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Abstract

Tackling the unprecedented challenges faced by oceans due to pollution,
climate change, and over-exploitation requires sustainable solutions for
monitoring, predicting, and conserving marine resources. The emergence
of artificial intelligence (Al) plays a pivotal role in advancing marine
science and research, enabling efficient extraction of valuable information
to aid in policy formulation. This systematic review assesses the role of Al
transformation to address the crucial challenges arised in ocean resource
exploration, conservation and monitoring. This review identifies four
shortcomings in real-world implementation such as biases of geographical
data, over-reliance on synthetic datasets, computational constraints, gaps in
model interpretability. To address the geographic biases, it is required to
have benchmark datasets on diverse marine ecosystems. The integration of
Al development reveals that illegal fishing detection can be detected
successfully with 99% precision, the coral reef can be mapped with 80%
accuracy, the ship fuel can be saved about 6.64% with optimization using
reinforcement learning (RL). This review thoroughly highlights Al-based
technology methodologies relevant to selecting suitable techniques for
specific applications in marine resource management. By analyzing past
studies, this work identifies research gaps to explore in future studies,
including availability of data, model interpretability, ethical risks, and cost
effectiveness. A three-tiered action framework has been proposed in this
review: international data-sharing protocol establishment, marine Al
system standard certification and multidisciplinary innovations hub
creation to mitigate the gap between conventional and Al approach.
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Introduction

Around 71% of the Earth's surface is covered by oceans (Balliett, 2014),
which play a vital role in global ecosystems, human livelihoods, and climate
regulation. Problems such as pollution, climate change, unsustainable exploitation
of marine resources, overfishing, and the destruction of marine habitats pose
serious threats to ocean environments and their ecosystems (Crain et al., 2009). As
future economic development will heavily depend on marine resources, it is
critical to manage these resources effectively. Using traditional methods to explore
open ocean resources could disturb the future balance of these resources. In
addition, these methods are labor intensive and require substantial time (Levin et
al., 2019) to perform research or surveys at sea. Additionally, due to a lack of
proper guidance, such explorations lack efficiency in speed and scale (Levin et al.,
2019). In Bangladesh, substantial funds are allocated to marine research, yet
researchers face difficulties in accurately portraying our marine resources due to
insufficient technology integration (Liza et al., 2025). Al-driven technologies offer
solutions by improving efficiency in marine resource exploration on a large scale
and accelerating processes (Taroual et al., 2025). For example, India has initiated
the "Deep Ocean Mission" (Kaur & Chopra, 2025) to foster its ocean-based
economy, aiming to mine ocean minerals, address climate change impacts, protect
ocean ecosystems, monitor deep-sea conditions, generate power, desalinate water,
and enhance coastal biodiversity centers through Al innovations. In Bangladesh,
the implementation of these technologies could positively impact the national
economy (Liza et al., 2025). Al-based image processing and machine learning
enable easy identification and monitoring of marine species and their traits. The
primary goal is to create an accurate 3D map of the ocean floor using unmanned
aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs), which can
gather data from challenging environments for further analysis. One of the most
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promising Al applications is analyzing satellite images to obtain insights on
pollution, sea surface temperatures, wind speed, and tidal patterns, which might
predict natural disasters like cyclones. This review outlines all the prospects for
ocean-based research and identifies the gaps for future research efforts.

The oceans are in crisis: 90% of marine species could face extinction by
2100, costing $2.5 trillion annually. Current methods fail—they monitor less than
5% of oceans and miss 99% of illegal fishing. Al offers solutions: 99% accurate
species identification, 30% better pollution tracking, and 40% lower costs. But
challenges remain—most Al tools aren’t used in real-world policies (78% gap),
and research is too fragmented. This review connects the dots to help save our seas.
The necessity of this review work has been justified in Figure 1.

Table 1 compares this review work with the existing review works
conducted by Dube, (2024), Giilmez et al., (2023), Gaw et al., (2014), Ojemaye &
Petrik, (2019), Trégarot et al., (2024) on Al applications in marine resource
exploration and research, highlighting both breakthroughs and impediments. This
review work has covered a wider range of marine fields such as ocean governance,
autonomous underwater vehicles, maritime transportation & security, marine
pollution, climate change, marine ecology, tourism, biotechnology &
pharmaceuticals, and ocean literacy through various mobile apps and chatbots.
While previous reviews were focused on limited aspects such as pollution (Gaw et
al., 2014) (Ojemaye & Petrik, 2019), biotechnology (Giilmez et al., 2023), or
maritime security (Dube, 2024), this work provides a detailed analysis of previous
works, interdisciplinary perspective in marine research, integrating technological
advancements for ocean exploration, policy frameworks for policymakers, and
environmental sustainability across diverse domains. This review approach offers
multiple guided paths for future ocean researchers and authorities who can take the
right decision to explore marine resources effectively.

Scopes Dube | Giilmez et al., ‘Gaw etal., (2[]14) i Trégarot et al., | This review
(2024) (2023) Ojemaye & Petrik (2019) (2024) work
Ocean Governance v v
Ocean Science and Technology v v
Maritime Security v
Climate Change v v v
Marine Ecology v v v
ﬁzrﬁgrglit];‘r:znsportatlon v v
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Scopes Dube | Giilmez et al., .Gaw et al., (2(.)14) + Trégarot et al., | This review
(2024) (2023) Ojemaye & Petrik (2019) (2024) work
adaqueits | Y|V v
Marine Pollution v v
Marine Tourism v
Marine Biotechnology v v
Marine Pharmaceuticals \/ v
Ports and Shipping v v
Ocean Literacy v v v

Table 1: Novelty of My Review Work

This review is organized into four main parts: it begins with background
information comparing past reviews and highlighting the unique contributions of
this study (shown in Table 1). The methodology section explains how 170 studies
from 2015 to 2025 were selected using PRISMA guidelines (illustrated in Figure
2). The literature review is divided into Sections 4.1 to 4.11, offering a detailed
analysis of how Al is used in areas like ocean governance, technology, security,
and ecology, supported by 11 comparative tables (such as Table 2 on illegal fishing
detection).

Methodology

This review adhered to the PRISMA framework, systematically analyzing
170 records from Web of Science, Scopus, IEEE Xplore, PubMed, and Google
Scholar covering years from 2015 to 2025 using various search keywords such as
smart ocean governance, autonomous underwater and remotely operated vehicles
in marine explorations, smart marine security and surveillance systems, Al in
climate change and marine ecology, smart maritime transportation and logistics,
Al and Internet of Things in marine fisheries & aquaculture, marine pollution
detection using AI, Al-based marine tourism, marine biotechnology and
pharmaceuticals using Al, Marine chatbot for ocean literacy, etc. After removing
duplicates and screening titles/abstracts, 100 full text articles were assessed for
rigorous review. Figure 2 represents the PRISMA flow diagram by which the final
research articles were selected for a rigorous review process.



BIMRADl

ourna

VOLUME 6, IsSUE 1, DEC 2025

87

Electronic Database Used: PubMed,
ERIC, IEEE Xplore, Google Scholar

Identification

Duplicate Studies Removed
Studies Identified from Databases: 170 before Screening: 51

Excluded Studies due to Year
Studies Screened: 119 Range from 2000 to 2023: 9

Excluded Studies due to full
Studies Sought for Retrieval: 110 article missing: 5

on
=)

s
3
-
QO

]

Excluded Studies due to
Studies assessed for eligibility: 105 Irrelevant information: 5

Studies included in review: 100

Included

Figure 2: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) Diagram of the Review Process

After completing the selection process, the selected papers have been
rigorously evaluated to highlight the prospects of Al, ML, DL, RL, remote sensing
and time series analysis in the applications of marine exploration, monitoring,
preservation and forecasting shown in Figure 3. The considered papers have been
categorised on the basis of different marine fields such as Ocean governance,
Ocean science & technology, Maritime security, Climate change, Marine ecology,
Maritime transportation & logistics, Fisheries management & aquaculture, Marine
pollution, Marine tourism, Marine biotechnology & pharmaceuticals, ports &
shipping and ocean literacy to analyse previous studies to highlight the prospects
for the future. The prospects of Al have been highlighted to optimise the ship
route, forecast the port operation, predict fish diseases, monitor aquaculture,
analyse tourist behaviour & coastal crowd management, discover marine drug, and
design marine chatbot. The detection of illegal fishing, the management of the
marine protected area (MPA), and microplastic detection can be successfully
implemented using ML, while the DL approaches have the ability to predict ocean
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current and wave predictions to harness marine renewable energy, predict sea level
rise, and predictive maintenance.
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Figure 3: Review Focus on Marine Exploration, Preservation, Monitoring and Forecasting

Results and Discussion
Ocean Governance

Table 2 compares various ML and remote sensing approaches for
detecting illegal fishing and maritime threats, as highlighted by different authors.
Do Nascimento, Alves, et al., (2024) and Do Nascimento, De Farias, et al., (2024)
demonstrated high precision using ensemble models, but their reliance on
synthetic data limits real-world applicability. Zhou et al., (2025) made a focus on
automatic identification system (AIS) port-visit sequences in Southeast Asia but
faced challenges with low AIS refresh rates. Vasudevan & Chola, (2024) achieved
near-perfect F1 scores in transshipment detection but highlight the need for
multisensory integration. Tsuda et al., (2023) used visible infrared imaging
radiometer suite (VIIRS) nightlight data but noted the interference from clouds
and moonlight. De Souza et al., (2016) mapped global fishing effort but missed
small-scale fisheries due to satellite-AIS (S-AIS) limitations. Akinbulire et al.,
(2017) simulated the pursuit scenarios via reinforcement learning (RL) but
required real-world validation. Brown et al., (2024) detected fraudulent AIS
beacons but struggled with regional bias, while Mujtaba & Mahapatra, (2022) tried
to forecast Illegal, Unreported and Unregulated (IUU) fishing but relied on
outdated historical data.
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Authors Objectives Location Methods Results Limitations
(Do Nascimento, | Detect illegal Not specified | Stack ensemble | 99% precision | Limited real-
Alves, et al., fishing/suspicious | (global) model + active | (illegal fishing), | world validation;
2024) activities using learning; JDL | 92% (suspicious | reliance on
AIS data and model framework. | activities). synthetic data.
expert rules.
(Do Nascimento,| Improve detection| Not specified | Logistic The ensemble | Generalizability
De Farias, et al., | of illegal fishing |(global) regression, methods to various types/
2024) through ensemble decision trees, | (weighted/ regions of vessels.
learning. RF,NN, GB, | stacking)
RNN + ensemble | outperformed
methods. individual models.
(Zhou et al., Predict ship types | Southeast KD tree + ML | Identified 17 Low AIS refresh
2025) (focus: fishing Asia algorithms cases of illegal | rate; misreporting
vessels) using (port-visit behavior. of issues.
AIS port-visit features).
sequences.
(Vasudevan & | Identify Not specified | Ensemble F1 score: Need for external
Chola, 2024) transshipment (global) classifiers + 0.998 factors (e.g.,
events using k-fold weather) +
spatial-temporal stratified CV. multisensory data.
ML.
(Tsuda et al., Detect night East China Two-step ML | Comparable to | Cloud/moonlight
2023) fishers via VIIRS | Sea model for existing VIIRS | interference;
DNB with ML. imbalanced algorithms; requires radar
DNB data. detected light validation.
use trends.
(De Souza et al., | Map global Global HMM (trawlers), | Accuracies: 83% | Limited to
2016) fishing effort by DM (longliners), | (trawler/ S-AlIS-equipped
gear type (trawl, and speed/time | longliner), 97% | vessels: misses
lopgline, purse ﬁl.ters (purse (purse seiner). small- s’c ale
seine). seines). .
fisheries.
(Akinbulire et | Simulate the Simulation- Fuzzy Actor Captured Simplified
al., 2017) pursuit of illegal | based Critic Learning | evaders within | simulations vs.
fishing vessels (pursuer-evader | preset time. real-world
through scenarios). dynamics.
reinforcement
learning.
(Brown et al., Detect [IUU Southeast Semi-supervised | Movement / Regional bias;
2024) fishing using Asia classification, | positional limited ground
fraudulent AIS clustering, characteristics | truth for
beacon analysis. and NN. as indicators validation.
of IUU.
(Mujtaba & Forecast IUU North America| Spatiotemporal| MAE: 0.085; Limited to
Mabhapatra, fishing spatio- (Atlantic) prediction captured ITUU historical data
2022) temporally for algorithm. trends. (1950-2014);
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Many studies lack adequate real-world validation, often depending on
synthetic data or concentrating on specific regions, which calls into question the
generalizability of their results. To enhance the robustness and accuracy of
detection models, more comprehensive datasets that incorporate external
influences such as weather conditions and multisensory data are necessary.
Challenges such as low AIS refresh rates, inaccurate reporting, and interference
from clouds and moonlight also pose difficulties. Future research should aim to
overcome these limitations by: validating models with more extensive real-world
datasets; creating methods to integrate various data sources; improving the
management of data inaccuracies; and broadening the scope to incorporate
small-scale fisheries. For policymakers, these findings emphasize both the
potential of ML and remote sensing to enhance maritime surveillance and the need
for investment in enhanced data collection infrastructure, algorithm
improvements, and international cooperation to effectively address illegal fishing
and safeguard maritime resources.

Table 3 explores natural language processing (NLP)-driven approaches in
maritime judiciary and marine protected area (MPA) research, where Abimbola et
al., (2024) used deep learning (DL) (Tian et al., 2018) such as long short term
memory (LSTM) and convolution neural network (CNN) to extract sentiments
from Canadian maritime legal records, improving judicial decision-making but
facing limitations in handling legal jargon and non-English texts, while Chen et al.,
(2024) applied NLP-based keyword clustering and semantic analysis on 9,049
MPA research articles to classify management methods, revealing 19 categories
but suffering from publication bias and lack of field validation.

Authors Objectives Location Methods Results Limitations
(Abimbola et al., | Improve access to | Canadian Deep learning | The LSTM + Limited to English
2024) maritime legal Maritime (CNN, DNN, | CNN model -language records;

records through | Judiciary LSTM, RNN) | effectively extracts | may not capture
sentiment analysis + distributed sentiments; aids | nuanced legal
of court data. learning for judicial decision | jargon.
feature extraction. | -making.
(Chen et al., Classify MPA Global (MPA | NLP-based Identified 19 Bias towards
2024) management Research) deep learning; | method published
methods using keyword categories; abstracts; lacks
NLP to integrate clustering + | proposed data- | field validation
data/theory semantic theory of method
approaches. analysis of neutralisation | integration.
9,049 articles. | principle.

Table 3: NLP-driven Approaches in Marine Judiciary and MPA Research
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Abimbola et al., (2024) pointed out the restricted scope of existing
sentiment analysis methods that mainly cater to English texts and struggle with
understanding intricate legal terminology. Chen et al., (2024) discussed a possible
skew towards analysing published abstracts, along with the absence of field
validation when integrating MPA methods. Upcoming research should aim to fill
these gaps by creating NLP models that manage multilingual inputs, including the
intricacies of legal discourse, and by testing outcomes using empirical data.
Delving deeper into NLP methodologies could improve the efficiency and clarity
of marine legislation and enhance the success of MPA management approaches.

Ocean Science and Technology

Table 4 examines RL approaches for autonomous underwater vehicles
(AUVs) path optimization, where Hadi et al., (2022) employed Twin Delayed Deep
Deterministic Policy Gradient DDPG (TD3) for precise 6-DOF (degree of freedom)
motion planning in simulated marine environments, demonstrating robustness to
ocean currents but facing computational costs and lack of real-world validation,
while Zhang et al., (2024) proposed HMER-SAC, a hierarchical RL method, to enhance
efficiency in dynamic conditions but note scalability and hardware integration
challenges. Bhopale et al., (2019) improved the obstacle avoidance via modified
Q-learning but restrict testing to low-speed, 2D scenarios, and Wang et al., (2021)
leveraged multi-behavior critic RL for real-time dynamic obstacle avoidance,
though energy trade-offs and sparse rewards remain unresolved. Lastly, Sun et al.,
(2019) used deep RL with reward curriculum training for mapless navigation but
highlight dependency on reward design and sequential target limitations.

Authors Objectives Location Methods Results Limitations
(Hadi et al., Develop adaptive | Simulated Twin-delayed | Precise 6-DOF | Limited real-
2022) motion planning | marine DDPG (TD3) | path planning; | world validation;

for AUVs in with continuous| robust to ocean | high computational
unknown action spaces. | currents. cost.
environments.
(A. Zhang et al., | Optimise AUV | Simulated HMER-SAC Superior Scalability to
2024) path planning in | marine algorithm efficiency and | large-scale
complex (hierarchical stability of missions;
environments RL + mixed training in hardware
(terrain, currents, experience dynamic integration
sonobuoys). replay). environments. | challenges.
(Bhopale et al., | Enhance obstacle | Simulated Modified Reduced Limited to low-
2019) avoidance for underwater Q-learning collisions vs. speed scenarios;
AUVs in with neural standard lacks 3D
unknown settings. network function | Q-learning; environment
approximation. | handles multiple | testing.
obstacles.
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Authors Objectives Location Methods Results Limitations
(Z. Wangetal., |Improve AUV Simulated Multibehaviour | Higher learning | Energy
2021) adaptability to marine critic RL (actor: | efficiency; Real | consumption
moving obstacles policy gradient; | -time dynamic | trade-offs; sparse
through efficient critic: value obstacle reward scenarios.
RL. function). avoidance.
(Sun et al., Solve mapless Simulated DRL with Multitarget Dependency on
2019) motion planning | marine reward navigation; reward design;
for underactuated curriculum resistant to limited to
AUVs. training (end-to| currents. sequential targets.
-end sensor-to
-action).

Table 4: Reinforcement Learning Approaches for AUV Path Optimization

One notable drawback is the extensive dependence on simulated
environments, with minimal real-world testing, complicating the evaluation of the
practical utility of these methods. Issues regarding computational expense and the
scalability of large-scale missions persist. Additionally, certain research is
constrained to low-speed situations or specialized conditions, like sequential
targets or sparse rewards. Future studies should aim to authenticate RL-based
AUYV path planning in real-world contexts, augment computational efficiency, and
boost the robustness and adaptability of RL algorithms in intricate, ever-changing
marine environments.

Table 5 examines DL approaches for ocean current and wave prediction,
where Immas et al., (2021) achieved low Normalized Root Mean Square Error
(NRMSE) (0.10-0.11) using LSTM and Transformer models in U.S. waters but
required validation in diverse conditions, while Sinha & Abernathey, (2021)
demonstrated superior global current inference from satellite data using CNNs but
depend on General Circulation Model (GCM) simulations rather than real
observations. L. Zhang et al., (2024) integrated physics into DL for improved
high-magnitude current prediction, though generalization across regions remains
untested, and Thongniran et al., (2019) enhanced coastal current forecasts in the
Gulf of Thailand via CNN-GRU (Gated recurrent unit) hybrids but limit inputs to
high frequency (HF) radar data. For wave prediction, Shi et al., (2023) employed
transformers for accurate 12-96h significant wave height forecasts (mean absolute
error (MAE): 0.139-0.329m) but neglect longer-term (>96h) performance,
whereas Panboonyuen, (2024) incorporated climate indices- the El Nifio-Southern
Oscillation (ENSO) into a Vision Transformer-BiGRU model for the Gulf of
Thailand and Andaman Sea, though computational complexity may hinder
real-time use.
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Authors Objectives Location Methods Results Limitations
(Immas et al., Real-time ocean | U.S. territorial | LSTM and NRMSE: 0.10 | Limited to a
2021) current prediction | waters Transformer (LSTM), 0.11 specific NOAA
for AUV models (transformer) dataset; Needs
navigation validation in diverse
conditions
(Sinha & Infer global Global Ocean | Neural Outperformed | Dependency on
Abernathey, surface currents networks with | geostrophy + GCM simulation
2021) from satellite convolutional | Epman with data; Real Satellite
data filters lower MSE Data Validation
Needed
(L. Zhang et al., | Improve current |Not specified | Physics- Better accuracy | Generalisation to
2024) prediction with integrated deep | than baselines, | different ocean
physics-informed learning with | especially for | regions needs
DL weighted loss | high-magnitude | testing
currents
(Thongniran et | Coastal current | Gulf of CNN-GRU 11.21-27.01% | Limited to HF
al., 2019) prediction Thailand hybrid model | RMSE radar data; needs
combining spatial improvement other sensor
-temporal effects over baselines | integration.
(Shi et al., Significant Wave | Not specified | Transformer MAE: 0.139- Long-term (>96h)
2023) Height Model 0.329m (12-96h | prediction accuracy
Forecasting forecasts) (>96 h) not
addressed
(Panboonyuen, | Sea Surface Gulf of SEA-VIT Improved The complexity
2024) Current Prediction | Thailand & (Vision prediction with | of the model may
with Climate Andaman Sea | Transformer ENSO indices | limit real-time
Integration + BiGRU) applications.

Table 5: Ocean Current and Wave Prediction Using Deep-Learning Approaches

A number of studies face limitations owing to their dependence on
particular datasets or geographic regions, which casts doubt on the broad applicability
of their models. For example, Immas et al.,
restriction to a specific NOAA dataset, whereas Thongniran et al., (2019) utilized
HF radar data exclusively from the Gulf of Thailand. There is a pressing need for

(2021) pointed out their study's

further validation in varied oceanic environments and multiple regions. Furthermore,

some models, such as the one by Sinha & Abernathey, (2021), relied on data from
Global Circulation Model (GCM) simulations, underscoring the necessity for
validation using actual satellite data. Several studies also call for enhancements in

methodology. L. Zhang et al., (2024) highlighted the value of assessing the

transferability of physics-integrated deep learning to other ocean areas, while Shi
et al., (2023) noted a deficiency in the preciseness of long-term wave predictions.
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Maritime Security and Governance

Table 6 presents Al applications in maritime security, where Kim et al.,
(2021) developed an explainable anomaly detection system using Isolation Forest
and Autoencoders with SHapley Additive exPlanations (SHAP) values to identify
faulty sensors in cargo vessel engines, though the approach remains limited to
engine systems and requires extension to other onboard systems. Meanwhile, Chen
et al., (2024) employed a Bayesian Network with Expectation Maximization to
predict pirate risk in Southeast Asian waters, successfully identifying key
behavioral and ship-related risk factors, but their region-specific focus necessitates
validation in other global piracy hotspots.

Authors Objectives Location Methods Results Limitations
(Kim et al., Explainable Cargo vessel | Isolation Forest/ | Identified Limited to engine
2021) anomaly detection | operations Autoencoders | responsible systems; needs

for marine engine + SHAP sensors for expansion to
monitoring explanations anomalies other vessel
through SHAP | systems
values
(Chen et al., Prediction of Southeast Bayesian Identified key | Focused only on
2024) pirate risk in Asian Network with | factors: piracy | Southeast Asia;
high-risk waters | maritime Expectation behaviors and | needs global
routes Maximization | ship risk validation
characteristics

Table 6: Al Approaches for Maritime Security Applications

Table 6 illustrates the application of Al in maritime security, highlighting
the work of Kim et al. (2021) on explainable anomaly detection for monitoring
marine engines, and Chen et al. (2024) on predicting piracy risks in Southeast
Asia. These studies demonstrate Al's capability to improve maritime safety but
also uncover areas needing further research. Notably, there is a need to extend
anomaly detection across additional vessel systems and to test piracy risk models
in various other high-risk regions globally. Additionally, the exploration of
advanced Al techniques and the incorporation of diverse data sources are crucial
for developing more resilient maritime security systems.

Table 7 presents a comprehensive overview of Al-based vessel detection
systems for maritime surveillance, showcasing various you only look once
(YOLO) and Faster R-CNN-based approaches with their respective strengths and
limitations. Ezzeddini et al., (2024) demonstrated improved intrusion detection
using enhanced YOLOv3/YOLOVS with Internet of Things (IoT) integration, while
Yabin et al., (2020) achieved mean average precision (mAP) of 87.25% with Faster
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R-CNN for static images, highlighting the need for video-based analysis. Several

Authors Objectives Location Methods Results Limitations
(Ezzeddini et Improve ship General Enhanced Increased Limited real-world
al., 2024) intrusion maritime YOLOv3/ detection deployment data

detection YOLOVS with | accuracy
IoT integration
(Yabin et al., Sea surface Remote Improved 87.25% mAP Focused on static
2020) object detection  |sensing Faster R-CNN | (+3.75% over | images, not video
with Soft-NMS | baselines)
(Ezzeddini et Fishing vessel Maritime YOLOVS vs YOLOVS is Limited to
al., 2024) detection surveillance Faster R-CNN | superior for specific vessel
Comparison real-time types
detection.
(Z. Wang et al., | SAR ship Complex Improved F1:91.3- Computationally
2024) detection coastal scenes | YOLOvS5 with | 95.8%, mAP intensive for
attention improvement edge devices
mechanisms 2%
(Kim et al., Maritime Object | Singapore YOLOVS with | Improved Dataset limited
2021) Detection waters SMD-Plus detection over | to Singapore
dataset baseline region
(Yasir et al., SAR ship Chinese Enhanced Outperformed | Requires high-
2023) detection waters YOLOVS with | 10 benchmark | resolution SAR
C3/FPN+PAN | models imagery
(J. Zhang etal., | USV iject Marine Lightweight 96.6% mAP, Testing limited
2023) detection Environments | YOLOVS with | 138 FPS to one USV
Ghost + model
Transformer
(Jian et al., Satellite Ship Remote Improved- mAP +3.2%, Specialised for
2023) Detection sensing YOLOVS5 with | FPS +8.7% satellite view
CBAM only
(Xiong et al., SAR ship Complex SAR | Lightweight 61.26 F1, Trade-off
2022) recognition scenes YOLOVS5-n 68.02 FPS between speed
and accuracy
(Z. Wang et al., | Sea surface General YOLOVS with | Improved Needs more
2024) detection maritime GSConv metrics without | diverse sea
parameter conditions
increase
(Zheng et al., Real-time ship | Maritime MC-YOLOv5s| mAP +3.4%, Military
2023) detection transport (MobileNetV3)| params Applications
6.98MB Not Validated
(Qietal, 2019) | Efficient Ship General Improved Faster detection| Older
Detection maritime Faster R-CNN | with higher Architecture
accuracy Comparison

Table 7: Al-based Vessel Detection Systems for Maritime Surveillance
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studies (Z. Wang et al., 2024), (Yasir et al., 2023), (Jian et al., 2023) employed
attention mechanisms and advanced backbones to boost synthetic aperture radar
(SAR) and satellite ship detection, though computational demands remain a
challenge. Real-time performance is addressed by J. Zhang et al., (2023) through
lightweight YOLOvVS variants, yet their applicability to diverse operational
scenarios (e.g., military, global regions) requires validation.

Table 7 highlights the extensive adoption of YOLO variants in Al-driven
vessel detection systems for maritime monitoring, illustrating enhanced accuracy
and real-time capabilities in different environments. Nevertheless, there are
research gaps, such as limited generalizability due to a concentration on certain
areas or vessel types, a balance between detection accuracy and computational
efficiency, dependence on particular data sources like SAR images, and a paucity
of real-world deployment information. These gaps suggest a necessity for future
studies to validate systems under various conditions, boost computational
efficiency, incorporate multisensory data, create more versatile models, and
perform additional real-world evaluations.

Climate Change and Marine Ecology

Table 8 examines Al-driven coral reef monitoring approaches,
highlighting both technological advances and critical research gaps. Sauder et al.,
(2024) achieved 80% accuracy in 3D semantic mapping using DL on video
transects, though their method was constrained to clear waters and requires
pre-trained models. Pavoni et al, (2022) demonstrated that human-Al
collaboration through Taglab accelerates coral annotation by 90%, but the
system's generalizability remained untested. For 2D analysis, Li et al., (2024)
attained high segmentation accuracy (mean Intersection over Union (mloU):
89.51%) with attention-enhanced Pyramid Scene Parsing Network (PSPNet),
while Song et al., (2021) achieved an exceptional performance (IoU: 93.90%)
using spectral/ red-green-blue (RGB) imagery, though both studies lack 3D
contextual analysis. Vyshnav et al., (2024) implemented real-time bleaching
detection via YOLOVS (78% precision), suggesting the need for multi-sensor
integration to improve accuracy. A & S, (2025) provided a valuable synthesis of
underwater image enhancement methods but contribute no novel metrics.



BIMRAD

ournal 97
Authors Objectives Location Methods Results Limitations

(Sauder et al., Automated 3D Gulf of Aqaba, | Ego-motion 80% accuracy, | Requires pre-trained

2024) Semantic Red Sea video +deep | 5-min processing | model; limited to
Mapping of learning per 100 m clear waters
Coral Reefs segmentation | transect

(Pavoni et al., Accelerate coral |Not specified | TagLab 90% faster Dependent on

2022) annotation with interactive tool | annotation, user input;
human-Al (AT with +7-14% higher | generalization
collaboration human centered | precision needs testing

focus)

(Z.Lietal., Live Coral Cover |Not specified | Enhanced mloU: 89.51%, | Limited to 2D

2024) (LCC) Estimation PSPNet with mPA: 94.47% | analysis; lacks
from Videos attention 3D context.

mechanisms

(Song et al., Coral Artificial/ DeeperLabC ToU: 93.90%, Small-scale

2021) Segmentation natural aquatic | (based on F1:97.10% validation;
from RGB/ sites ResNet34) spectral data
spectral images dependency;

(A & S,2025) | Survey of Literature CNNs, GANs | Highlights AT | No original
Underwater Image | review vs traditional | superiority metrics; Synthesis
Enhancement methods of existing work
Methods

(Vyshnav et Real-time coral | Not specified | YOLOVS8 for | 78% precision | Moderate accuracy;

al., 2024) health bleaching needs multisensory
classification detection fusion

Table 8: Al-driven Coral Reef Monitoring

Despite advancements, several research deficiencies persist: including
constraints in clear water studies (Sauder et al., 2024), reliance on user input and
two-dimensional analyses (Pavoni et al., 2022) (Z. Li et al., 2024), restricted
validation scale and dependency on spectral data (Song et al., 2021), absence of
innovative metrics in literature overviews (A & S, 2025), and average real-time
accuracy in coral health assessment (Vyshnav et al., 2024). These highlight the
need for more resilient, all-encompassing, and empirically validated Al
instruments for thorough evaluation of coral reefs.

Table 9 presents a performance comparison of hybrid ARIMA-neural
network models for aquatic system forecasting, revealing important insights and
research needs. Balogun & Adebisi, (2021) demonstrated LSTM's superiority
(R=0.853) over support vector regressor (SVR) and Autoregressive Integrated
Moving Average (ARIMA) for sea level prediction in Malaysia, though noting
regional performance variability. Atesongun & Gulsen, (2024) developed a novel
ARIMA-ANN (artificial neural network) hybrid with residual classification that
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generally outperforms standalone models, but required validation on sea-level
datasets. For water quality prediction, Su et al., (2024) achieved high correlation
(R2=0.9-0.91) using an ARIMA-MLP (multi-layer regression) hybrid with
Grasshopper optimization, though limited to monthly data. Meanwhile, Azad et
al., (2022) showed their seasonal ARIMA-ANN hybrid excels at reservoir level
forecasting in India, but didn't address sea level applications.

Authors Objectives Location Methods Results Limitations
(Balogun & Predict sea-level | West ARIMA, SVR, | LSTM (R=0.853) | Regional
Adebisi, 2021) | variation using Peninsular LSTM with 4 | outperformed | variability in

ocean-atmospheric | Malaysia variable SVR (0.748) model performance
variables scenarios and ARIMA
(0.710)
(Atesongun & | Improve the Not specified | Novel ARIMA | Superior to Needs testing on
Gulsen, 2024) | prediction of -ANN hybrid | standalone sea-level specific
complex data sets with residual models in most | datasets

classification

cases

(Suetal., 2024) | Predict water River basins ARIMA-MLP | R=0.9-0.91 for | Limited to
quality (unspecified) | hybrid with DO, temp, boron | monthly data;
components Grasshopper Needs higher

optimisation frequency

(Azad et al., Prediction of Red Hills SARIMA- Outperformed | Focused on

2022) reservoir water | Reservoir, ANN hybrid standalone reservoir levels
level India model SARIMA and | rather than

ANN sea level

Table 9: Aquatic Forecasting Model Using Neural Network

Table 9 indicates that hybrid models, particularly those that integrate
ARIMA with neural networks such as ANN or MLP, are highly effective for
aquatic forecasting, outperforming individual models such as SVR and ARIMA.
For example, LSTM surpassed both SVR and ARIMA in forecasting sea level
changes (Balogun & Adebisi, 2021), and a new ARIMA-ANN hybrid enhanced
predictions for complex datasets (Atesongun & Gulsen, 2024). In addition, (Su et
al., 2024) achieved high accuracy in predicting water quality elements using an
ARIMA-MLP hybrid. However, existing research overlooks certain areas, such as
regional differences in model performance, the necessity for testing on
sea-level-specific datasets, the current restriction to monthly data, and an emphasis
on reservoir rather than sea levels. This underscores the need for more adaptable
models that can be generalized in various aquatic settings.
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Maritime Transportation and Logistics

Table 10 compares Al-driven approaches for ship route optimization,
where Moradi et al.,, (2022) demonstrated 6.64% fuel savings using Deep
Deterministic Policy Gradient (DDPG) RL, though limited to single-ship
simulations without real-world validation. Shu et al., (2024) achieved accurate
energy consumption prediction (3.06% error) via large margin (LM)-optimized
neural networks, but lack dynamic weather integration, while Zhao et al., (2024)
employed Non-dominated Sorting Genetic Algorithm II (NSGA-II) genetic
algorithms for multi-objective optimization, yielding 6.94% fuel reduction at the
cost of 10.1 additional voyage hours.

Authors Objectives Location Methods Results Limitations
(Moradi et al., | Fuel-efficient Generic Reinforcement | 6.64% fuel Limited to
2022) route optimization | shipping routes| Learning savings (DDPG) | single-ship

(DDPG, DQN, scenarios; no
PPO) real-world
validation
(Shu et al., Prediction of Shipping LM-optimized | 3.06% prediction | Requires dynamic
2024) boat energy operational BP neural error (RMSE: | weather
consumption data network 259.74 kW) integration.
(Zhao et al., Multi-objective | Cross-Ocean | NSGA-II 6.94% fuel Trade-off:
2024) route optimization |Navigation (energy-aware | reduction vs. +10.1h voyage
genetic large-ring route | time
algorithm)

Table 10: Al-driven Ship Route Optimization

Table 10 highlights Al's capability in optimizing shipping routes, with
Moradi et al., (2022) achieving fuel reductions via reinforcement learning, Shu et
al., (2024) effectively predicting vessel energy use with a neural network, and
Zhao et al., (2024) using a genetic algorithm to refine routes for reduced fuel
consumption. Nevertheless, there remain gaps in research, such as the focus on
single-ship cases lacking real-world verification, the necessity for dynamic
weather factors in energy predictions, and balancing fuel efficiency with longer
travel times in multiobjective optimization. This suggests the development of
more comprehensive models that address the complexities of the real world and
various objectives.

Table 11 compares Al-driven approaches for port operational forecasting,
where L. Zhang et al., (2024) leveraged XGBoost and SHAP to predict port
congestion and ship turnaround times using AIS data, revealing 50-hour
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fluctuation impacts but remaining limited to container vessels. Bakar et al., (2022)
demonstrated ANN's superiority (RMSE: 3.13) in forecasting berthing durations
for cold ironing, though their single-port focus restricts broader applicability,
while Shen et al., (2024) showed LSTM's dominance in short-term container
arrival predictions but failed to integrate vessel schedules.

Authors Objectives Location Methods Results Limitations
(L. Zhang et al., | Predict port Global ports XGBoost + Improved port | Limited to
2024) congestion and [ (AIS data) SHAP time prediction | container ships;
ship turnaround Interpretation | (50-hour needs multivessel
time fluctuation validation
impact)
(Bakar et al., Forecast ship Port case ANN, XGBoost, | ANN best Single-port focus;
2022) berthing duration |study RF, DT, MLR | (RMSE:3.13, needs scaling to
for cold ironing MAE:0.25) port networks
(Shen et al., Predict short-term | Container Decomposed | LSTM superior | Terminal-specific;
2024) container arrivals | terminals Ensemble for gate-in lacks integration
(LSTM vs forecasts with vessel
Prophet/ARIMA) schedules;

Table 11: Al-driven Port Operational Forecasting

Table 11 presents the use of Al in predicting port operations. L. Zhang et
al., (2024) enhanced port time estimates using XGBoost; Bakar et al., (2022)
predicted ship berthing times precisely with ANNs; and Shen et al., (2024) showed
that LSTM excels in short-term container arrival predictions. Nonetheless, the
research is restricted to container ships and lacks multi-vessel verification.
Additionally, it is primarily focused on individual ports, highlighting a necessity
for expansion to interconnected port systems. Furthermore, there is an absence of
harmonization between terminal-specific predictions and vessel schedules,
pointing to the necessity for more unified models that can be applied to a variety
of port operations.

Fisheries Management and Aquaculture

Table 12 presents a comparative analysis of Al-driven computer vision
and sonar-based methods for fisheries and aquaculture monitoring, highlighting
both technological advances and critical limitations. Schneider & Zhuang, (2020)
achieved low MSE (2.11 for fish, 0.133 for dolphins) using augmented
DenseNet201/Xception on sonar data, though constrained by a small dataset
requiring heavy augmentation. For aquaculture, Abinaya et al., (2022)
demonstrated 94.15% biomass accuracy with YOLOvV4 in tilapia farms, while
Gutiérrez-Estrada et al., (2022) validated sonar-based counting for seabream,
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albeit needing pond-specific calibrations. Wild fish assessment was addressed by
Tarling et al., (2022) through self-supervised density regression, outperforming
alternatives but limited by low-resolution sonar. Practical applications face hurdles:
Caharija et al., (2021) and Kristmundsson et al., (2023) showed promise in
tracking (YOLOv5+DeepSort) and detecting fish in noisy conditions respectively,
but required larger datasets and field validation. T. Zhang et al., (2024)'s stereo
vision system achieved 2.87% MRE in labs, yet depends on controlled lighting.

Authors Objectives Location Methods Results Limitations
(Schneider & Estimate fish/ Amazon River | Augmented MSE: 2.11 The small data set
Zhuang, 2020) | dolphin abundance DenseNet201/ | (fish), 0.133 (143 images)

from sonar Xception (dolphins) requires heavy
augmentation
(Abinaya et al., |Estimate fish GIFT tilapia YOLOvV4 + 94.15% biomass | Limited to visible
2022) biomass in dense |farms segmental accuracy fish segments
aquaculture analysis
(Gutiérrez- Non-invasive Seabream Multibeam Comparable to | Requires pond-
Estrada et al., fish counting farms sonar + manual counts | specific correction
2022) in ponds simulation factors
(Tarling et al., | Count fish in Lebranche Self-supervised | Outperforms Limited to low-
2022) wild schools mullet habitats | density other DL resolution sonar
regression models
(Caharija et al., | Track Aquaculture YOLOVS + Robust to Short | Small data set
2021) echosounders in | cages DeepSort Occlusions (1000 images)
net pens
(Kristmundsson | Detect fish in Salmon farms | 4 DL Effective in Needs field
etal., 2023) aquaculture algorithms noisy conditions | validation
MBES data tested
(T. Zhang et Automated Laboratory Stereo vision | 2.87% MRE Requires
al., 2024) biomass Conditions +YOLO controlled
estimation lighting.

Table 12: Al Applications in Fisheries and Aquaculture

Table 12 showcases various Al applications in fisheries and aquaculture,
ranging from using augmented DenseNets and Xception for fish and dolphin
abundance estimation (Schneider & Zhuang, 2020) to employing YOLOv4 for
precise fish biomass estimation in aquaculture environments (Abinaya et al.,
2022), as well as non-invasive fish counting via multibeam sonar
(Gutiérrez-Estrada et al., 2022). Studies also demonstrate Al's capability in wild
fish counting through self-supervised learning (Tarling et al., 2022), tracking
echosounders within aquaculture (Caharija et al., 2021), detecting fish amidst
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noisy aquaculture data (Kristmundsson et al., 2023), and automating biomass
estimation using stereo vision (T. Zhang et al., 2024). However, research
challenges include the constraint of small datasets that require extensive
augmentation, limitations to visible fish areas, the requirement for pond-specific
correction factors, low resolution in sonar data, small datasets, and the need for
controlled lighting, highlighting the demand for more resilient and versatile Al
methods validated in varied real-world scenarios.

Table 13 compares machine learning approaches for aquaculture disease
prediction across three key methodologies: water quality monitoring, genomic
selection, and pathogen detection. Yilmaz et al., (2022) achieved 95.65% accuracy
in trout disease prediction using multinomial regression, while Edeh et al., (2022)
attained 98.28% accuracy for white spot disease in shrimp via Random Forest
(RF), though both studies lack real-time water quality integration. Waterborne
disease systems show exceptional performance (Nemade et al., (2024): 99.66%
accuracy with [oT-RF/LSTM hybrids) but require field validation. Genomic
approaches (Palaiokostas, 2021) demonstrated XGBoost's 14% superiority over
traditional Genomic Best Linear Unbiased Prediction (GBLUP) for disease
resistance prediction, yet focus narrowly on genetic factors. Older non-Al studies
(Milstein et al., 2005) identified production-water quality links, while Kaur et al.,
(2023)'s yield predictors (F-score: 0.85) need multispecies validation.

Authors Objectives Location Methods Results Limitations
(Yilmaz etal., |Predict disease Turkish River | Multinomial 95.65% Limited to
2022) outbreaks on Basin logistic accuracy bacterial

trout farms regression pathogens
(Edeh et al., Detect white Mendeley Random 98.28% No real-time
2022) spot disease in data set Forest, CHAID | accuracy water quality
shrimp integration
(Nemade et al., | Waterborne ToT-based RF, XGBoost, | 99.66% top Needs field
2024) Disease system AdaBoost, accuracy validation
Prediction LSTM
(Palaiokostas, Prediction of Simulated/ XGBoost vs. XGB 14% Limited to
2021) genomic disease | real datasets GBLUP-MCMC | better than genetic factors
resistance GBLUP
(Milstein et al., | Water Quality- | Bangladesh Factor Identified key | Older non-Al
2005) Sshrimp Ghers analysis management methodology
Production Link factors
(Kaur et al., Prediction of Aquaculture 8 ML F-score: 0.85 Needs multispecies
2023) shrimp yield ponds classifiers validation

Table 13: Aquaculture Disease Prediction Based on ML
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Table 13 highlights the role of ML in forecasting aquaculture diseases. Studies
have excelled in predicting trout disease outbreaks using logistic regression
(Yilmaz et al., 2022), identifying white spot disease in shrimp with Random Forest
and CHAID (Edeh et al., 2022), and forecasting waterborne diseases through
loT-integrated systems with ensemble methods and LSTM (Nemade et al., 2024).
Furthermore, XGBoost has been praised for its effectiveness in predicting
resistance to genomic diseases (Palaiokostas, 2021). In contrast, traditional non-Al
methods have connected water quality to shrimp production (Milstein et al., 2005),
while ML classifiers have been applied to forecast shrimp yield (Kaur et al., 2023).
Despite these advances, challenges remain, such as limitations to particular
pathogens or species, the lack of integration of real-time water quality data, the
need for field validation, and a tendency to focus on genetic or environmental
factors. This points to the requirement for more comprehensive, integrated ML
models that are validated across varied aquaculture environments.

Marine Pollution, Biodiversity, and Ecosystem

Table 14 presents a comprehensive comparison of hyperspectral imaging
(HSI) and ML approaches for microplastic detection across diverse environmental
matrices. Gebejes et al., (2024) successfully identified 10 microplastic types in
laboratory conditions, while Faltynkova & Wagner, (2023) achieved greater than
88% accuracy for marine debris greater than 500um using Near-infrared
hyperspectral imaging (NIR-HSI) with SIMCA modeling. Field applications show
varying success: Capolupo et al., (2024) detected 1,154 macro-plastics via drone
imaging but struggled with automated classification, whereas Palmieri et al.,
(2024) and Rizzo et al., (2024) demonstrated strong performance (sensitivity
0.89-1.00) for beach plastics using NIR/SWIR-HSI with Partial least squares
discriminant analysis (PLS-DA), though sand type affects results. For biological
samples, Y. Zhang et al., (2019) achieved greater than 98.8% recall on fish
intestinal microplastics greater than 0.2mm, while Bergamin et al., (2024) revealed
microplastic-foraminifera interactions via Fourier Transform Infrared
Spectroscopy (FTIR). Advanced algorithms like XGBoost and PLS-DA (Zou et
al., 2025) reached greater than 99% accuracy but failed on sub-0.1mm fragments,
and Taneepanichskul et al., (2024) showed compostable plastic identification
(85-100% accuracy) degrades with contamination.
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Authors Objectives Location Methods Results Limitations
(Gebejes et al., |Detect 10 types | Laboratory Hyperspectral | Successful Needs field
2024) of microplastics | conditions imaging (14 mixture validation
in water wavelengths) | identification

(Faltynkova & | Identify 4 Marine Debris | NIR-HSI + >88% accuracy, | Limited to

Wagner, 2023) | common SIMCA model | >80% sensitivity | particles >500um
polymer types

(Capolupo et Macroplastic Brindisi, Italy | RPASRGB + | 1,154 items Poor auto-

al., 2024) Mapping via spectral detected classification
Drones analysis performance

(Bergamin et Microplastic- Argentarola FTIR + Found PE in Limited to low

al., 2024) foraminifera link | Cave, Italy ecological foraminifera concentrations

indices tests

(Palmieri et Beach Plastic Pontine coast, | NIR-HSI + Sensitivity: Sand type affects

al., 2024) Classification Italy PLS-DA 0.89-1.00 performance

(Taneepanichskul | Compostable Industrial SWIR-HSI+ | 85-100% Performance drops

etal., 2024) plasti compost PLS-DA accuracy with contamination
identification

(Y. Zhang et Intestinal Marine species | HSI + SVM Recall >98.8% | Limited to >

al., 2019) microplastics 0.2mm particles
in fish

(Zou et al., Colorless plastic | Multiple PLS-DA/ >99% accuracy | Fails on <0.1mm

2025) detection environments | XGBoost/ (PLS-DA) fragments

SVM/RF

(Rizzo et al., Beach Torre Guaceto,| SWIR-HSI Effective Needs

2024) microplastic taly +ML Alternative to standardization
analysis FT-IR

Table 14: Advanced Microplastic Detection Systems

Table 14 describes advanced strategies for detecting microplastics,
featuring hyperspectral imaging (HSI) techniques for identifying microplastics in
water and marine debris (Gebejes et al., 2024) (Faltynkova & Wagner, 2023),
along with drone-based methods for mapping microplastics (Capolupo et al.,
2024). Other methods include FTIR combined with ecological indices to link
microplastics to foraminifera (Bergamin et al., 2024), and short-wave infrared HSI
(SWIR-HSI) with machine learning to classify plastics on beaches and in compost
environments (Palmieri et al., 2024) (Taneepanichskul et al., 2024). Furthermore,
studies use HSI with SVM to detect intestinal microplastics in fish (Y. Zhang et al.,
2019) and compare several algorithms for the identification of colorless plastics
(Zou et al., 2025). Rizzo et al., (2024) suggests that SWIR-HSI serves as an
efficient alternative to FT-IR for analyzing beach microplastics. Nevertheless,
challenges remain, such as the need for field validation, issues with detecting
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larger particles, suboptimal autoclassification, high sensitivity to sand type and
contamination, and difficulties in identifying very small or colorless plastic pieces.
This highlights the need for more robust and field-ready approaches capable of
precisely detecting a broader spectrum of microplastic types and sizes.

Table 15 evaluates generative adversarial networks (GANs) for marine
species distribution modeling, where Roy et al., (2022) demonstrated that deep
convolutional GANs outperform hidden Markov models (HMMs) in simulating
seabird foraging trajectories (better Fourier spectral density) but failed to capture
local-scale speed variations. Meanwhile, J. Wang & Tabeta, (2023) employed a
4-channel retrospective cycle GAN to predict reef-associated fish distributions in
East and South China Seas, showing superior performance over comparative
models yet exhibiting seasonal accuracy drops (summer/winter).

Authors Objectives Location Methods Results Limitations
(Roy et al., Simulate animal | Seabird Deep Better Fourier | Poor local-scale
2022) foraging habitats Convolutional | spectral density | speed distribution
trajectories GAN vs. HMM | than HMM capture

(J. Wang & Predict East & South | 4-channel Outperformed Seasonal

Tabeta, 2023) Reef-Associated |China Seas retrospective | 4CCGAN performance drops
Fish Distribution cycle GAN (summer/winter)

Table 15: Marine Species Distribution Modelling Using GANs

Table 15 illustrates the application of Generative Adversarial Networks
(GANSs) in modeling marine species distribution. Roy et al., (2022) utilized a deep
convolutional GAN to replicate foraging paths of animals in seabird environments,
surpassing Hidden Markov Models in Fourier spectral density performance.
Similarly, J. Wang & Tabeta, (2023) employed a 4-channel retrospective cycle GAN
to forecast distributions of reef-associated fish in the East and South China Seas,
outperforming alternative GAN models. However, current research is hindered by
inadequate local-scale speed distribution and reduced effectiveness in capturing
seasonal variations, underscoring the need for enhanced GAN models that can
proficiently represent both local and seasonal dynamics in marine species distribution.

Marine Tourism

Table 16 examines methodological approaches for analyzing tourist
behavior in marine and coastal tourism, revealing consistent segmentation patterns
but significant geographic and methodological limitations. Studies by
Carvache-Franco et al., (2025) repeatedly applied K-means clustering and factor



106 Smart Ocean: A Comprehensive Review of Artificial Intelligence

analysis across destinations (Galapagos, Acapulco, Costa Rica), identifying 3—6
motivational dimensions but remaining constrained by single-destination or
island-specific biases (e.g., MPAs, urban coasts). Meanwhile, Liu et al., (2023) and
Jing et al., (2020) leveraged spatio-temporal (STL/k-core) and kernel density
methods to map attraction patterns in China, though relying on
platform-dependent metadata (e.g., Flickr, photos). Broader-scale analyses (Qin et
al., 2019) (Zeng et al., 2025) used Markov chains and social network analysis to
reveal macro tourist flows (e.g., China’s "double-triangle" framework, Japan’s 4
network patterns) but lack granular behavioral insights.

Authors Objectives Location Methods Results Limitations
(M. Carvache- | Segment Marine | Galapagos Clustering of | 4 experience Limited to
Franco et al., Tourism Demand | Islands K-means + dimensions, island MPAs
2025) factor analysis | 3 segments
(M. Carvache- | Segmentation of |Galdpagos K-means + 6 motivational | Focused on
Franco et al., Ecotourism Islands factor analysis | dimensions, international
2021) Motivation 3 groups tourists
(M. Carvache- | Coastal tourism | Galapagos Multivariate 6 factors, Poor auto-
Franco et al., motivation Islands statistics 2 segments classification
2021) analysis ("Multiple performance
Motives",
"Eco-coastal")
(W. Carvache- | Domestic Tourism | Acapulco, K-means + 4 experience Urban coastal
Franco et al., Segmentation Mexico factor analysis | dimensions, bias
2021) 4 segments
(M. Carvache- | Motivations for | Jaco, Costa K-means + 5 motivational | Post-pandemic
Franco et al., sustainable Rica factor analysis | dimensions, context needed
2022) destinations 3 segments
(Liu et al., Analyse spatio- | Jiaodong STL Identified 4 Limited to photo
2023) temporal tourist | Peninsula, decomposition | attraction metadata
behavior China + k-core analysis | communities
(Jing et al., Fine-Grained Beijing, China | Kernel Density | Downtown vs. | Platform-
2020) Tourist Pattern Estimation seasonal hotspots | dependent (Flickr)
Analysis
(Qin et al., Inbound tourist | China Markov chains | 9 city groups, | Macro-scale only
2019) flow patterns nationwide + community | "double-triangle"
detection framework
(Yao etal., GPS-based Yuanmingyuan| GIS spatial Weak Single-park
2020) behavior analysis | Park analysis seasonality case study
effects
(Zeng et al., Tourist flow Japan Social network | 4 spatial- Regional Group
2025) network analysis analysis temporal patterns | Differences
Table 16: Al-based Tourist Behaviour Analysis in Marine/Coastal Tourism
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Table 16 demonstrates a variety of Al applications within marine and
coastal tourism, focusing on the use of K-means clustering and factor analysis to
categorize tourist demand and motivations at destinations such as the Galapagos
Islands and Acapulco (M. Carvache-Franco et al., 2025). It also includes
techniques like STL decomposition and k-core analysis to examine spatiotemporal
behavior in China (Liu et al., 2023), kernel density estimation for detailed pattern
analyses (Jing et al., 2020), Markov chains to understand inbound tourist flow (Qin
et al., 2019), GIS for GPS-based behavior studies (Yao et al., 2020) and social
network analysis to assess tourist flow networks in Japan (Zeng et al., 2025). These
studies highlight distinct tourist segments, motivational factors, and
spatio-temporal trends. However, research limitations include a focus on island
MPAs, international tourists, singular destinations, urban coastal zones, and data
before COVID-19. There is also a reliance on photo metadata, specific digital
platforms, large-scale analysis, single-park cases, and regional group variances,
suggesting the necessity for more general, multi-location, and current analyses of
tourist behavior in marine and coastal environments.

Table 17 compares computer vision approaches for smart coastal crowd
management, where Domingo, (2021) achieved 92.7% accuracy in beach
attendance prediction using deep neural networks (DNNs) and IoT cameras at
Castelldefels, though limited to single-beach validation. Guillén et al., (2008)
identified long-term seasonal patterns via Argus video monitoring in Barcelona but
lack real-time analysis capabilities, while Vidals et al., (2024) demonstrated
effective microspace congestion monitoring in Valencia using digital proxemic
triggers, though their urban focus requires adaptation for coastal environments.

Authors Objectives Location Methods Results Limitations
(Domingo, Beach Attendance | Castelldefels, | DNN + IoT 92.7% accuracy | Limited to single
2021) Prediction Spain camera system | for 7 occupancy | beach validation

levels
(Guillén et al.,, |Long-term Barcelona Argus video Established No real-time
2008) analysis of beaches monitoring + | seasonal patterns | capability
beach users Fourier models
(Vidals et al., Visitor Valencia's Digital Effective for Urban focus
2024) Congestion historic center | Proxemic micro spaces versus coastal
Monitoring Triggers focus

Table 17: Smart Coastal Crowd Management Systems

Table 17 showcases the application of Al in managing coastal crowds.
Domingo (2021) accurately predicted beach attendance at Castelldefels, Spain,
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using deep neural networks (DNNs) and IoT-enabled cameras. Meanwhile,
Guillén et al., (2008) developed models for identifying seasonal beach user
patterns in Barcelona, employing Argus video systems and Fourier analysis.
Despite these advancements, Domingo's research is confined to one beach for
validation, and Guillén's lacks real-time analysis capability. Additionally, Vinals et
al., (2024) effectively monitored visitor congestion in Valencia with digital
proxemic triggers, though their work is centered on urban areas. These studies
indicate Al's promise in enhancing coastal management; however, future research
should focus on overcoming limitations like single-location validation and
developing real-time monitoring tools specifically designed for coastal settings.

Marine Biotechnology and Pharmaceuticals

Table 18 examines Al-driven approaches for marine bioprospecting,
where H. Li et al., (2025) leveraged BANE-XGBoost and SHAP to optimize
microalgal cultivation (R?>>0.87), though industrial-scale validation remains
pending. Gaudéncio & Pereira, (2022) combined QSAR and molecular coupling to
identify 16 promising marine natural products (MNPs) for antifouling, yet model
accuracy plateaus at 71%. Meanwhile, Bharadwaj et al., (2022) applied high-
throughput virtual screening (HTVS) and molecular dynamics to discover high-affinity
HDAC?2 inhibitors from seaweed waste, but require in vitro confirmation.

Authors Objectives Location Methods Results Limitations
(H.Lietal., Optimize Lab study BANE- R>>0.87 (test) | Needs industrial-
2025) microalgal XGBoost scale validation

cultivation + SHAP
(Gaudéncio & | Discover Virtual QSAR + 16 promising 71% model
Pereira, 2022) | antifouling agents | screening molecular MNPs accuracy limit
coupling
(Bharadwaj et | Identify HDAC2 |Seaweed HTVS/XP/QPLD | igh-affinity Requires in vitro
al., 2022) inhibitors Waste docking + MD | compound validation
simulations found

Table 18: Al-based Marine Drug Discovery

Table 18 describes Al's role in marine drug discovery, highlighting several
studies: H. Li et al., (2025) improved microalgal growth with BANE-XGBoost,
Gaudéncio & Pereira, (2022) identified antifouling agents using QSAR and
molecular docking, and Bharadwaj et al., (2022) discovered HDAC?2 inhibitors
from seaweed waste through computational techniques. These examples
underscore Al's capability to speed up the identification of important marine
compounds. However, challenges remain, such as the necessity for industrial-scale
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validation, a model accuracy cap of 71%, and the need for in vitro confirmation.
This suggests that future work should concentrate on enhancing the scalability and
reliability of Al-based approaches in this domain.

Ports and Shipping

Table 19 compares LSTM-based approaches for predictive maintenance
in maritime systems, where Han et al.,, (2021) demonstrated accurate fault
detection in marine diesel engines using an LSTM-Variational Autoencoder
(LSTM-VAE), though limited to single-component validation. (Z. Wang et al.,
2025) achieved superior anomaly detection in ship equipment with an
LSTM-Autoencoder (LSTM-AE) enhanced by SHAP/LIME explainability,
outperforming GAN/ diffusion models but requiring extensive anomaly-free
training data. Meanwhile, (Awasthi et al., 2024) applied LSTM with Synthetic
Minority Oversampling Technique (SMOTE) to port crane error prediction, attaining
perfect precision (1.00) but struggling with recall (50%) due to data imbalance.

Authors Objectives Location Methods Results Limitations
(Han et al., Fault Detection | Research LSTM- Accurate fault | Limited to diesel
2021) in Marine vessel Variational detection engines; needs

Components Gunnerus Autoencoder | (semi-supervised) | multi-component
(LSTM-VAE) validation
(Z. Wangetal., | Anomaly Marine LSTM- Superior to Requires large
2025) Detection in Mechanical Autoencoder | GAN/diffusion | anomaly-free
Ship Equipment | Systems (LSTM-AE) models datasets
+ SHAP/LIME
(Awasthi et al., |Error Prediction |Port operations | LSTM + Accuracy: Recall (50%)
2024) in Container SMOTE 99.6%, needs improvemen|
Cranes (for unbalanced | Precision: 1.00
data)

Table 19: Al-driven Predictive Maintenance in Maritime Systems

Table 19 demonstrates the significance of Al in maritime predictive
maintenance. In particular, Han et al., (2021) effectively identified faults in marine
components on a research vessel employing an LSTM-VAE model. Z. Wang et al.,
(2025) further enhanced anomaly detection in ship equipment, utilizing LSTM-AE
combined with SHAP/LIME. Meanwhile, Awasthi et al., (2024) reported high
levels of accuracy and precision in predicting errors in container cranes through
LSTM with SMOTE designed for unbalanced datasets. Nonetheless, challenges
remain, such as the focus on diesel engines requiring broader component
validation, the necessity of comprehensive anomaly-free datasets, and calls for
better recall in predicting errors in container cranes. This emphasizes the need for
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future research to prioritize the creation of more adaptable and data-efficient Al
models for the holistic maintenance of maritime systems.

Ocean Literacy

Table 20 examines Al-driven tools for ocean literacy, where
Pataranutaporn et al., (2025) demonstrated that Generative Pre-training
Transformer (GPT) - based chatbots (OceanChat) enhance public behavioral
intentions toward marine conservation compared to static information, though
policy support remains unaffected. Zheng et al., (2023) developed MarineGPT, a
vision-language model trained on marine-specific data (Marine-5M), showing
improved understanding of marine-related queries but requiring further domain
fine-tuning. For social media analysis, Kusumaningrum et al., (2024) used
Sentence-BERT and clustering to identify nine mangrove awareness topics on
Indonesian Twitter, highlighting cultural and linguistic specificity challenges.
Meanwhile, Mora-Cross & Calderon-Ramirez, (2024) evaluated large language
model (LLM) uncertainty (using Monte Carlo Dropout) for biodiversity Q&A in
Costa Rica, establishing viable metrics but testing only smaller models
(Falcon-7B/DistilGPT-2).

Authors Objectives Location Methods Results Limitations
(Pataranutaporn | Promote marine | Virtual (N= GPT-based Increased Limited impact
et al., 2025) conservation via | 900 users) conversational | behavioral on policy support

AT chatbots agents intentions
(OceanChat) (versus static info)
(Zheng et al., Develop marine- |Marine Vision language | Better Requires domain
2023) specific LLM Domain model (Marine | understanding | -specific fine
(MarineGPT) -5M dataset) of marine intent | -tuning
(Kusumaningrum | Analyze mangrove |Indonesian Sentence-BERT | Identified 9 Language /
etal., 2024) awareness Twitter + K-Means mangrove topics| Cultura
Clustering Specificity
(Mora-Cross & | Assess LLM Biodiversity of | Monte Carlo Viable Limited to Falcon
Calderon- uncertainty for Costa Rica Dropout (MCD) | Uncertainty -7B/DistilGPT-2
Ramirez, 2024) | biodiversity QA +ECE Metrics

Table 20: AI Applications in Ocean Literacy

Table 20 highlights how Al is being utilized to enhance ocean literacy.
Pataranutaporn et al., (2025) reported increased user engagement through
GPT-based chatbots, Zheng et al., (2023) created a marine-specific large language
model for better understanding of marine-related intentions, Kusumaningrum et
al., (2024) examined mangrove awareness on Indonesian Twitter using
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Sentence-BERT, and Mora-Cross & Calderon-Ramirez, (2024) evaluated
uncertainty in biodiversity Q&A with LLMs. Despite these developments, there
are research gaps, such as limited influence on policy support, the need for
specialized fine-tuning, considerations for language and cultural contexts, and
constraints in the generalizability of LLMs. These indicate that future studies
should aim to improve the efficacy and expand the scope of Al tools in ocean
literacy programs.

Conclusions

This systematic review exhibits the transformative role of Al in marine
science and governance, exemplifying its potential in improving ocean monitoring
(e.g., 99% precision in illegal fishing detection), optimizing marine resource use
(e.g., 6.64% fuel savings in shipping), and advancing conservation (e.g., 80%
accuracy in 3D coral mapping) across 45 key studies from 2015 to 2025. Despite
these advancements, shortcomings such as geographic data biases, over-reliance
on synthetic datasets, and limited real-world validation persist, emphasizing the
need for standardized benchmarks and interdisciplinary research collaboration.
Notably, only 12% of studies address governance frameworks, underscoring the
importance of explainable Al for policymaking. Case studies from India and
Bangladesh illustrate both the potential and limitations of Al in
resource-constrained settings. To bridge research-policy gaps, the review proposes
a three-tiered action plan involving international data-sharing, certification
standards, and innovation hubs. As the UN Ocean Decade advances, the review
calls for real-world validation, multilingual models, and ethical guidelines to
ensure Al’s contribution to sustainable ocean governance is equitable,
scientifically grounded, and globally relevant.
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