastal Management, 254, 107167. https://doi.org/10.1016/j.ocecoaman.2024.107167

Sinha, A., & Abernathey, R. (2021). Estimating Ocean Surface Currents With 
Machine Learning. Frontiers in Marine Science, 8, 672477. https://doi.org/ 
10.3389/fmars.2021.672477

Song, H., Mehdi, S. R., Zhang, Y., Shentu, Y., Wan, Q., Wang, W., Raza, K., & Huang, 
H. (2021). Development of Coral Investigation System Based on Semantic Segmentation 
of Single-Channel Images. Sensors, 21(5), 1848. https://doi.org/ 10.3390/s21051848

Su, J., Lin, Z., Xu, F., Fathi, G., & Alnowibet, K. A. (2024). A hybrid model of 
ARIMA and MLP with a Grasshopper optimization algorithm for time series 
forecasting of water quality. Scientific Reports, 14(1), 23927. https://doi.org/ 
10.1038/s41598-024-74144-7

Sun, Y., Cheng, J., Zhang, G., & Xu, H. (2019). Mapless Motion Planning System 
for an Autonomous Underwater Vehicle Using Policy Gradient-based Deep 
Reinforcement Learning. Journal of Intelligent & Robotic Systems, 96(3–4), 
591–601. https://doi.org/10.1007/s10846-019-01004-2

Taneepanichskul, N., Hailes, H. C., & Miodownik, M. (2024). Using hyperspectral 
imaging to identify and classify large microplastic contamination in industrial 
composting processes. Frontiers in Sustainability, 5, 1332163. https://doi.org/ 
10.3389/frsus.2024.1332163

Tarling, P., Cantor, M., Clapés, A., & Escalera, S. (2022). Deep learning with 
self-supervision and uncertainty regularization to count fish in underwater images. 
PLOS ONE, 17(5), e0267759. https://doi.org/10.1371/journal.pone.0267759

Taroual, K., Nachtane, M., Adeli, K., Faik, A., Boulzehar, A., Saifaoui, D., & 
Tarfaoui, M. (2025). Hybrid marine energy and AI-driven optimization for 
hydrogen production in coastal regions. International Journal of Hydrogen 
Energy, 118, 80–92. https://doi.org/10.1016/j.ijhydene.2025.03.091

Thongniran, N., Vateekul, P., Jitkajornwanich, K., Lawawirojwong, S., & 
Srestasathiern, P. (2019). Spatio-Temporal Deep Learning for Ocean Current 
Prediction Based on HF Radar Data. 2019 16th International Joint Conference on 
Computer Science and Software Engineering (JCSSE), 254–259. https://doi.org/ 
10.1109/JCSSE.2019.8864215

Tian, C., Ma, J., Zhang, C., & Zhan, P. (2018). A Deep Neural Network Model for 
Short-Term Load Forecast Based on Long Short-Term Memory Network and 
Convolutional Neural Network. Energies, 11(12), 3493. https://doi.org/ 
10.3390/en11123493

Trégarot, E., D’Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., 
Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., 
Kersting, D. K., Maréchal, J.-P., Meesters, E., O’Leary, B. C., Pérez, G., 
Seijo-Núñez, C., Simide, R., … De Juan, S. (2024). Effects of climate change on 
marine coastal ecosystems – A review to guide research and management. 
Biological Conservation, 289, 110394. https://doi.org/10.1016/j.biocon.2023.110394

Tsuda, M. E., Miller, N. A., Saito, R., Park, J., & Oozeki, Y. (2023). Automated 
VIIRS Boat Detection Based on Machine Learning and Its Application to 
Monitoring Fisheries in the East China Sea. Remote Sensing, 15(11), 2911. 
https://doi.org/10.3390/rs15112911

Vasudevan, R., & Chola, C. (2024). AI Based Approach for Transshipment 
Detection in the Maritime Domain. 2024 5th International Conference on 
Innovative Trends in Information Technology (ICITIIT), 1–6. https://doi.org/ 
10.1109/ICITIIT61487.2024.10580624

Viñals, M. J., Orozco Carpio, P. R., Teruel, P., & Gandía-Romero, J. M. (2024). 
Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets 
Through Digital Technologies. Urban Science, 8(4), 190. https://doi.org/ 
10.3390/urbansci8040190

Vyshnav, K., Sooryanarayanan, R., & Madhav, T. V. (2024). Analysis of 
Underwater Coral Reef Health Using Neural Networks. OCEANS 2024 - 
Singapore, 01–06. https://doi.org/10.1109/OCEANS51537.2024.10682334

Wang, J., & Tabeta, S. (2023). Four-channel generative adversarial networks can 
predict the distribution of reef-associated fish in the South and East China Seas. 
Ecological Informatics, 78, 102321. https://doi.org/10.1016/j.ecoinf.2023.102321

Wang, Z., Hou, G., Xin, Z., Liao, G., Huang, P., & Tai, Y. (2024). Detection of 
SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on 
Improved YOLOv5. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 17, 5804–5823. https://doi.org/10.1109/ 
JSTARS.2024.3370722

Wang, Z., Kasongo Dahouda, M., Hwang, H., & Joe, I. (2025). Explanatory 
LSTM-AE-Based Anomaly Detection for Time Series Data in Marine 
Transportation. IEEE Access, 13, 23195–23208. https://doi.org/10.1109/ACCESS. 
2025.3535695

Wang, Z., Zhang, S., Feng, X., & Sui, Y. (2021). Autonomous underwater vehicle 
path planning based on actor-multi-critic reinforcement learning. Proceedings of 
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering, 235(10), 1787–1796. https://doi.org/10.1177/0959651820937085

Xiong, B., Sun, Z., Wang, J., Leng, X., & Ji, K. (2022). A Lightweight Model for 
Ship Detection and Recognition in Complex-Scene SAR Images. Remote Sensing, 
14(23), 6053. https://doi.org/10.3390/rs14236053

Yabin, L., Jun, Y., & Zhiyi, H. (2020). Improved Faster R-CNN Algorithm for Sea 
Object Detection Under Complex Sea Conditions. International Journal of 
Advanced Network, Monitoring and Controls, 5(2), 76–82. https://doi.org/ 
10.21307/ijanmc-2020-020

Yao, Q., Shi, Y., Li, H., Wen, J., Xi, J., & Wang, Q. (2020). Understanding the 
Tourists’ Spatio-Temporal Behavior Using Open GPS Trajectory Data: A Case 
Study of Yuanmingyuan Park (Beijing, China). Sustainability, 13(1), 94. 
https://doi.org/10.3390/su13010094

Yasir, M., Shanwei, L., Mingming, X., Hui, S., Hossain, M. S., Colak, A. T. I., 
Wang, D., Jianhua, W., & Dang, K. B. (2023). Multi-scale ship target detection 
using SAR images based on improved Yolov5. Frontiers in Marine Science, 9, 
1086140. https://doi.org/10.3389/fmars.2022.1086140

Yilmaz, M., Çakir, M., Oral, O., Oral, M. A., & Arslan, T. (2022). Using machine 
learning technique for disease outbreak prediction in rainbow trout ( 
Oncorhynchus mykiss ) farms. Aquaculture Research, 53(18), 6721–6732. 
https://doi.org/10.1111/are.16140

Zeng, B., Yu, T., He, Y., & Wang, J. (2025). Comparative analysis of inbound 
tourist flows of different groups: The case of Japan. Current Issues in Tourism, 
28(3), 376–399. https://doi.org/10.1080/13683500.2023.2301475

Zhang, A., Wang, W., Bi, W., & Huang, Z. (2024). A path planning method based 
on deep reinforcement learning for AUV in complex marine environment. Ocean 
Engineering, 313, 119354. https://doi.org/10.1016/j.oceaneng.2024.119354

Zhang, J., Jin, J., Ma, Y., & Ren, P. (2023). Lightweight object detection algorithm 
based on YOLOv5 for unmanned surface vehicles. Frontiers in Marine Science, 9, 
1058401. https://doi.org/10.3389/fmars.2022.1058401

Zhang, L., Duan, W., Cui, X., Liu, Y., & Huang, L. (2024). Surface current 
prediction based on a physics-informed deep learning model. Applied Ocean 
Research, 148, 104005. https://doi.org/10.1016/j.apor.2024.104005

Zhang, T., Yang, Y., Liu, Y., Liu, C., Zhao, R., Li, D., & Shi, C. (2024). Fully 
automatic system for fish biomass estimation based on deep neural network. 
Ecological Informatics, 79, 102399. https://doi.org/10.1016/j.ecoinf.2023.102399

Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., & Wu, F. (2019). 
Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the 
Intestinal Tracts of Fish. Environmental Science & Technology, 53(9), 5151–5158. 
https://doi.org/10.1021/acs.est.8b07321

Zhao, Z., Xiao, X., Yang, W., Yin, S., Ding, X., Gao, H., & Gao, Y. (2024). 
Multi-objective optimization of an integrated energy system based on enhanced 
NSGA-II. Journal of Physics: Conference Series, 2788(1), 012005. https://doi.org/ 
10.1088/1742-6596/2788/1/012005

Zheng, Z., Zhang, J., Vu, T.-A., Diao, S., Tim, Y. H. W., & Yeung, S.-K. (2023). 
MarineGPT: Unlocking Secrets of Ocean to the Public (Version 1). arXiv. 
https://doi.org/10.48550/ARXIV.2310.13596

Zhou, Y., Davies, R., Wright, J., Ablett, S., & Maskell, S. (2025). Identifying 
Behaviours Indicative of Illegal Fishing Activities in Automatic Identification 
System Data. Journal of Marine Science and Engineering, 13(3), 457. https://doi. 
org/10.3390/jmse13030457

Zou, H.-H., He, P.-J., Peng, W., Lan, D.-Y., Xian, H.-Y., Lü, F., & Zhang, H. 
(2025). Rapid detection of colored and colorless macro- and micro-plastics in 
complex environment via near-infrared spectroscopy and machine learning. 
Journal of Environmental Sciences, 147, 512–522. https://doi.org/10.1016/j.jes. 
2023.12.004



96 Smart Ocean: A Comprehensive Review of Artificial Intelligence

Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 8: AI-driven Coral Reef Monitoring

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 9: Aquatic Forecasting Model Using Neural Network

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.

References

A, S., & S, M. (2025). Studies on Underwater Image Processing Using Artificial 
Intelligence Technologies. IEEE Access, 13, 3929–3969. https://doi.org/10.1109/ 
ACCESS.2024.3524593.

Abimbola, B., Tan, Q., & De La Cal Marín, E. A. (2024). Sentiment analysis of 
Canadian maritime case law: A sentiment case law and deep learning approach. 
International Journal of Information Technology, 16(6), 3401–3409. https://doi. 
org/10.1007/s41870-024-01820-2.

Abinaya, N. S., Susan, D., & Sidharthan, R. K. (2022). Deep learning-based 
segmental analysis of fish for biomass estimation in an occulted environment. 
Computers and Electronics in Agriculture, 197, 106985. https://doi.org/10.1016/ 
j.compag.2022.106985

Akinbulire, T., Schwartz, H., Falcon, R., & Abielmona, R. (2017). A reinforcement 
learning approach to tackle illegal, unreported and unregulated fishing. 2017 IEEE 
Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/ 
10.1109/SSCI.2017.8285315

Atesongun, A., & Gulsen, M. (2024). A Hybrid Forecasting Structure Based on 
Arima and Artificial Neural Network Models. Applied Sciences, 14(16), 7122. 
https://doi.org/10.3390/app14167122

Awasthi, A., Krpalkova, L., & Walsh, J. (2024). Deep Learning-Based Boolean, 
Time Series, Error Detection, and Predictive Analysis in Container Crane 
Operations. Algorithms, 17(8), 333. https://doi.org/10.3390/a17080333

Azad, A. S., Sokkalingam, R., Daud, H., Adhikary, S. K., Khurshid, H., Mazlan, S. 
N. A., & Rabbani, M. B. A. (2022). Water Level Prediction through Hybrid 
SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir 
Case Study. Sustainability, 14(3), 1843. https://doi.org/10.3390/su14031843

Bakar, N. N. A., Bazmohammadi, N., Çimen, H., Uyanik, T., Vasquez, J. C., & Guerrero, J. 
M. (2022). Data-driven ship berthing forecasting for cold ironing in maritime transportation. 
Applied Energy, 326, 119947. https://doi.org/10.1016/j. apenergy.2022.119947

Balliett, J. F. (2014). Oceans. Routledge. https://doi.org/10.4324/97813 15702049

Balogun, A.-L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR 
and LSTM neural network: Assessing the impact of ensemble Ocean-Atmospheric 
processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 
653–674. https://doi.org/10.1080/19475705.2021.1887372

Bergamin, L., Di Bella, L., Romano, E., D’Ambrosi, A., Di Fazio, M., Gaglianone, 
G., Medeghini, L., Pierdomenico, M., Pierfranceschi, G., Provenzani, C., Rampazzo, 
R., Rinaldi, S., & Spagnoli, F. (2024). Habitat partitioning and first microplastic 
detection in the Argentarola marine cave (Tyrrhenian Sea, Italy). Regional Studies 
in Marine Science, 74, 103547. https://doi.org/10.1016/j.rsma. 2024.103547

Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., 
Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan 
Rosli, W. I. (2022). Potent Bioactive Compounds From Seaweed Waste to Combat 
Cancer Through Bioinformatics Investigation. Frontiers in Nutrition, 9, 889276. 
https://doi.org/10.3389/fnut.2022.889276.

Bhopale, P., Kazi, F., & Singh, N. (2019). Reinforcement Learning Based Obstacle 
Avoidance for Autonomous Underwater Vehicle. Journal of Marine Science and 
Application, 18(2), 228–238. https://doi.org/10.1007/s11804-019-00089-3.

Brown, S., Katz, D., Korotovskikh, D., & Kullman, S. (2024). Detecting Illegal, 
Unreported, and Unregulated Fishing through AIS Data and Machine Learning 
Approaches. 2024 Systems and Information Engineering Design Symposium 
(SIEDS), 319–324. https://doi.org/10.1109/SIEDS61124.2024.10534704

Caharija, W., Dalseg, E. S., Bent O. A., H., & Stahl, A. (2021). Echosounder 
tracking with monocular camera for biomass estimation. OCEANS 2021: San 
Diego – Porto, 1–9. https://doi.org/10.23919/OCEANS44145.2021.9705820

Capolupo, A., Lonero, M., Maltese, A., & Tarantino, E. (2024). Spectral 
discrimination and separability analysis of beach macroplatisc litter from 
high-resolution RPAS images. In C. M. Neale, A. Maltese, C. Nichol, & C. R. 
Bostater (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology 
XXVI (p. 27). SPIE. https://doi.org/10.1117/12.3033835

Carvache-Franco, M., Bagarić, L., Carvache-Franco, O., & Carvache-Franco, W. 
(2025). Segmentation by recreation experiences of demand in coastal and marine 
destinations: A study in Galapagos, Ecuador. PLOS ONE, 20(1), e0316614. 
https://doi.org/10.1371/journal.pone.0316614

Carvache-Franco, M., Carvache-Franco, W., & Manner-Baldeon, F. (2021). 
Market Segmentation Based on Ecotourism Motivations in Marine Protected 
Areas and National Parks in the Galapagos Islands, Ecuador. Journal of Coastal 
Research, 37(3). https://doi.org/10.2112/JCOASTRES-D-20-00076.1

Carvache-Franco, M., Víquez-Paniagua, A. G., Carvache-Franco, W., Pérez-Orozco, 
A., & Carvache-Franco, O. (2022). Segmentation by Motivations in Sustainable 

Coastal and Marine Destinations: A Study in Jacó, Costa Rica. Sustainability, 
14(14), 8830. https://doi.org/10.3390/su14148830

Carvache-Franco, W., Carvache-Franco, M., & Hernández-Lara, A. B. (2021). 
From motivation to segmentation in coastal and marine destinations: A study from 
the Galapagos Islands, Ecuador. Current Issues in Tourism, 24(16), 2325–2341. 
https://doi.org/10.1080/13683500.2020.1811651

Chen, Q., Zhang, J., Gao, J., Lau, Y.-Y., Liu, J., Poo, M. C.-P., & Zhang, P. (2024). 
Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian 
Networks. Journal of Marine Science and Engineering, 12(7), 1088. https://doi. 
org/10.3390/jmse12071088

Crain, C. M., Halpern, B. S., Beck, M. W., & Kappel, C. V. (2009). Understanding 
and Managing Human Threats to the Coastal Marine Environment. Annals of the 
New York Academy of Sciences, 1162(1), 39–62. https://doi.org/10.1111/j.1749 
-6632.2009.04496.x

De Souza, E. N., Boerder, K., Matwin, S., & Worm, B. (2016). Improving Fishing 
Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. 
PLOS ONE, 11(7), e0158248. https://doi.org/10.1371/journal.pone.0158248

Do Nascimento, V. D., Alves, T. A. O., De Farias, C. M., & Dutra, D. L. C. (2024). 
A Hybrid Framework for Maritime Surveillance: Detecting Illegal Activities 
through Vessel Behaviors and Expert Rules Fusion. Sensors, 24(17), 5623. 
https://doi.org/10.3390/s24175623

Do Nascimento, V. D., De Farias, C. M., Dutra, D. L. C., & Alves, T. A. O. (2024). 
Ensemble Learning Approaches for Detecting Fishing Activity in Maritime Surveillance: 
A Performance Evaluation. 2024 27th International Conference on Information Fusion 
(FUSION), 1–8. https://doi.org/10.23919/FUSION59988. 2024.10706287

Domingo, M. C. (2021). Deep Learning and Internet of Things for Beach 
Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels 
Beach. Applied Sciences, 11(22), 10735. https://doi.org/10.3390/ app112210735

Dube, K. (2024). A Comprehensive Review of Climatic Threats and Adaptation of 
Marine Biodiversity. Journal of Marine Science and Engineering, 12(2), 344. 
https://doi.org/10.3390/jmse12020344

Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. V. V. S., Ninoria, S. Z., Wajid, 
M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for 
prediction of white spot disease among shrimp farmers. Scientific Reports, 12(1), 
20876. https://doi.org/10.1038/s41598-022-25109-1

Ezzeddini, L., Affes, N., Ktari, J., Frikha, T., Halima, R. B., & Hamam, H. (2024). 
Smart Maritime Surveillance: Leveraging YOLO Detection and Blockchain 
traceability for Vessel Monitoring. Journal of Information Assurance and Security, 
19(6), 233–248. https://doi.org/10.2478/ias-2024-0016

Faltynkova, A., & Wagner, M. (2023). Developing and testing a workflow to 
identify microplastics using near infrared hyperspectral imaging. Chemosphere, 
336, 139186. https://doi.org/10.1016/j.chemosphere.2023.139186

Gaudêncio, S. P., & Pereira, F. (2022). Predicting Antifouling Activity and 
Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided 
Drug Design Approach. Marine Drugs, 20(2), 129. https://doi. org/10.3390/md20020129

Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends 
of pharmaceuticals in the marine and coastal environment. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130572. 
https://doi.org/10.1098/rstb.2013.0572

Gebejes, A., Hrovat, B., Semenov, D., Kanyathare, B., Itkonen, T., Keinänen, M., 
Koistinen, A., Peiponen, K.-E., & Roussey, M. (2024). Hyperspectral imaging for 
identification of irregular-shaped microplastics in water. Science of The Total 
Environment, 944, 173811. https://doi.org/10.1016/j.scitotenv.2024.173811

Guillén, J., García-Olivares, A., Ojeda, E., Osorio, A., Chic, O., & González, R. 
(2008). Long-Term Quantification of Beach Users Using Video Monitoring. 
Journal of Coastal Research, 246, 1612–1619. https://doi.org/10.2112/07-0886.1

Gülmez, S., Denktaş Şakar, G., & Baştuğ, S. (2023). An overview of maritime 
logistics: Trends and research agenda. Maritime Policy & Management, 50(1), 
97–116. https://doi.org/10.1080/03088839.2021.1962557

Gutiérrez-Estrada, J. C., Pulido-Calvo, I., Castro-Gutiérrez, J., Peregrín, A., 
López-Domínguez, S., Gómez-Bravo, F., Garrocho-Cruz, A., & De La 
Rosa-Lucas, I. (2022). Fish abundance estimation with imaging sonar in 
semi-intensive aquaculture ponds. Aquacultural Engineering, 97, 102235. 
https://doi.org/10.1016/j.aquaeng.2022.102235

Hadi, B., Khosravi, A., & Sarhadi, P. (2022). Deep reinforcement learning for 
adaptive path planning and control of an autonomous underwater vehicle. Applied 
Ocean Research, 129, 103326. https://doi.org/10.1016/j.apor.2022.103326

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang, H. (2021). Fault Detection 
With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sensors 
Journal, 21(19), 21903–21912. https://doi.org/10.1109/JSEN.2021. 3105226

Immas, A., Do, N., & Alam, M.-R. (2021). Real-time in situ prediction of ocean currents. 
Ocean Engineering, 228, 108922. https://doi.org/10.1016/j.oceaneng. 2021.108922

Jian, J., Liu, L., Zhang, Y., Xu, K., & Yang, J. (2023). Optical Remote Sensing 
Ship Recognition and Classification Based on Improved YOLOv5. Remote 
Sensing, 15(17), 4319. https://doi.org/10.3390/rs15174319

Jing, C., Dong, M., Du, M., Zhu, Y., & Fu, J. (2020). Fine-Grained Spatiotemporal 
Dynamics of Inbound Tourists Based on Geotagged Photos: A Case Study in Beijing, 
China. IEEE Access, 8, 28735–28745. https://doi.org/10.1109/ACCESS. 2020.2972309

Kaur, G., Braveen, M., Krishnapriya, S., Wawale, S. G., Castillo-Picon, J., 
Malhotra, D., & Osei-Owusu, J. (2023). Machine Learning Integrated Multivariate 
Water Quality Control Framework for Prawn Harvesting from Fresh Water Ponds. 
Journal of Food Quality, 2023, 1–9. https://doi.org/10.1155/2023/3841882

Kaur, G., & Chopra, K. (2025). India’s cobalt quest: Navigating geopolitics in the 
Indo-Pacific. The Round Table, 114(1), 94–96. https://doi.org/10.1080/00358533 
.2025.2455755

Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable 
Anomaly Detection Framework for Maritime Main Engine Sensor Data. Sensors, 
21(15), 5200. https://doi.org/10.3390/s21155200

Kristmundsson, J., Patursson, Ø., Potter, J., & Xin, Q. (2023). Fish Monitoring in 
Aquaculture Using Multibeam Echosounders and Machine Learning. IEEE 
Access, 11, 108306–108316. https://doi.org/10.1109/ACCESS.2023.3320949

Kusumaningrum, R., Khoerunnisa, S. F., Khadijah, K., & Syafrudin, M. (2024). 
Exploring Community Awareness of Mangrove Ecosystem Preservation through 
Sentence-BERT and K-Means Clustering. Information, 15(3), 165. https://doi.org/ 
10.3390/info15030165

Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., 
McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K. I., Bailey, D., 
Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., 
Carreiro-Silva, M., Colaço, A., Eblé, M. C., Fowler, A. M., … Weller, R. A. 
(2019). Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 
6, 241. https://doi.org/10.3389/fmars.2019.00241

Li, H., Chen, L., Zhang, F., & Cai, Z. (2025). Graph-learning-based machine 
learning improves prediction and cultivation of commercial-grade marine 
microalgae Porphyridium. Bioresource Technology, 416, 131728. https://doi.org/ 
10.1016/j.biortech.2024.131728

Li, Z., Zhao, S., Lu, Y., Song, C., Huang, R., & Yu, K. (2024). Deep 
Learning-Based Automatic Estimation of Live Coral Cover from Underwater 
Video for Coral Reef Health Monitoring. Journal of Marine Science and 
Engineering, 12(11), 1980. https://doi.org/10.3390/jmse12111980

Liu, L., Zhang, Y., Ma, Z., & Wang, H. (2023). An analysis on the spatiotemporal 
behavior of inbound tourists in Jiaodong Peninsula based on Flickr geotagged 
photos. International Journal of Applied Earth Observation and Geoinformation, 
120, 103349. https://doi.org/10.1016/j.jag.2023.103349

Liza, J. I., Majumder, S. C., & Rahman, Md. H. (2025). Scrutinizing the impact of 
blue economy factors on the economic growth in Bangladesh: An empirical study. 
Marine Policy, 173, 106542. https://doi.org/10.1016/j.marpol.2024.106542

Milstein, A., Islam, M. S., Wahab, M. A., Kamal, A. H. M., & Dewan, S. (2005). 
Characterization of water quality in shrimp ponds of different sizes and with 
different management regimes using multivariate statistical analysis. Aquaculture 
International, 13(6), 501–518. https://doi.org/10.1007/s10499-005-9001-6

Mora-Cross, M., & Calderon-Ramirez, S. (2024). Uncertainty Estimation in Large 
Language Models to Support Biodiversity Conservation. Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 6: Industry Track), 368–378. 
https://doi.org/10.18653/v1/2024.naacl-industry.31

Moradi, M. H., Brutsche, M., Wenig, M., Wagner, U., & Koch, T. (2022). Marine 
route optimization using reinforcement learning approach to reduce fuel 
consumption and consequently minimize CO2 emissions. Ocean Engineering, 
259, 111882. https://doi.org/10.1016/j.oceaneng.2022.111882

Mujtaba, D. F., & Mahapatra, N. R. (2022). Deep Learning for Spatiotemporal 
Modeling of Illegal, Unreported, and Unregulated Fishing Events. 2022 
International Conference on Computational Science and Computational 
Intelligence (CSCI), 423–425. https://doi.org/10.1109/CSCI58124.2022.00082

Nemade, B., Maharana, K. K., Kulkarni, V., Mondal, S., Ghantasala, G. S. P., 
Al-Rasheed, A., Getahun, M., & Soufiene, B. O. (2024). IoT-based automated 
system for water-related disease prediction. Scientific Reports, 14(1), 29483. 
https://doi.org/10.1038/s41598-024-79989-6

Ojemaye, C. Y., & Petrik, L. (2019). Pharmaceuticals in the marine environment: A 
review. Environmental Reviews, 27(2), 151–165. https://doi.org/10.1139/er- 2018-0054

Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species 
using machine learning models. Aquaculture Reports, 20, 100660. https://doi.org/ 
10.1016/j.aqrep.2021.100660

Palmieri, R., Gasbarrone, R., Bonifazi, G., Piccinini, G., & Serranti, S. (2024). 
Hyperspectral Imaging for Detecting Plastic Debris on Shoreline Sands to Support 
Recycling. Applied Sciences, 14(23), 11437. https://doi.org/10.3390/app142311437

Panboonyuen, T. (2024). SEA-ViT: Sea Surface Currents Forecasting Using 
Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling 
(Version 2). arXiv. https://doi.org/10.48550/ARXIV.2409.16313

Pataranutaporn, P., Doudkin, A., & Maes, P. (2025). OceanChat: The Effect of 
Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change 
(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2502.02863

Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., 
Sandin, S., & Cignoni, P. (2022). TagLab: AI‐assisted annotation for the fast and 
accurate semantic segmentation of coral reef orthoimages. Journal of Field 
Robotics, 39(3), 246–262. https://doi.org/10.1002/rob.22049

Qi, L., Li, B., Chen, L., Wang, W., Dong, L., Jia, X., Huang, J., Ge, C., Xue, G., & 
Wang, D. (2019). Ship Target Detection Algorithm Based on Improved Faster 
R-CNN. Electronics, 8(9), 959. https://doi.org/10.3390/electronics8090959

Qin, J., Song, C., Tang, M., Zhang, Y., & Wang, J. (2019). Exploring the Spatial 
Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. 
Sustainability, 11(20), 5822. https://doi.org/10.3390/su11205822

Rizzo, A., Serranti, S., Cucuzza, P., Lisco, S., Marsico, A., Bonifazi, G., & 
Mastronuzzi, G. (2024). Application of hyperspectral imaging and machine 
learning for the automatic identification of microplastics on sandy beaches. In D. 
W. Messinger & M. Velez-Reyes (Eds.), Algorithms, Technologies, and 
Applications for Multispectral and Hyperspectral Imaging XXX (p. 33). SPIE. 
https://doi.org/10.1117/12.3013227

Roy, A., Fablet, R., & Bertrand, S. L. (2022). Using generative adversarial 
networks ( GAN ) to simulate central‐place foraging trajectories. Methods in 
Ecology and Evolution, 13(6), 1275–1287. https://doi.org/10.1111/2041-210X.13853

Sauder, J., Banc‐Prandi, G., Meibom, A., & Tuia, D. (2024). Scalable semantic 3D 
mapping of coral reefs with deep learning. Methods in Ecology and Evolution, 
15(5), 916–934. https://doi.org/10.1111/2041-210X.14307

Schneider, S., & Zhuang, A. (2020). Counting Fish and Dolphins in Sonar Images 
Using Deep Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV. 
2007.12808

Shen, Y., Xuan, B., Hu, H., Wu, Y., Zhao, N., & Yang, Z. (2024). A Decomposed- 
Ensemble Prediction Framework for Gate-In Operations at Container Terminals. 
Journal of Marine Science and Engineering, 13(1), 45. https://doi.org/10.3390/ 
jmse13010045

Shi, J., Su, T., Li, X., Wang, F., Cui, J., Liu, Z., & Wang, J. (2023). A 
Machine-Learning Approach Based on Attention Mechanism for Significant Wave 
Height Forecasting. Journal of Marine Science and Engineering, 11(9), 1821. 
https://doi.org/10.3390/jmse11091821

Shu, Y., Yu, B., Liu, W., Yan, T., Liu, Z., Gan, L., Yin, J., & Song, L. (2024). 
Investigation of ship energy consumption based on neural network. Ocean & 
Coastal Management, 254, 107167. https://doi.org/10.1016/j.ocecoaman.2024.107167

Sinha, A., & Abernathey, R. (2021). Estimating Ocean Surface Currents With 
Machine Learning. Frontiers in Marine Science, 8, 672477. https://doi.org/ 
10.3389/fmars.2021.672477

Song, H., Mehdi, S. R., Zhang, Y., Shentu, Y., Wan, Q., Wang, W., Raza, K., & Huang, 
H. (2021). Development of Coral Investigation System Based on Semantic Segmentation 
of Single-Channel Images. Sensors, 21(5), 1848. https://doi.org/ 10.3390/s21051848

Su, J., Lin, Z., Xu, F., Fathi, G., & Alnowibet, K. A. (2024). A hybrid model of 
ARIMA and MLP with a Grasshopper optimization algorithm for time series 
forecasting of water quality. Scientific Reports, 14(1), 23927. https://doi.org/ 
10.1038/s41598-024-74144-7

Sun, Y., Cheng, J., Zhang, G., & Xu, H. (2019). Mapless Motion Planning System 
for an Autonomous Underwater Vehicle Using Policy Gradient-based Deep 
Reinforcement Learning. Journal of Intelligent & Robotic Systems, 96(3–4), 
591–601. https://doi.org/10.1007/s10846-019-01004-2

Taneepanichskul, N., Hailes, H. C., & Miodownik, M. (2024). Using hyperspectral 
imaging to identify and classify large microplastic contamination in industrial 
composting processes. Frontiers in Sustainability, 5, 1332163. https://doi.org/ 
10.3389/frsus.2024.1332163

Tarling, P., Cantor, M., Clapés, A., & Escalera, S. (2022). Deep learning with 
self-supervision and uncertainty regularization to count fish in underwater images. 
PLOS ONE, 17(5), e0267759. https://doi.org/10.1371/journal.pone.0267759

Taroual, K., Nachtane, M., Adeli, K., Faik, A., Boulzehar, A., Saifaoui, D., & 
Tarfaoui, M. (2025). Hybrid marine energy and AI-driven optimization for 
hydrogen production in coastal regions. International Journal of Hydrogen 
Energy, 118, 80–92. https://doi.org/10.1016/j.ijhydene.2025.03.091

Thongniran, N., Vateekul, P., Jitkajornwanich, K., Lawawirojwong, S., & 
Srestasathiern, P. (2019). Spatio-Temporal Deep Learning for Ocean Current 
Prediction Based on HF Radar Data. 2019 16th International Joint Conference on 
Computer Science and Software Engineering (JCSSE), 254–259. https://doi.org/ 
10.1109/JCSSE.2019.8864215

Tian, C., Ma, J., Zhang, C., & Zhan, P. (2018). A Deep Neural Network Model for 
Short-Term Load Forecast Based on Long Short-Term Memory Network and 
Convolutional Neural Network. Energies, 11(12), 3493. https://doi.org/ 
10.3390/en11123493

Trégarot, E., D’Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., 
Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., 
Kersting, D. K., Maréchal, J.-P., Meesters, E., O’Leary, B. C., Pérez, G., 
Seijo-Núñez, C., Simide, R., … De Juan, S. (2024). Effects of climate change on 
marine coastal ecosystems – A review to guide research and management. 
Biological Conservation, 289, 110394. https://doi.org/10.1016/j.biocon.2023.110394

Tsuda, M. E., Miller, N. A., Saito, R., Park, J., & Oozeki, Y. (2023). Automated 
VIIRS Boat Detection Based on Machine Learning and Its Application to 
Monitoring Fisheries in the East China Sea. Remote Sensing, 15(11), 2911. 
https://doi.org/10.3390/rs15112911

Vasudevan, R., & Chola, C. (2024). AI Based Approach for Transshipment 
Detection in the Maritime Domain. 2024 5th International Conference on 
Innovative Trends in Information Technology (ICITIIT), 1–6. https://doi.org/ 
10.1109/ICITIIT61487.2024.10580624

Viñals, M. J., Orozco Carpio, P. R., Teruel, P., & Gandía-Romero, J. M. (2024). 
Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets 
Through Digital Technologies. Urban Science, 8(4), 190. https://doi.org/ 
10.3390/urbansci8040190

Vyshnav, K., Sooryanarayanan, R., & Madhav, T. V. (2024). Analysis of 
Underwater Coral Reef Health Using Neural Networks. OCEANS 2024 - 
Singapore, 01–06. https://doi.org/10.1109/OCEANS51537.2024.10682334

Wang, J., & Tabeta, S. (2023). Four-channel generative adversarial networks can 
predict the distribution of reef-associated fish in the South and East China Seas. 
Ecological Informatics, 78, 102321. https://doi.org/10.1016/j.ecoinf.2023.102321

Wang, Z., Hou, G., Xin, Z., Liao, G., Huang, P., & Tai, Y. (2024). Detection of 
SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on 
Improved YOLOv5. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 17, 5804–5823. https://doi.org/10.1109/ 
JSTARS.2024.3370722

Wang, Z., Kasongo Dahouda, M., Hwang, H., & Joe, I. (2025). Explanatory 
LSTM-AE-Based Anomaly Detection for Time Series Data in Marine 
Transportation. IEEE Access, 13, 23195–23208. https://doi.org/10.1109/ACCESS. 
2025.3535695

Wang, Z., Zhang, S., Feng, X., & Sui, Y. (2021). Autonomous underwater vehicle 
path planning based on actor-multi-critic reinforcement learning. Proceedings of 
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering, 235(10), 1787–1796. https://doi.org/10.1177/0959651820937085

Xiong, B., Sun, Z., Wang, J., Leng, X., & Ji, K. (2022). A Lightweight Model for 
Ship Detection and Recognition in Complex-Scene SAR Images. Remote Sensing, 
14(23), 6053. https://doi.org/10.3390/rs14236053

Yabin, L., Jun, Y., & Zhiyi, H. (2020). Improved Faster R-CNN Algorithm for Sea 
Object Detection Under Complex Sea Conditions. International Journal of 
Advanced Network, Monitoring and Controls, 5(2), 76–82. https://doi.org/ 
10.21307/ijanmc-2020-020

Yao, Q., Shi, Y., Li, H., Wen, J., Xi, J., & Wang, Q. (2020). Understanding the 
Tourists’ Spatio-Temporal Behavior Using Open GPS Trajectory Data: A Case 
Study of Yuanmingyuan Park (Beijing, China). Sustainability, 13(1), 94. 
https://doi.org/10.3390/su13010094

Yasir, M., Shanwei, L., Mingming, X., Hui, S., Hossain, M. S., Colak, A. T. I., 
Wang, D., Jianhua, W., & Dang, K. B. (2023). Multi-scale ship target detection 
using SAR images based on improved Yolov5. Frontiers in Marine Science, 9, 
1086140. https://doi.org/10.3389/fmars.2022.1086140

Yilmaz, M., Çakir, M., Oral, O., Oral, M. A., & Arslan, T. (2022). Using machine 
learning technique for disease outbreak prediction in rainbow trout ( 
Oncorhynchus mykiss ) farms. Aquaculture Research, 53(18), 6721–6732. 
https://doi.org/10.1111/are.16140

Zeng, B., Yu, T., He, Y., & Wang, J. (2025). Comparative analysis of inbound 
tourist flows of different groups: The case of Japan. Current Issues in Tourism, 
28(3), 376–399. https://doi.org/10.1080/13683500.2023.2301475

Zhang, A., Wang, W., Bi, W., & Huang, Z. (2024). A path planning method based 
on deep reinforcement learning for AUV in complex marine environment. Ocean 
Engineering, 313, 119354. https://doi.org/10.1016/j.oceaneng.2024.119354

Zhang, J., Jin, J., Ma, Y., & Ren, P. (2023). Lightweight object detection algorithm 
based on YOLOv5 for unmanned surface vehicles. Frontiers in Marine Science, 9, 
1058401. https://doi.org/10.3389/fmars.2022.1058401

Zhang, L., Duan, W., Cui, X., Liu, Y., & Huang, L. (2024). Surface current 
prediction based on a physics-informed deep learning model. Applied Ocean 
Research, 148, 104005. https://doi.org/10.1016/j.apor.2024.104005

Zhang, T., Yang, Y., Liu, Y., Liu, C., Zhao, R., Li, D., & Shi, C. (2024). Fully 
automatic system for fish biomass estimation based on deep neural network. 
Ecological Informatics, 79, 102399. https://doi.org/10.1016/j.ecoinf.2023.102399

Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., & Wu, F. (2019). 
Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the 
Intestinal Tracts of Fish. Environmental Science & Technology, 53(9), 5151–5158. 
https://doi.org/10.1021/acs.est.8b07321

Zhao, Z., Xiao, X., Yang, W., Yin, S., Ding, X., Gao, H., & Gao, Y. (2024). 
Multi-objective optimization of an integrated energy system based on enhanced 
NSGA-II. Journal of Physics: Conference Series, 2788(1), 012005. https://doi.org/ 
10.1088/1742-6596/2788/1/012005

Zheng, Z., Zhang, J., Vu, T.-A., Diao, S., Tim, Y. H. W., & Yeung, S.-K. (2023). 
MarineGPT: Unlocking Secrets of Ocean to the Public (Version 1). arXiv. 
https://doi.org/10.48550/ARXIV.2310.13596

Zhou, Y., Davies, R., Wright, J., Ablett, S., & Maskell, S. (2025). Identifying 
Behaviours Indicative of Illegal Fishing Activities in Automatic Identification 
System Data. Journal of Marine Science and Engineering, 13(3), 457. https://doi. 
org/10.3390/jmse13030457

Zou, H.-H., He, P.-J., Peng, W., Lan, D.-Y., Xian, H.-Y., Lü, F., & Zhang, H. 
(2025). Rapid detection of colored and colorless macro- and micro-plastics in 
complex environment via near-infrared spectroscopy and machine learning. 
Journal of Environmental Sciences, 147, 512–522. https://doi.org/10.1016/j.jes. 
2023.12.004



Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 10: AI-driven Ship Route Optimization

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 11: AI-driven Port Operational Forecasting

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.

References

A, S., & S, M. (2025). Studies on Underwater Image Processing Using Artificial 
Intelligence Technologies. IEEE Access, 13, 3929–3969. https://doi.org/10.1109/ 
ACCESS.2024.3524593.

Abimbola, B., Tan, Q., & De La Cal Marín, E. A. (2024). Sentiment analysis of 
Canadian maritime case law: A sentiment case law and deep learning approach. 
International Journal of Information Technology, 16(6), 3401–3409. https://doi. 
org/10.1007/s41870-024-01820-2.

Abinaya, N. S., Susan, D., & Sidharthan, R. K. (2022). Deep learning-based 
segmental analysis of fish for biomass estimation in an occulted environment. 
Computers and Electronics in Agriculture, 197, 106985. https://doi.org/10.1016/ 
j.compag.2022.106985

Akinbulire, T., Schwartz, H., Falcon, R., & Abielmona, R. (2017). A reinforcement 
learning approach to tackle illegal, unreported and unregulated fishing. 2017 IEEE 
Symposium Series on Computational Intelligence (SSCI), 1–8. https://doi.org/ 
10.1109/SSCI.2017.8285315

Atesongun, A., & Gulsen, M. (2024). A Hybrid Forecasting Structure Based on 
Arima and Artificial Neural Network Models. Applied Sciences, 14(16), 7122. 
https://doi.org/10.3390/app14167122

Awasthi, A., Krpalkova, L., & Walsh, J. (2024). Deep Learning-Based Boolean, 
Time Series, Error Detection, and Predictive Analysis in Container Crane 
Operations. Algorithms, 17(8), 333. https://doi.org/10.3390/a17080333

Azad, A. S., Sokkalingam, R., Daud, H., Adhikary, S. K., Khurshid, H., Mazlan, S. 
N. A., & Rabbani, M. B. A. (2022). Water Level Prediction through Hybrid 
SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir 
Case Study. Sustainability, 14(3), 1843. https://doi.org/10.3390/su14031843

Bakar, N. N. A., Bazmohammadi, N., Çimen, H., Uyanik, T., Vasquez, J. C., & Guerrero, J. 
M. (2022). Data-driven ship berthing forecasting for cold ironing in maritime transportation. 
Applied Energy, 326, 119947. https://doi.org/10.1016/j. apenergy.2022.119947

Balliett, J. F. (2014). Oceans. Routledge. https://doi.org/10.4324/97813 15702049

Balogun, A.-L., & Adebisi, N. (2021). Sea level prediction using ARIMA, SVR 
and LSTM neural network: Assessing the impact of ensemble Ocean-Atmospheric 
processes on models’ accuracy. Geomatics, Natural Hazards and Risk, 12(1), 
653–674. https://doi.org/10.1080/19475705.2021.1887372

Bergamin, L., Di Bella, L., Romano, E., D’Ambrosi, A., Di Fazio, M., Gaglianone, 
G., Medeghini, L., Pierdomenico, M., Pierfranceschi, G., Provenzani, C., Rampazzo, 
R., Rinaldi, S., & Spagnoli, F. (2024). Habitat partitioning and first microplastic 
detection in the Argentarola marine cave (Tyrrhenian Sea, Italy). Regional Studies 
in Marine Science, 74, 103547. https://doi.org/10.1016/j.rsma. 2024.103547

Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., 
Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan 
Rosli, W. I. (2022). Potent Bioactive Compounds From Seaweed Waste to Combat 
Cancer Through Bioinformatics Investigation. Frontiers in Nutrition, 9, 889276. 
https://doi.org/10.3389/fnut.2022.889276.

Bhopale, P., Kazi, F., & Singh, N. (2019). Reinforcement Learning Based Obstacle 
Avoidance for Autonomous Underwater Vehicle. Journal of Marine Science and 
Application, 18(2), 228–238. https://doi.org/10.1007/s11804-019-00089-3.

Brown, S., Katz, D., Korotovskikh, D., & Kullman, S. (2024). Detecting Illegal, 
Unreported, and Unregulated Fishing through AIS Data and Machine Learning 
Approaches. 2024 Systems and Information Engineering Design Symposium 
(SIEDS), 319–324. https://doi.org/10.1109/SIEDS61124.2024.10534704

Caharija, W., Dalseg, E. S., Bent O. A., H., & Stahl, A. (2021). Echosounder 
tracking with monocular camera for biomass estimation. OCEANS 2021: San 
Diego – Porto, 1–9. https://doi.org/10.23919/OCEANS44145.2021.9705820

Capolupo, A., Lonero, M., Maltese, A., & Tarantino, E. (2024). Spectral 
discrimination and separability analysis of beach macroplatisc litter from 
high-resolution RPAS images. In C. M. Neale, A. Maltese, C. Nichol, & C. R. 
Bostater (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology 
XXVI (p. 27). SPIE. https://doi.org/10.1117/12.3033835

Carvache-Franco, M., Bagarić, L., Carvache-Franco, O., & Carvache-Franco, W. 
(2025). Segmentation by recreation experiences of demand in coastal and marine 
destinations: A study in Galapagos, Ecuador. PLOS ONE, 20(1), e0316614. 
https://doi.org/10.1371/journal.pone.0316614

Carvache-Franco, M., Carvache-Franco, W., & Manner-Baldeon, F. (2021). 
Market Segmentation Based on Ecotourism Motivations in Marine Protected 
Areas and National Parks in the Galapagos Islands, Ecuador. Journal of Coastal 
Research, 37(3). https://doi.org/10.2112/JCOASTRES-D-20-00076.1

Carvache-Franco, M., Víquez-Paniagua, A. G., Carvache-Franco, W., Pérez-Orozco, 
A., & Carvache-Franco, O. (2022). Segmentation by Motivations in Sustainable 

Coastal and Marine Destinations: A Study in Jacó, Costa Rica. Sustainability, 
14(14), 8830. https://doi.org/10.3390/su14148830

Carvache-Franco, W., Carvache-Franco, M., & Hernández-Lara, A. B. (2021). 
From motivation to segmentation in coastal and marine destinations: A study from 
the Galapagos Islands, Ecuador. Current Issues in Tourism, 24(16), 2325–2341. 
https://doi.org/10.1080/13683500.2020.1811651

Chen, Q., Zhang, J., Gao, J., Lau, Y.-Y., Liu, J., Poo, M. C.-P., & Zhang, P. (2024). 
Risk Analysis of Pirate Attacks on Southeast Asian Ships Based on Bayesian 
Networks. Journal of Marine Science and Engineering, 12(7), 1088. https://doi. 
org/10.3390/jmse12071088

Crain, C. M., Halpern, B. S., Beck, M. W., & Kappel, C. V. (2009). Understanding 
and Managing Human Threats to the Coastal Marine Environment. Annals of the 
New York Academy of Sciences, 1162(1), 39–62. https://doi.org/10.1111/j.1749 
-6632.2009.04496.x

De Souza, E. N., Boerder, K., Matwin, S., & Worm, B. (2016). Improving Fishing 
Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. 
PLOS ONE, 11(7), e0158248. https://doi.org/10.1371/journal.pone.0158248

Do Nascimento, V. D., Alves, T. A. O., De Farias, C. M., & Dutra, D. L. C. (2024). 
A Hybrid Framework for Maritime Surveillance: Detecting Illegal Activities 
through Vessel Behaviors and Expert Rules Fusion. Sensors, 24(17), 5623. 
https://doi.org/10.3390/s24175623

Do Nascimento, V. D., De Farias, C. M., Dutra, D. L. C., & Alves, T. A. O. (2024). 
Ensemble Learning Approaches for Detecting Fishing Activity in Maritime Surveillance: 
A Performance Evaluation. 2024 27th International Conference on Information Fusion 
(FUSION), 1–8. https://doi.org/10.23919/FUSION59988. 2024.10706287

Domingo, M. C. (2021). Deep Learning and Internet of Things for Beach 
Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels 
Beach. Applied Sciences, 11(22), 10735. https://doi.org/10.3390/ app112210735

Dube, K. (2024). A Comprehensive Review of Climatic Threats and Adaptation of 
Marine Biodiversity. Journal of Marine Science and Engineering, 12(2), 344. 
https://doi.org/10.3390/jmse12020344

Edeh, M. O., Dalal, S., Obagbuwa, I. C., Prasad, B. V. V. S., Ninoria, S. Z., Wajid, 
M. A., & Adesina, A. O. (2022). Bootstrapping random forest and CHAID for 
prediction of white spot disease among shrimp farmers. Scientific Reports, 12(1), 
20876. https://doi.org/10.1038/s41598-022-25109-1

Ezzeddini, L., Affes, N., Ktari, J., Frikha, T., Halima, R. B., & Hamam, H. (2024). 
Smart Maritime Surveillance: Leveraging YOLO Detection and Blockchain 
traceability for Vessel Monitoring. Journal of Information Assurance and Security, 
19(6), 233–248. https://doi.org/10.2478/ias-2024-0016

Faltynkova, A., & Wagner, M. (2023). Developing and testing a workflow to 
identify microplastics using near infrared hyperspectral imaging. Chemosphere, 
336, 139186. https://doi.org/10.1016/j.chemosphere.2023.139186

Gaudêncio, S. P., & Pereira, F. (2022). Predicting Antifouling Activity and 
Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided 
Drug Design Approach. Marine Drugs, 20(2), 129. https://doi. org/10.3390/md20020129

Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends 
of pharmaceuticals in the marine and coastal environment. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130572. 
https://doi.org/10.1098/rstb.2013.0572

Gebejes, A., Hrovat, B., Semenov, D., Kanyathare, B., Itkonen, T., Keinänen, M., 
Koistinen, A., Peiponen, K.-E., & Roussey, M. (2024). Hyperspectral imaging for 
identification of irregular-shaped microplastics in water. Science of The Total 
Environment, 944, 173811. https://doi.org/10.1016/j.scitotenv.2024.173811

Guillén, J., García-Olivares, A., Ojeda, E., Osorio, A., Chic, O., & González, R. 
(2008). Long-Term Quantification of Beach Users Using Video Monitoring. 
Journal of Coastal Research, 246, 1612–1619. https://doi.org/10.2112/07-0886.1

Gülmez, S., Denktaş Şakar, G., & Baştuğ, S. (2023). An overview of maritime 
logistics: Trends and research agenda. Maritime Policy & Management, 50(1), 
97–116. https://doi.org/10.1080/03088839.2021.1962557

Gutiérrez-Estrada, J. C., Pulido-Calvo, I., Castro-Gutiérrez, J., Peregrín, A., 
López-Domínguez, S., Gómez-Bravo, F., Garrocho-Cruz, A., & De La 
Rosa-Lucas, I. (2022). Fish abundance estimation with imaging sonar in 
semi-intensive aquaculture ponds. Aquacultural Engineering, 97, 102235. 
https://doi.org/10.1016/j.aquaeng.2022.102235

Hadi, B., Khosravi, A., & Sarhadi, P. (2022). Deep reinforcement learning for 
adaptive path planning and control of an autonomous underwater vehicle. Applied 
Ocean Research, 129, 103326. https://doi.org/10.1016/j.apor.2022.103326

Han, P., Ellefsen, A. L., Li, G., Holmeset, F. T., & Zhang, H. (2021). Fault Detection 
With LSTM-Based Variational Autoencoder for Maritime Components. IEEE Sensors 
Journal, 21(19), 21903–21912. https://doi.org/10.1109/JSEN.2021. 3105226

Immas, A., Do, N., & Alam, M.-R. (2021). Real-time in situ prediction of ocean currents. 
Ocean Engineering, 228, 108922. https://doi.org/10.1016/j.oceaneng. 2021.108922

Jian, J., Liu, L., Zhang, Y., Xu, K., & Yang, J. (2023). Optical Remote Sensing 
Ship Recognition and Classification Based on Improved YOLOv5. Remote 
Sensing, 15(17), 4319. https://doi.org/10.3390/rs15174319

Jing, C., Dong, M., Du, M., Zhu, Y., & Fu, J. (2020). Fine-Grained Spatiotemporal 
Dynamics of Inbound Tourists Based on Geotagged Photos: A Case Study in Beijing, 
China. IEEE Access, 8, 28735–28745. https://doi.org/10.1109/ACCESS. 2020.2972309

Kaur, G., Braveen, M., Krishnapriya, S., Wawale, S. G., Castillo-Picon, J., 
Malhotra, D., & Osei-Owusu, J. (2023). Machine Learning Integrated Multivariate 
Water Quality Control Framework for Prawn Harvesting from Fresh Water Ponds. 
Journal of Food Quality, 2023, 1–9. https://doi.org/10.1155/2023/3841882

Kaur, G., & Chopra, K. (2025). India’s cobalt quest: Navigating geopolitics in the 
Indo-Pacific. The Round Table, 114(1), 94–96. https://doi.org/10.1080/00358533 
.2025.2455755

Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable 
Anomaly Detection Framework for Maritime Main Engine Sensor Data. Sensors, 
21(15), 5200. https://doi.org/10.3390/s21155200

Kristmundsson, J., Patursson, Ø., Potter, J., & Xin, Q. (2023). Fish Monitoring in 
Aquaculture Using Multibeam Echosounders and Machine Learning. IEEE 
Access, 11, 108306–108316. https://doi.org/10.1109/ACCESS.2023.3320949

Kusumaningrum, R., Khoerunnisa, S. F., Khadijah, K., & Syafrudin, M. (2024). 
Exploring Community Awareness of Mangrove Ecosystem Preservation through 
Sentence-BERT and K-Means Clustering. Information, 15(3), 165. https://doi.org/ 
10.3390/info15030165

Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., 
McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K. I., Bailey, D., 
Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., 
Carreiro-Silva, M., Colaço, A., Eblé, M. C., Fowler, A. M., … Weller, R. A. 
(2019). Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 
6, 241. https://doi.org/10.3389/fmars.2019.00241

Li, H., Chen, L., Zhang, F., & Cai, Z. (2025). Graph-learning-based machine 
learning improves prediction and cultivation of commercial-grade marine 
microalgae Porphyridium. Bioresource Technology, 416, 131728. https://doi.org/ 
10.1016/j.biortech.2024.131728

Li, Z., Zhao, S., Lu, Y., Song, C., Huang, R., & Yu, K. (2024). Deep 
Learning-Based Automatic Estimation of Live Coral Cover from Underwater 
Video for Coral Reef Health Monitoring. Journal of Marine Science and 
Engineering, 12(11), 1980. https://doi.org/10.3390/jmse12111980

Liu, L., Zhang, Y., Ma, Z., & Wang, H. (2023). An analysis on the spatiotemporal 
behavior of inbound tourists in Jiaodong Peninsula based on Flickr geotagged 
photos. International Journal of Applied Earth Observation and Geoinformation, 
120, 103349. https://doi.org/10.1016/j.jag.2023.103349

Liza, J. I., Majumder, S. C., & Rahman, Md. H. (2025). Scrutinizing the impact of 
blue economy factors on the economic growth in Bangladesh: An empirical study. 
Marine Policy, 173, 106542. https://doi.org/10.1016/j.marpol.2024.106542

Milstein, A., Islam, M. S., Wahab, M. A., Kamal, A. H. M., & Dewan, S. (2005). 
Characterization of water quality in shrimp ponds of different sizes and with 
different management regimes using multivariate statistical analysis. Aquaculture 
International, 13(6), 501–518. https://doi.org/10.1007/s10499-005-9001-6

Mora-Cross, M., & Calderon-Ramirez, S. (2024). Uncertainty Estimation in Large 
Language Models to Support Biodiversity Conservation. Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 6: Industry Track), 368–378. 
https://doi.org/10.18653/v1/2024.naacl-industry.31

Moradi, M. H., Brutsche, M., Wenig, M., Wagner, U., & Koch, T. (2022). Marine 
route optimization using reinforcement learning approach to reduce fuel 
consumption and consequently minimize CO2 emissions. Ocean Engineering, 
259, 111882. https://doi.org/10.1016/j.oceaneng.2022.111882

Mujtaba, D. F., & Mahapatra, N. R. (2022). Deep Learning for Spatiotemporal 
Modeling of Illegal, Unreported, and Unregulated Fishing Events. 2022 
International Conference on Computational Science and Computational 
Intelligence (CSCI), 423–425. https://doi.org/10.1109/CSCI58124.2022.00082

Nemade, B., Maharana, K. K., Kulkarni, V., Mondal, S., Ghantasala, G. S. P., 
Al-Rasheed, A., Getahun, M., & Soufiene, B. O. (2024). IoT-based automated 
system for water-related disease prediction. Scientific Reports, 14(1), 29483. 
https://doi.org/10.1038/s41598-024-79989-6

Ojemaye, C. Y., & Petrik, L. (2019). Pharmaceuticals in the marine environment: A 
review. Environmental Reviews, 27(2), 151–165. https://doi.org/10.1139/er- 2018-0054

Palaiokostas, C. (2021). Predicting for disease resistance in aquaculture species 
using machine learning models. Aquaculture Reports, 20, 100660. https://doi.org/ 
10.1016/j.aqrep.2021.100660

Palmieri, R., Gasbarrone, R., Bonifazi, G., Piccinini, G., & Serranti, S. (2024). 
Hyperspectral Imaging for Detecting Plastic Debris on Shoreline Sands to Support 
Recycling. Applied Sciences, 14(23), 11437. https://doi.org/10.3390/app142311437

Panboonyuen, T. (2024). SEA-ViT: Sea Surface Currents Forecasting Using 
Vision Transformer and GRU-Based Spatio-Temporal Covariance Modeling 
(Version 2). arXiv. https://doi.org/10.48550/ARXIV.2409.16313

Pataranutaporn, P., Doudkin, A., & Maes, P. (2025). OceanChat: The Effect of 
Virtual Conversational AI Agents on Sustainable Attitude and Behavior Change 
(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2502.02863

Pavoni, G., Corsini, M., Ponchio, F., Muntoni, A., Edwards, C., Pedersen, N., 
Sandin, S., & Cignoni, P. (2022). TagLab: AI‐assisted annotation for the fast and 
accurate semantic segmentation of coral reef orthoimages. Journal of Field 
Robotics, 39(3), 246–262. https://doi.org/10.1002/rob.22049

Qi, L., Li, B., Chen, L., Wang, W., Dong, L., Jia, X., Huang, J., Ge, C., Xue, G., & 
Wang, D. (2019). Ship Target Detection Algorithm Based on Improved Faster 
R-CNN. Electronics, 8(9), 959. https://doi.org/10.3390/electronics8090959

Qin, J., Song, C., Tang, M., Zhang, Y., & Wang, J. (2019). Exploring the Spatial 
Characteristics of Inbound Tourist Flows in China Using Geotagged Photos. 
Sustainability, 11(20), 5822. https://doi.org/10.3390/su11205822

Rizzo, A., Serranti, S., Cucuzza, P., Lisco, S., Marsico, A., Bonifazi, G., & 
Mastronuzzi, G. (2024). Application of hyperspectral imaging and machine 
learning for the automatic identification of microplastics on sandy beaches. In D. 
W. Messinger & M. Velez-Reyes (Eds.), Algorithms, Technologies, and 
Applications for Multispectral and Hyperspectral Imaging XXX (p. 33). SPIE. 
https://doi.org/10.1117/12.3013227

Roy, A., Fablet, R., & Bertrand, S. L. (2022). Using generative adversarial 
networks ( GAN ) to simulate central‐place foraging trajectories. Methods in 
Ecology and Evolution, 13(6), 1275–1287. https://doi.org/10.1111/2041-210X.13853

Sauder, J., Banc‐Prandi, G., Meibom, A., & Tuia, D. (2024). Scalable semantic 3D 
mapping of coral reefs with deep learning. Methods in Ecology and Evolution, 
15(5), 916–934. https://doi.org/10.1111/2041-210X.14307

Schneider, S., & Zhuang, A. (2020). Counting Fish and Dolphins in Sonar Images 
Using Deep Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV. 
2007.12808

Shen, Y., Xuan, B., Hu, H., Wu, Y., Zhao, N., & Yang, Z. (2024). A Decomposed- 
Ensemble Prediction Framework for Gate-In Operations at Container Terminals. 
Journal of Marine Science and Engineering, 13(1), 45. https://doi.org/10.3390/ 
jmse13010045

Shi, J., Su, T., Li, X., Wang, F., Cui, J., Liu, Z., & Wang, J. (2023). A 
Machine-Learning Approach Based on Attention Mechanism for Significant Wave 
Height Forecasting. Journal of Marine Science and Engineering, 11(9), 1821. 
https://doi.org/10.3390/jmse11091821

Shu, Y., Yu, B., Liu, W., Yan, T., Liu, Z., Gan, L., Yin, J., & Song, L. (2024). 
Investigation of ship energy consumption based on neural network. Ocean & 
Coastal Management, 254, 107167. https://doi.org/10.1016/j.ocecoaman.2024.107167

Sinha, A., & Abernathey, R. (2021). Estimating Ocean Surface Currents With 
Machine Learning. Frontiers in Marine Science, 8, 672477. https://doi.org/ 
10.3389/fmars.2021.672477

Song, H., Mehdi, S. R., Zhang, Y., Shentu, Y., Wan, Q., Wang, W., Raza, K., & Huang, 
H. (2021). Development of Coral Investigation System Based on Semantic Segmentation 
of Single-Channel Images. Sensors, 21(5), 1848. https://doi.org/ 10.3390/s21051848

Su, J., Lin, Z., Xu, F., Fathi, G., & Alnowibet, K. A. (2024). A hybrid model of 
ARIMA and MLP with a Grasshopper optimization algorithm for time series 
forecasting of water quality. Scientific Reports, 14(1), 23927. https://doi.org/ 
10.1038/s41598-024-74144-7

Sun, Y., Cheng, J., Zhang, G., & Xu, H. (2019). Mapless Motion Planning System 
for an Autonomous Underwater Vehicle Using Policy Gradient-based Deep 
Reinforcement Learning. Journal of Intelligent & Robotic Systems, 96(3–4), 
591–601. https://doi.org/10.1007/s10846-019-01004-2

Taneepanichskul, N., Hailes, H. C., & Miodownik, M. (2024). Using hyperspectral 
imaging to identify and classify large microplastic contamination in industrial 
composting processes. Frontiers in Sustainability, 5, 1332163. https://doi.org/ 
10.3389/frsus.2024.1332163

Tarling, P., Cantor, M., Clapés, A., & Escalera, S. (2022). Deep learning with 
self-supervision and uncertainty regularization to count fish in underwater images. 
PLOS ONE, 17(5), e0267759. https://doi.org/10.1371/journal.pone.0267759

Taroual, K., Nachtane, M., Adeli, K., Faik, A., Boulzehar, A., Saifaoui, D., & 
Tarfaoui, M. (2025). Hybrid marine energy and AI-driven optimization for 
hydrogen production in coastal regions. International Journal of Hydrogen 
Energy, 118, 80–92. https://doi.org/10.1016/j.ijhydene.2025.03.091

Thongniran, N., Vateekul, P., Jitkajornwanich, K., Lawawirojwong, S., & 
Srestasathiern, P. (2019). Spatio-Temporal Deep Learning for Ocean Current 
Prediction Based on HF Radar Data. 2019 16th International Joint Conference on 
Computer Science and Software Engineering (JCSSE), 254–259. https://doi.org/ 
10.1109/JCSSE.2019.8864215

Tian, C., Ma, J., Zhang, C., & Zhan, P. (2018). A Deep Neural Network Model for 
Short-Term Load Forecast Based on Long Short-Term Memory Network and 
Convolutional Neural Network. Energies, 11(12), 3493. https://doi.org/ 
10.3390/en11123493

Trégarot, E., D’Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., 
Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., 
Kersting, D. K., Maréchal, J.-P., Meesters, E., O’Leary, B. C., Pérez, G., 
Seijo-Núñez, C., Simide, R., … De Juan, S. (2024). Effects of climate change on 
marine coastal ecosystems – A review to guide research and management. 
Biological Conservation, 289, 110394. https://doi.org/10.1016/j.biocon.2023.110394

Tsuda, M. E., Miller, N. A., Saito, R., Park, J., & Oozeki, Y. (2023). Automated 
VIIRS Boat Detection Based on Machine Learning and Its Application to 
Monitoring Fisheries in the East China Sea. Remote Sensing, 15(11), 2911. 
https://doi.org/10.3390/rs15112911

Vasudevan, R., & Chola, C. (2024). AI Based Approach for Transshipment 
Detection in the Maritime Domain. 2024 5th International Conference on 
Innovative Trends in Information Technology (ICITIIT), 1–6. https://doi.org/ 
10.1109/ICITIIT61487.2024.10580624

Viñals, M. J., Orozco Carpio, P. R., Teruel, P., & Gandía-Romero, J. M. (2024). 
Real-Time Monitoring of Visitor Carrying Capacity in Crowded Historic Streets 
Through Digital Technologies. Urban Science, 8(4), 190. https://doi.org/ 
10.3390/urbansci8040190

Vyshnav, K., Sooryanarayanan, R., & Madhav, T. V. (2024). Analysis of 
Underwater Coral Reef Health Using Neural Networks. OCEANS 2024 - 
Singapore, 01–06. https://doi.org/10.1109/OCEANS51537.2024.10682334

Wang, J., & Tabeta, S. (2023). Four-channel generative adversarial networks can 
predict the distribution of reef-associated fish in the South and East China Seas. 
Ecological Informatics, 78, 102321. https://doi.org/10.1016/j.ecoinf.2023.102321

Wang, Z., Hou, G., Xin, Z., Liao, G., Huang, P., & Tai, Y. (2024). Detection of 
SAR Image Multiscale Ship Targets in Complex Inshore Scenes Based on 
Improved YOLOv5. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 17, 5804–5823. https://doi.org/10.1109/ 
JSTARS.2024.3370722

Wang, Z., Kasongo Dahouda, M., Hwang, H., & Joe, I. (2025). Explanatory 
LSTM-AE-Based Anomaly Detection for Time Series Data in Marine 
Transportation. IEEE Access, 13, 23195–23208. https://doi.org/10.1109/ACCESS. 
2025.3535695

Wang, Z., Zhang, S., Feng, X., & Sui, Y. (2021). Autonomous underwater vehicle 
path planning based on actor-multi-critic reinforcement learning. Proceedings of 
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 
Engineering, 235(10), 1787–1796. https://doi.org/10.1177/0959651820937085

Xiong, B., Sun, Z., Wang, J., Leng, X., & Ji, K. (2022). A Lightweight Model for 
Ship Detection and Recognition in Complex-Scene SAR Images. Remote Sensing, 
14(23), 6053. https://doi.org/10.3390/rs14236053

Yabin, L., Jun, Y., & Zhiyi, H. (2020). Improved Faster R-CNN Algorithm for Sea 
Object Detection Under Complex Sea Conditions. International Journal of 
Advanced Network, Monitoring and Controls, 5(2), 76–82. https://doi.org/ 
10.21307/ijanmc-2020-020

Yao, Q., Shi, Y., Li, H., Wen, J., Xi, J., & Wang, Q. (2020). Understanding the 
Tourists’ Spatio-Temporal Behavior Using Open GPS Trajectory Data: A Case 
Study of Yuanmingyuan Park (Beijing, China). Sustainability, 13(1), 94. 
https://doi.org/10.3390/su13010094

Yasir, M., Shanwei, L., Mingming, X., Hui, S., Hossain, M. S., Colak, A. T. I., 
Wang, D., Jianhua, W., & Dang, K. B. (2023). Multi-scale ship target detection 
using SAR images based on improved Yolov5. Frontiers in Marine Science, 9, 
1086140. https://doi.org/10.3389/fmars.2022.1086140

Yilmaz, M., Çakir, M., Oral, O., Oral, M. A., & Arslan, T. (2022). Using machine 
learning technique for disease outbreak prediction in rainbow trout ( 
Oncorhynchus mykiss ) farms. Aquaculture Research, 53(18), 6721–6732. 
https://doi.org/10.1111/are.16140

Zeng, B., Yu, T., He, Y., & Wang, J. (2025). Comparative analysis of inbound 
tourist flows of different groups: The case of Japan. Current Issues in Tourism, 
28(3), 376–399. https://doi.org/10.1080/13683500.2023.2301475

Zhang, A., Wang, W., Bi, W., & Huang, Z. (2024). A path planning method based 
on deep reinforcement learning for AUV in complex marine environment. Ocean 
Engineering, 313, 119354. https://doi.org/10.1016/j.oceaneng.2024.119354

Zhang, J., Jin, J., Ma, Y., & Ren, P. (2023). Lightweight object detection algorithm 
based on YOLOv5 for unmanned surface vehicles. Frontiers in Marine Science, 9, 
1058401. https://doi.org/10.3389/fmars.2022.1058401

Zhang, L., Duan, W., Cui, X., Liu, Y., & Huang, L. (2024). Surface current 
prediction based on a physics-informed deep learning model. Applied Ocean 
Research, 148, 104005. https://doi.org/10.1016/j.apor.2024.104005

Zhang, T., Yang, Y., Liu, Y., Liu, C., Zhao, R., Li, D., & Shi, C. (2024). Fully 
automatic system for fish biomass estimation based on deep neural network. 
Ecological Informatics, 79, 102399. https://doi.org/10.1016/j.ecoinf.2023.102399

Zhang, Y., Wang, X., Shan, J., Zhao, J., Zhang, W., Liu, L., & Wu, F. (2019). 
Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the 
Intestinal Tracts of Fish. Environmental Science & Technology, 53(9), 5151–5158. 
https://doi.org/10.1021/acs.est.8b07321

Zhao, Z., Xiao, X., Yang, W., Yin, S., Ding, X., Gao, H., & Gao, Y. (2024). 
Multi-objective optimization of an integrated energy system based on enhanced 
NSGA-II. Journal of Physics: Conference Series, 2788(1), 012005. https://doi.org/ 
10.1088/1742-6596/2788/1/012005

Zheng, Z., Zhang, J., Vu, T.-A., Diao, S., Tim, Y. H. W., & Yeung, S.-K. (2023). 
MarineGPT: Unlocking Secrets of Ocean to the Public (Version 1). arXiv. 
https://doi.org/10.48550/ARXIV.2310.13596

Zhou, Y., Davies, R., Wright, J., Ablett, S., & Maskell, S. (2025). Identifying 
Behaviours Indicative of Illegal Fishing Activities in Automatic Identification 
System Data. Journal of Marine Science and Engineering, 13(3), 457. https://doi. 
org/10.3390/jmse13030457

Zou, H.-H., He, P.-J., Peng, W., Lan, D.-Y., Xian, H.-Y., Lü, F., & Zhang, H. 
(2025). Rapid detection of colored and colorless macro- and micro-plastics in 
complex environment via near-infrared spectroscopy and machine learning. 
Journal of Environmental Sciences, 147, 512–522. https://doi.org/10.1016/j.jes. 
2023.12.004



Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 12: AI Applications in Fisheries and Aquaculture

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 13: Aquaculture Disease Prediction Based on ML

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 14: Advanced Microplastic Detection Systems

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 15: Marine Species Distribution Modelling Using GANs

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 16: AI-based Tourist Behaviour Analysis in Marine/Coastal Tourism

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 17: Smart Coastal Crowd Management Systems

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 18: AI-based Marine Drug Discovery

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 19: AI-driven Predictive Maintenance in Maritime Systems

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Table 20: AI Applications in Ocean Literacy

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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Introduction

 Around 71% of the Earth's surface is covered by oceans (Balliett, 2014), 
which play a vital role in global ecosystems, human livelihoods, and climate 
regulation. Problems such as pollution, climate change, unsustainable exploitation 
of marine resources, overfishing, and the destruction of marine habitats pose 
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As 
future economic development will heavily depend on marine resources, it is 
critical to manage these resources effectively. Using traditional methods to explore 
open ocean resources could disturb the future balance of these resources. In 
addition, these methods are labor intensive and require substantial time (Levin et 
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of 
proper guidance, such explorations lack efficiency in speed and scale (Levin et al., 
2019). In Bangladesh, substantial funds are allocated to marine research, yet 
researchers face difficulties in accurately portraying our marine resources due to 
insufficient technology integration (Liza et al., 2025). AI-driven technologies offer 
solutions by improving efficiency in marine resource exploration on a large scale 
and accelerating processes (Taroual et al., 2025). For example, India has initiated 
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based 
economy, aiming to mine ocean minerals, address climate change impacts, protect 
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water, 
and enhance coastal biodiversity centers through AI innovations. In Bangladesh, 
the implementation of these technologies could positively impact the national 
economy (Liza et al., 2025). AI-based image processing and machine learning 
enable easy identification and monitoring of marine species and their traits. The 
primary goal is to create an accurate 3D map of the ocean floor using unmanned 
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can 
gather data from challenging environments for further analysis. One of the most 

promising AI applications is analyzing satellite images to obtain insights on 
pollution, sea surface temperatures, wind speed, and tidal patterns, which might 
predict natural disasters like cyclones. This review outlines all the prospects for 
ocean-based research and identifies the gaps for future research efforts.

 The oceans are in crisis: 90% of marine species could face extinction by 
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than 
5% of oceans and miss 99% of illegal fishing. AI offers solutions: 99% accurate 
species identification, 30% better pollution tracking, and 40% lower costs. But 
challenges remain—most AI tools aren’t used in real-world policies (78% gap), 
and research is too fragmented. This review connects the dots to help save our seas. 
The necessity of this review work has been justified in Figure 1. 

 Table 1 compares this review work with the existing review works 
conducted by Dube, (2024), Gülmez et al., (2023), Gaw et al., (2014), Ojemaye & 
Petrik, (2019), Trégarot et al., (2024) on AI applications in marine resource 
exploration and research, highlighting both breakthroughs and impediments. This 
review work has covered a wider range of marine fields such as ocean governance, 
autonomous underwater vehicles, maritime transportation & security, marine 
pollution, climate change, marine ecology, tourism, biotechnology & 
pharmaceuticals, and ocean literacy through various mobile apps and chatbots. 
While previous reviews were focused on limited aspects such as pollution (Gaw et 
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Gülmez et al., 2023), or 
maritime security (Dube, 2024), this work provides a detailed analysis of previous 
works, interdisciplinary perspective in marine research, integrating technological 
advancements for ocean exploration, policy frameworks for policymakers, and 
environmental sustainability across diverse domains. This review approach offers 
multiple guided paths for future ocean researchers and authorities who can take the 
right decision to explore marine resources effectively.

 This review is organized into four main parts: it begins with background 
information comparing past reviews and highlighting the unique contributions of 
this study (shown in Table 1). The methodology section explains how 170 studies 
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure 
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed 
analysis of how AI is used in areas like ocean governance, technology, security, 
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing 
detection).

Methodology

 This review adhered to the PRISMA framework, systematically analyzing 
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google 
Scholar covering years from 2015 to 2025 using various search keywords such as 
smart ocean governance, autonomous underwater and remotely operated vehicles 
in marine explorations, smart marine security and surveillance systems, AI in 
climate change and marine ecology, smart maritime transportation and logistics, 
AI and Internet of Things in marine fisheries & aquaculture, marine pollution 
detection using AI, AI-based marine tourism, marine biotechnology and 
pharmaceuticals using AI, Marine chatbot for ocean literacy, etc. After removing 
duplicates and screening titles/abstracts, 100 full text articles were assessed for 
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final 
research articles were selected for a rigorous review process.

 After completing the selection process, the selected papers have been 
rigorously evaluated to highlight the prospects of AI, ML, DL, RL, remote sensing 
and time series analysis in the applications of marine exploration, monitoring, 
preservation and forecasting shown in Figure 3. The considered papers have been 
categorised on the basis of different marine fields such as Ocean governance, 
Ocean science & technology, Maritime security, Climate change, Marine ecology, 
Maritime transportation & logistics, Fisheries management & aquaculture, Marine 
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports & 
shipping and ocean literacy to analyse previous studies to highlight the prospects 
for the future. The prospects of AI have been highlighted to optimise the ship 
route, forecast the port operation, predict fish diseases, monitor aquaculture, 
analyse tourist behaviour & coastal crowd management, discover marine drug, and 
design marine chatbot. The detection of illegal fishing, the management of the 
marine protected area (MPA), and microplastic detection can be successfully 
implemented using ML, while the DL approaches have the ability to predict ocean 

current and wave predictions to harness marine renewable energy, predict sea level 
rise, and predictive maintenance.

Results and Discussion

Ocean Governance 

  Table 2 compares various ML and remote sensing approaches for 
detecting illegal fishing and maritime threats, as highlighted by different authors. 
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024) 
demonstrated high precision using ensemble models, but their reliance on 
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on 
automatic identification system (AIS) port-visit sequences in Southeast Asia but 
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved 
near-perfect F1 scores in transshipment detection but highlight the need for 
multisensory integration. Tsuda et al., (2023) used visible infrared imaging 
radiometer suite (VIIRS) nightlight data but noted the interference from clouds 
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed 
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al., 
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but 
required real-world validation. Brown et al., (2024) detected fraudulent AIS 
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried 
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on 
outdated historical data.

 Many studies lack adequate real-world validation, often depending on 
synthetic data or concentrating on specific regions, which calls into question the 
generalizability of their results. To enhance the robustness and accuracy of 
detection models, more comprehensive datasets that incorporate external 
influences such as weather conditions and multisensory data are necessary. 
Challenges such as low AIS refresh rates, inaccurate reporting, and interference 
from clouds and moonlight also pose difficulties. Future research should aim to 
overcome these limitations by: validating models with more extensive real-world 
datasets; creating methods to integrate various data sources; improving the 
management of data inaccuracies; and broadening the scope to incorporate 
small-scale fisheries. For policymakers, these findings emphasize both the 
potential of ML and remote sensing to enhance maritime surveillance and the need 
for investment in enhanced data collection infrastructure, algorithm 
improvements, and international cooperation to effectively address illegal fishing 
and safeguard maritime resources.

 Table 3 explores natural language processing (NLP)-driven approaches in 
maritime judiciary and marine protected area (MPA) research, where Abimbola et 
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term 
memory (LSTM) and convolution neural network (CNN) to extract sentiments 
from Canadian maritime legal records, improving judicial decision-making but 
facing limitations in handling legal jargon and non-English texts, while Chen et al., 
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049 
MPA research articles to classify management methods, revealing 19 categories 
but suffering from publication bias and lack of field validation.

 Abimbola et al., (2024) pointed out the restricted scope of existing 
sentiment analysis methods that mainly cater to English texts and struggle with 
understanding intricate legal terminology. Chen et al., (2024) discussed a possible 
skew towards analysing published abstracts, along with the absence of field 
validation when integrating MPA methods. Upcoming research should aim to fill 
these gaps by creating NLP models that manage multilingual inputs, including the 
intricacies of legal discourse, and by testing outcomes using empirical data. 
Delving deeper into NLP methodologies could improve the efficiency and clarity 
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

 Table 4 examines RL approaches for autonomous underwater vehicles 
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep 
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom) 
motion planning in simulated marine environments, demonstrating robustness to 
ocean currents but facing computational costs and lack of real-world validation, 
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance 
efficiency in dynamic conditions but note scalability and hardware integration 
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified 
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021) 
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance, 
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al., 
(2019) used deep RL with reward curriculum training for mapless navigation but 
highlight dependency on reward design and sequential target limitations.

 One notable drawback is the extensive dependence on simulated 
environments, with minimal real-world testing, complicating the evaluation of the 
practical utility of these methods. Issues regarding computational expense and the 
scalability of large-scale missions persist. Additionally, certain research is 
constrained to low-speed situations or specialized conditions, like sequential 
targets or sparse rewards. Future studies should aim to authenticate RL-based 
AUV path planning in real-world contexts, augment computational efficiency, and 
boost the robustness and adaptability of RL algorithms in intricate, ever-changing 
marine environments.

 Table 5 examines DL approaches for ocean current and wave prediction, 
where Immas et al., (2021) achieved low Normalized Root Mean Square Error 
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but 
required validation in diverse conditions, while Sinha & Abernathey, (2021) 
demonstrated superior global current inference from satellite data using CNNs but 
depend on General Circulation Model (GCM) simulations rather than real 
observations. L. Zhang et al., (2024) integrated physics into DL for improved 
high-magnitude current prediction, though generalization across regions remains 
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the 
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to 
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed 
transformers for accurate 12-96h significant wave height forecasts (mean absolute 
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance, 
whereas Panboonyuen, (2024) incorporated climate indices- the El Niño-Southern 
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of 
Thailand and Andaman Sea, though computational complexity may hinder 
real-time use.

 A number of studies face limitations owing to their dependence on 
particular datasets or geographic regions, which casts doubt on the broad applicability 
of their models. For example, Immas et al., (2021) pointed out their study's 
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized 
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for 
further validation in varied oceanic environments and multiple regions. Furthermore, 
some models, such as the one by Sinha & Abernathey, (2021), relied on data from 
Global Circulation Model (GCM) simulations, underscoring the necessity for 
validation using actual satellite data. Several studies also call for enhancements in 
methodology. L. Zhang et al., (2024) highlighted the value of assessing the 
transferability of physics-integrated deep learning to other ocean areas, while Shi 
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.

Maritime Security and Governance 

  Table 6 presents AI applications in maritime security, where Kim et al., 
(2021) developed an explainable anomaly detection system using Isolation Forest 
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify 
faulty sensors in cargo vessel engines, though the approach remains limited to 
engine systems and requires extension to other onboard systems. Meanwhile, Chen 
et al., (2024) employed a Bayesian Network with Expectation Maximization to 
predict pirate risk in Southeast Asian waters, successfully identifying key 
behavioral and ship-related risk factors, but their region-specific focus necessitates 
validation in other global piracy hotspots.

 Table 6 illustrates the application of AI in maritime security, highlighting 
the work of Kim et al. (2021) on explainable anomaly detection for monitoring 
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast 
Asia. These studies demonstrate AI's capability to improve maritime safety but 
also uncover areas needing further research. Notably, there is a need to extend 
anomaly detection across additional vessel systems and to test piracy risk models 
in various other high-risk regions globally. Additionally, the exploration of 
advanced AI techniques and the incorporation of diverse data sources are crucial 
for developing more resilient maritime security systems.

 Table 7 presents a comprehensive overview of AI-based vessel detection 
systems for maritime surveillance, showcasing various you only look once 
(YOLO) and Faster R-CNN-based approaches with their respective strengths and 
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection 
using enhanced YOLOv3/YOLOv8 with Internet of Things (IoT) integration, while 
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster 

R-CNN for static images, highlighting the need for video-based analysis. Several studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed 
attention mechanisms and advanced backbones to boost synthetic aperture radar 
(SAR) and satellite ship detection, though computational demands remain a 
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through 
lightweight YOLOv5 variants, yet their applicability to diverse operational 
scenarios (e.g., military, global regions) requires validation.

 Table 7  highlights the extensive adoption of YOLO variants in AI-driven 
vessel detection systems for maritime monitoring, illustrating enhanced accuracy 
and real-time capabilities in different environments. Nevertheless, there are 
research gaps, such as limited generalizability due to a concentration on certain 
areas or vessel types, a balance between detection accuracy and computational 
efficiency, dependence on particular data sources like SAR images, and a paucity 
of real-world deployment information. These gaps suggest a necessity for future 
studies to validate systems under various conditions, boost computational 
efficiency, incorporate multisensory data, create more versatile models, and 
perform additional real-world evaluations.

Climate Change and Marine Ecology 

  Table 8 examines AI-driven coral reef monitoring approaches, 
highlighting both technological advances and critical research gaps. Sauder et al., 
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video 
transects, though their method was constrained to clear waters and requires 
pre-trained models. Pavoni et al., (2022) demonstrated that human-AI 
collaboration through TagLab accelerates coral annotation by 90%, but the 
system's generalizability remained untested. For 2D analysis, Li et al., (2024) 
attained high segmentation accuracy (mean Intersection over Union (mIoU): 
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet), 
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%) 
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D 
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching 
detection via YOLOv8 (78% precision), suggesting the need for multi-sensor 
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of 
underwater image enhancement methods but contribute no novel metrics.

 Despite advancements, several research deficiencies persist: including 
constraints in clear water studies (Sauder et al., 2024), reliance on user input and 
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted 
validation scale and dependency on spectral data (Song et al., 2021), absence of 
innovative metrics in literature overviews (A & S, 2025), and average real-time 
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the 
need for more resilient, all-encompassing, and empirically validated AI 
instruments for thorough evaluation of coral reefs.

 Table 9 presents a performance comparison of hybrid ARIMA-neural 
network models for aquatic system forecasting, revealing important insights and 
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority 
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated 
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting 
regional performance variability. Atesongun & Gulsen, (2024) developed a novel 
ARIMA-ANN (artificial neural network) hybrid with residual classification that 

generally outperforms standalone models, but required validation on sea-level 
datasets. For water quality prediction, Su et al., (2024) achieved high correlation 
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with 
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et 
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level 
forecasting in India, but didn't address sea level applications.

 Table 9 indicates that hybrid models, particularly those that integrate 
ARIMA with neural networks such as ANN or MLP, are highly effective for 
aquatic forecasting, outperforming individual models such as SVR and ARIMA. 
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level 
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced 
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et 
al., 2024) achieved high accuracy in predicting water quality elements using an 
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as 
regional differences in model performance, the necessity for testing on 
sea-level-specific datasets, the current restriction to monthly data, and an emphasis 
on reservoir rather than sea levels. This underscores the need for more adaptable 
models that can be generalized in various aquatic settings.

Maritime Transportation and Logistics 

  Table 10 compares AI-driven approaches for ship route optimization, 
where Moradi et al., (2022) demonstrated 6.64% fuel savings using Deep 
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship 
simulations without real-world validation. Shu et al., (2024) achieved accurate 
energy consumption prediction (3.06% error) via large margin (LM)-optimized 
neural networks, but lack dynamic weather integration, while Zhao et al., (2024) 
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic 
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the 
cost of 10.1 additional voyage hours.

 Table 10 highlights AI's capability in optimizing shipping routes, with 
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et 
al., (2024) effectively predicting vessel energy use with a neural network, and 
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel 
consumption. Nevertheless, there remain gaps in research, such as the focus on 
single-ship cases lacking real-world verification, the necessity for dynamic 
weather factors in energy predictions, and balancing fuel efficiency with longer 
travel times in multiobjective optimization. This suggests the development of 
more comprehensive models that address the complexities of the real world and 
various objectives.

 Table 11 compares AI-driven approaches for port operational forecasting, 
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port 
congestion and ship turnaround times using AIS data, revealing 50-hour 

fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022) 
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations 
for cold ironing, though their single-port focus restricts broader applicability, 
while Shen et al., (2024) showed LSTM's dominance in short-term container 
arrival predictions but failed to integrate vessel schedules.

 Table 11 presents the use of AI in predicting port operations. L. Zhang et 
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022) 
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed 
that LSTM excels in short-term container arrival predictions. Nonetheless, the 
research is restricted to container ships and lacks multi-vessel verification. 
Additionally, it is primarily focused on individual ports, highlighting a necessity 
for expansion to interconnected port systems. Furthermore, there is an absence of 
harmonization between terminal-specific predictions and vessel schedules, 
pointing to the necessity for more unified models that can be applied to a variety 
of port operations.

Fisheries Management and Aquaculture 

  Table 12 presents a comparative analysis of AI-driven computer vision 
and sonar-based methods for fisheries and aquaculture monitoring, highlighting 
both technological advances and critical limitations. Schneider & Zhuang, (2020) 
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented 
DenseNet201/Xception on sonar data, though constrained by a small dataset 
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022) 
demonstrated 94.15% biomass accuracy with YOLOv4 in tilapia farms, while 
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream, 

albeit needing pond-specific calibrations. Wild fish assessment was addressed by 
Tarling et al., (2022) through self-supervised density regression, outperforming 
alternatives but limited by low-resolution sonar. Practical applications face hurdles: 
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in 
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively, 
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo 
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

 Table 12 showcases various AI applications in fisheries and aquaculture, 
ranging from using augmented DenseNets and Xception for fish and dolphin 
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for 
precise fish biomass estimation in aquaculture environments (Abinaya et al., 
2022), as well as non-invasive fish counting via multibeam sonar 
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate AI's capability in wild 
fish counting through self-supervised learning (Tarling et al., 2022), tracking 
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst 

noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass 
estimation using stereo vision (T. Zhang et al., 2024). However, research 
challenges include the constraint of small datasets that require extensive 
augmentation, limitations to visible fish areas, the requirement for pond-specific 
correction factors, low resolution in sonar data, small datasets, and the need for 
controlled lighting, highlighting the demand for more resilient and versatile AI 
methods validated in varied real-world scenarios.

 Table 13 compares machine learning approaches for aquaculture disease 
prediction across three key methodologies: water quality monitoring, genomic 
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy 
in trout disease prediction using multinomial regression, while Edeh et al., (2022) 
attained 98.28% accuracy for white spot disease in shrimp via Random Forest 
(RF), though both studies lack real-time water quality integration. Waterborne 
disease systems show exceptional performance (Nemade et al., (2024): 99.66% 
accuracy with IoT-RF/LSTM hybrids) but require field validation. Genomic 
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over 
traditional  Genomic Best Linear Unbiased Prediction (GBLUP) for disease 
resistance prediction, yet focus narrowly on genetic factors. Older non-AI studies 
(Milstein et al., 2005) identified production-water quality links, while Kaur et al., 
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies 
have excelled in predicting trout disease outbreaks using logistic regression 
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest 
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through 
IoT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024). 
Furthermore, XGBoost has been praised for its effectiveness in predicting 
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-AI 
methods have connected water quality to shrimp production (Milstein et al., 2005), 
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023). 
Despite these advances, challenges remain, such as limitations to particular 
pathogens or species, the lack of integration of real-time water quality data, the 
need for field validation, and a tendency to focus on genetic or environmental 
factors. This points to the requirement for more comprehensive, integrated ML 
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem 

  Table 14 presents a comprehensive comparison of hyperspectral imaging 
(HSI) and ML approaches for microplastic detection across diverse environmental 
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in 
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than 
88% accuracy for marine debris greater than 500μm using Near-infrared 
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show 
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone 
imaging but struggled with automated classification, whereas Palmieri et al., 
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity 
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares 
discriminant analysis (PLS-DA), though sand type affects results. For biological 
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish 
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed 
microplastic-foraminifera interactions via Fourier Transform Infrared 
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et 
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments, 
and Taneepanichskul et al., (2024) showed compostable plastic identification 
(85-100% accuracy) degrades with contamination.

 Table 14 describes advanced strategies for detecting microplastics, 
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in 
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023), 
along with drone-based methods for mapping microplastics (Capolupo et al., 
2024). Other methods include FTIR combined with ecological indices to link 
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI 
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost 
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore, 
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al., 
2019) and compare several algorithms for the identification of colorless plastics 
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an 
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless, 
challenges remain, such as the need for field validation, issues with detecting 

larger particles, suboptimal autoclassification, high sensitivity to sand type and 
contamination, and difficulties in identifying very small or colorless plastic pieces. 
This highlights the need for more robust and field-ready approaches capable of 
precisely detecting a broader spectrum of microplastic types and sizes.

 Table 15 evaluates generative adversarial networks (GANs) for marine 
species distribution modeling, where Roy et al., (2022) demonstrated that deep 
convolutional GANs outperform hidden Markov models (HMMs) in simulating 
seabird foraging trajectories (better Fourier spectral density) but failed to capture 
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a 
4-channel retrospective cycle GAN to predict reef-associated fish distributions in 
East and South China Seas, showing superior performance over comparative 
models yet exhibiting seasonal accuracy drops (summer/winter).

 Table 15 illustrates the application of Generative Adversarial Networks 
(GANs) in modeling marine species distribution. Roy et al., (2022) utilized a deep 
convolutional GAN to replicate foraging paths of animals in seabird environments, 
surpassing Hidden Markov Models in Fourier spectral density performance. 
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN 
to forecast distributions of reef-associated fish in the East and South China Seas, 
outperforming alternative GAN models. However, current research is hindered by 
inadequate local-scale speed distribution and reduced effectiveness in capturing 
seasonal variations, underscoring the need for enhanced GAN models that can 
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism 

  Table 16 examines methodological approaches for analyzing tourist 
behavior in marine and coastal tourism, revealing consistent segmentation patterns 
but significant geographic and methodological limitations. Studies by 
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor 

analysis across destinations (Galápagos, Acapulco, Costa Rica), identifying 3–6 
motivational dimensions but remaining constrained by single-destination or 
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and 
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density 
methods to map attraction patterns in China, though relying on 
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et 
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to 
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4 
network patterns) but lack granular behavioral insights.

 Table 16 demonstrates a variety of AI applications within marine and 
coastal tourism, focusing on the use of K-means clustering and factor analysis to 
categorize tourist demand and motivations at destinations such as the Galápagos 
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes 
techniques like STL decomposition and k-core analysis to examine spatiotemporal 
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern 
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin 
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social 
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These 
studies highlight distinct tourist segments, motivational factors, and 
spatio-temporal trends. However, research limitations include a focus on island 
MPAs, international tourists, singular destinations, urban coastal zones, and data 
before COVID-19. There is also a reliance on photo metadata, specific digital 
platforms, large-scale analysis, single-park cases, and regional group variances, 
suggesting the necessity for more general, multi-location, and current analyses of 
tourist behavior in marine and coastal environments.

 Table 17 compares computer vision approaches for smart coastal crowd 
management, where Domingo, (2021) achieved 92.7% accuracy in beach 
attendance prediction using deep neural networks (DNNs) and IoT cameras at 
Castelldefels, though limited to single-beach validation. Guillén et al., (2008) 
identified long-term seasonal patterns via Argus video monitoring in Barcelona but 
lack real-time analysis capabilities, while Viñals et al., (2024) demonstrated 
effective microspace congestion monitoring in Valencia using digital proxemic 
triggers, though their urban focus requires adaptation for coastal environments.

 Table 17 showcases the application of AI in managing coastal crowds. 
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain, 

using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile, 
Guillén et al., (2008) developed models for identifying seasonal beach user 
patterns in Barcelona, employing Argus video systems and Fourier analysis. 
Despite these advancements, Domingo's research is confined to one beach for 
validation, and Guillén's lacks real-time analysis capability. Additionally, Viñals et 
al., (2024) effectively monitored visitor congestion in Valencia with digital 
proxemic triggers, though their work is centered on urban areas. These studies 
indicate AI's promise in enhancing coastal management; however, future research 
should focus on overcoming limitations like single-location validation and 
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals 

  Table 18 examines AI-driven approaches for marine bioprospecting, 
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize 
microalgal cultivation (R²>0.87), though industrial-scale validation remains 
pending. Gaudêncio & Pereira, (2022) combined QSAR and molecular coupling to 
identify 16 promising marine natural products (MNPs) for antifouling, yet model 
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high- 
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity 
HDAC2 inhibitors from seaweed waste, but require in vitro confirmation.

 Table 18 describes AI's role in marine drug discovery, highlighting several 
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost, 
Gaudêncio & Pereira, (2022) identified antifouling agents using QSAR and 
molecular docking, and Bharadwaj et al., (2022) discovered HDAC2 inhibitors 
from seaweed waste through computational techniques. These examples 
underscore AI's capability to speed up the identification of important marine 
compounds. However, challenges remain, such as the necessity for industrial-scale 

validation, a model accuracy cap of 71%, and the need for in vitro confirmation. 
This suggests that future work should concentrate on enhancing the scalability and 
reliability of AI-based approaches in this domain.

Ports and Shipping 

  Table 19 compares LSTM-based approaches for predictive maintenance 
in maritime systems, where Han et al., (2021) demonstrated accurate fault 
detection in marine diesel engines using an LSTM-Variational Autoencoder 
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al., 
2025) achieved superior anomaly detection in ship equipment with an 
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability, 
outperforming GAN/ diffusion models but requiring extensive anomaly-free 
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic 
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining 
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

 Table 19 demonstrates the significance of AI in maritime predictive 
maintenance. In particular, Han et al., (2021) effectively identified faults in marine 
components on a research vessel employing an LSTM-VAE model. Z. Wang et al., 
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE 
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high 
levels of accuracy and precision in predicting errors in container cranes through 
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges 
remain, such as the focus on diesel engines requiring broader component 
validation, the necessity of comprehensive anomaly-free datasets, and calls for 
better recall in predicting errors in container cranes. This emphasizes the need for 

future research to prioritize the creation of more adaptable and data-efficient AI 
models for the holistic maintenance of maritime systems.

Ocean Literacy 

  Table 20 examines AI-driven tools for ocean literacy, where 
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training 
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral 
intentions toward marine conservation compared to static information, though 
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a 
vision-language model trained on marine-specific data (Marine-5M), showing 
improved understanding of marine-related queries but requiring further domain 
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used 
Sentence-BERT and clustering to identify nine mangrove awareness topics on 
Indonesian Twitter, highlighting cultural and linguistic specificity challenges. 
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language 
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in 
Costa Rica, establishing viable metrics but testing only smaller models 
(Falcon-7B/DistilGPT-2).

 Table 20 highlights how AI is being utilized to enhance ocean literacy. 
Pataranutaporn et al., (2025) reported increased user engagement through 
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language 
model for better understanding of marine-related intentions, Kusumaningrum et 
al., (2024) examined mangrove awareness on Indonesian Twitter using 

Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated 
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there 
are research gaps, such as limited influence on policy support, the need for 
specialized fine-tuning, considerations for language and cultural contexts, and 
constraints in the generalizability of LLMs. These indicate that future studies 
should aim to improve the efficacy and expand the scope of AI tools in ocean 
literacy programs.

Conclusions 

  This systematic review exhibits the transformative role of AI in marine 
science and governance, exemplifying its potential in improving ocean monitoring 
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use 
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80% 
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite 
these advancements, shortcomings such as geographic data biases, over-reliance 
on synthetic datasets, and limited real-world validation persist, emphasizing the 
need for standardized benchmarks and interdisciplinary research collaboration. 
Notably, only 12% of studies address governance frameworks, underscoring the 
importance of explainable AI for policymaking. Case studies from India and 
Bangladesh illustrate both the potential and limitations of AI in 
resource-constrained settings. To bridge research-policy gaps, the review proposes 
a three-tiered action plan involving international data-sharing, certification 
standards, and innovation hubs. As the UN Ocean Decade advances, the review 
calls for real-world validation, multilingual models, and ethical guidelines to 
ensure AI’s contribution to sustainable ocean governance is equitable, 
scientifically grounded, and globally relevant.
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