Influence of Maternal Glycemic Status (HbA_{1c}) at Delivery and Risk of Hypoglycemia in Infants of Diabetic Mothers

BEGUM NN^a, HASSAN MQ^b, NESSA M^c, AZAD K^d

Abstract

Objective: To examine the influence of maternal HbA1c level at delivery and risk of hypoglycemia in infants of diabetic mothers.

Method: This case-control study was done with sixty neonates born to diabetic mothers in BIRDEM hospital. Out of sixty neonates, 30 neonates who developed hypoglycemia during the first 24 hours of age were considered as cases and another 30 neonates who did not develop hypoglycemia during the first 24 hours were considered as controls. Maternal glycemic status was examined by measurement of Glycosylated hemoglobin (HbA1c) and level of <6 % considered good control. Babies were screened for hypoglycemia at birth, then 4, 6, 8, 12, 18 and 24 hours of life. Blood glucose value of less than 2.6 mmol/l was considered as hypoglycemia.

Introduction

In 2010, the International Diabetes Federation (IDF) estimated that 5.7 million (6.1%) and 6.7 million (7.1%) of people living in Bangladesh is suffering from diabetes and impaired glucose tolerance (IGT) respectively¹.

Diabetes is a fairly common medical complication of pregnancy associated with maternal, foetal and neonatal morbidities and mortalities. The gestational diabetes mellitus (GDM) is seen in almost 80%, whereas around 12-15% has pregestational diabetes².

Poor metabolic control of maternal diabetes during the first trimester is associated with foetal malformations,

- b. Dr. M Quamrul Hassan, MBBS, FCPS (Paediatrics), MPH, Senior Consultant, Paediatrics and Neonatology, Apollo Hospitals, Dhaka.
- c. Dr. Meherun Nessa, MBBS. FCPS (Obs & Gynae), Registrar, Department of Obstetrics & Gynaecology, Ibrahim Medical College and BIRDEM General Hospital, Dhaka.
- d. Prof. Kishwar Azad, LRCP, MRCS, FCPS, MSc, Project director, BADAS - Perinatal Care Project & Sr. Hony. Consultant, Dept. of Paediatrics, BIRDEM, Dhaka

Address of Correspondence: Dr. Mst. Nurun Nahar Begum, Assistant Professor, Neonatology, Sir Salimullah Medical College, Dhaka e-mail- itsnahar@yahoo.com

Received: 25 February, 2012 Accepted: 21 June, 2012

Results: Clinical characteristics of newborns and their mothers of cases and controls did not show any significant difference. In majority of cases (73.3%) hypoglycemia was detected by 6 hours of age. Most of babies were asymptomatic (93.3%). Majority of mothers (76.7%) in controls and 46.7% of were in good glycemic controls (HbA1c <6%). The mean HbA1c level of mothers of cases was significantly higher than that of control mothers (6.02 \pm 0.98 vs 5.44 \pm 0.78; P = 0.014) and significant negative correlation between maternal HbA1c and blood glucose level of neonates (r=0.422 p= 0.001).

Conclusion: There is an association between maternal HbA1c level and neonatal hypoglycemia in infants of diabetic mothers.

(Birdem Med J 2012; 2(2): 84-88)

during the second and third trimester with metabolic derangement in the neonatal period 3 .

Newborn IDMs are hyperinsulinemic due to pancreatic beta-cell hyperplasia induced by chronic maternal hyperglycemia and the neonatal hypoglycemia seems to result from this together with disorders of both catecholamine and glucagon response and have a diminished capability to mount compensatory response to hypoglycemia like glycogenolysis, gluconeogenesis and for utilizing alternative substrates⁴. Hypoglycemia in IDMs mostly asymptomatic. However, the absence of overt symptoms at low blood glucose levels does not rule out central nervous system injury⁵. Moreover hyperinsulinemic hypoglycemia is a major risk factor for brain injury and subsequent neurodevelopmental handicap, the identification, rapid diagnosis and prompt management of patients with hyperinsulinemia is essential if brain damage is to be avoided⁶.

It would be useful, therefore, if we could predict postnatal hypoglycaemia from the state of maternal glycemic control. Glycosylated hemoglobin reflects the glycemic control over preceeding 7-8 weeks ⁷. Kline and Edwards reported that third trimester HbA1c >6.5% had a stronger association with

Dr. Mst. Nurun Nahar Begum, MBBS, DCH, FCPS (Paeditrics), MD (Neonatology), Assistant Professor, Neonatology, Sir Salimullah Medical College & Mitford Hospital, Dhaka.

neonatal hypoglycemia requiring aggressive intervention⁸. Indirectly, therefore, it may serve as a good surrogate marker for predicting hypoglycemia in early postnatal period in IDMs and stresses the importance of a target maternal third trimester HbA1c of <6.5%. International Diabetes Federation guidelines in pregnancy give emphasis the target HbA1c level in pregnancy <6%⁹.

The present study was undertaken to examine the influence of maternal HbA1c and risk of hypoglycemia in babies born to diabetic mothers.

Materials and methods

This case-control study was carried out in the department of Obstetrics and Gynecology, and Special Care Baby Unit (SCABU) at BIRDEM. (Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders). Sixty neonates born to diabetic mothers between November 2004 and February 2005 were retrospectively analysed. Among them 30 neonates who developed hypoglycemia during the first 24 hours of age were included as cases and another 30 neonates who did not develop hypoglycemia during the first 24 hours were included as controls. Babies were screened for hypoglycemia at birth, then 4, 6, 8, 12, 18 and 24 hours of postnatal age life as per existing routine SCABU (Special care baby Unit) schedule irrespective of feeding status. Blood glucose value of less than 2.6 mmol/l was considered as neonatal hypoglycemia¹⁰. Exclusion criteria were IDMs with major congenital malformation at birth, severe perinatal asphyxia, and severe erythroblastosis foetalis.

Blood glucose level of IDMs was measured by Precision-plus (MediSense, USA) glucometer using glucose oxidase method at birth in cord blood, and thereafter at bed side blood sample obtained from heelprick. Maternal glycemic status was measured by HbA1c at delivery by HPLC (High Performance Liquid Chromatography) method at BIRDEM using Bio-Rad Variant Analyzer (USA) and level of <6 % considered as good control⁹. Results were analyzed by employing Stastistical Package for Social Science (SPSS Version 11.0) software package.

Results

Table-I

Characteristics of mothers and newborns

Characteristics of mothers	Cases	Controls
	(n=30)	(n=30)
Age (year) mean (SD)	29.47 ± 4.81	31.13 ± 5.51
Weight(kg) mean (SD)	61.17 ± 10.17	58.60 ± 8.88
Type of Diabetes		
GDM	10(33%)	11 (36.7%)
Type 2 Diabetes	18(60%)	19(63.3%)
Type 1 Diabetes	2(6.7%)	0
Treatment of diabetes		
Diet alone	6(20%)	7(23.3%)
Diet and Insulin	24 (80%)	23 (76.7%)
HbA1c (%)		
<6	14 (46.7%)	23(76.7%)
=>6	16(53.3%)	7(23.3%)
Mode of delivery		
NVD	3(10%)	0
LUCS	27 (90%)	30(100%)
Birth weight (gm)	3065 ± 725	3252 ± 464
mean (SD)		
Gestational age	37 ± 1.26	37.2 ± 0.71
(week) mean (SD)		
Male	14 (46.6%)	15 (50%)
Female	16(53.3%)	15 (50%)
Term	19(63.3%)	23(76.7%)
Preterm	11 (36.7%)	7(23.3%)
AGA	27 (90%)	28(93.3%)
LGA	3(10%)	2(6.67%)

AGA: appropriate for gestational age, LGA: large for gestational age.

Table-II

Comparison of mean blood glucose levels between cases and controls at different times within 24 hours of postnatal age

Age (hour)	Cases (n=30)	Controls(n=30)	P value
	mean (SD) mmol/l	l mean(SD) mmol/l	
	4.92 ± 2.19	4.37 ± 1.54	0.269
(cord blood))		
4	2.71 ± 0.92	3.38 ± 0.73	0.003
6	2.71 ± 0.71	3.45 ± 0.72	0.0004
8	2.87 ± 0.62	3.68 ± 0.84	0.0004
12	2.96 ± 0.54	3.47 ± 0.84	0.008
18	3.37 ± 0.73	3.90 ± 0.94	0.019
24	3.45 ± 0.65	4.0 ± 0.81	0.006

* Unpaired t- test

Table-III

Comparison of mean maternal HbA1c level between of cases and controls

	Mothers	Mothers	P-
	of cases	of controls	value
HbA _{1c} % mean(SD)	6.02 ± 0.98	5.44 ± 0.78	0.014

Table-IV

Correlation between neonatal blood glucose and maternal HbA_{1c} level at 4 hours of age (n=60)

Antecedent variable	r value	P value
Maternal HbA1c (%)	0.422	0.001

Pearson.s correlation (2-tailed)

Results

Table-I shows baseline characteristics of IDMs and their mothers in both groups. There is no significant difference in demographic features among cases and controls. Majority (76.7%) of mothers in control and 46.7% of cases were in good glycemic control (HbA_{1c} <6%). Hypoglycemia was detected in 50% of cases at 4 hours of age and in 23.3% at 6 hours of age; so 73.3% by 6 hours of age. Trend of blood glucose status of babies during first 24 hours shown in table-II. At birth the glucose level of cases was higher than controls. In both groups, blood glucose level decreased rapidly after birth and subsequently increased steadily from 4 hours of age in both groups over next 24 hours, glucose level of cases were persistently remain in lower level than that of controls. There was also significant difference of mean blood glucose values between cases and controls at 4, 6, 8, 12 and 24 hrs of age. Table-III showed comparison of HbA1_C level showed that the mean value of HbA1c was significantly higher among mothers of cases than that of controls $(6.02 \pm 0.98 \text{ vs} 5.44 \pm 0.78; \text{ p}= 0.014)$. A significant negative correlation was observed between maternal HbA_{1C} and blood glucose level of IDMs at 4 hours of age (r = -0.422, P = 0.001) shown in table-IV.

Discussion

No significant difference was observed between clinical characteristics of cases and controls and their mothers. Majority of mothers of both cases (66.7%) and controls (63.3%) had pre-gestational diabetes. Diabetes during pregnancy, 80% are caused by GDM as opposed to pregestational diabetes². The predominance of pregestational diabetes over GDM in this study could be accounted for women being registered at BIRDEM at diagnosis of DM. Pregnancy itself is diabetogenic, the flow of fuels to the fetus is mediated by the sequential rise of hormones, which are diabetogenic¹¹. Insulin requirement increases with each trimester of pregnancy in diabetic women ¹². In the present study majority of mothers in both cases (80%) and controls (76.7%) required treatment with insulin. So, modality of treatment is also an indicator of severity of glycemic status during pregnancy. Hypoglycemia was detected by 6 hours of age in 73.3% cases; 50% at 4 hours of age, 23.3% at 6 hours of age. At 8 hours and also at 12 hours of age hypoglycemia was detected only in 16.6% of cases.

The nadir in IDM's blood glucose usually occurs between 1 and 4 hours of life⁴. Kuhl et al¹³ and Robert S et al¹⁴ observed the lowest value at 2 hours of age, and mostly (83%) occurred within first 4 hours of age described by Lin and Ho¹⁵. Clinically, 2 hours levels of blood glucose are predictive of later hypoglycemia that may require repeat testing¹⁶. We did not examine the blood glucose at 2 hours and glucose level was done irrespective of feeding status, as we did follow the existing SCABU protocol. Hypoglycemia might be more frequent or severe if glucose estimation could have been done pre-feed and also at 2 hours of life. Most IDMs have asymptomatic hypoglycemia⁴. The predominance (93.3%) of asymptomatic hypoglycemia in present study is consistent with previously reported studies^{14, 15}. However, the absence of overt symptoms at low blood glucose levels does not rule out central nervous system injury⁵. This elevated prevalence of asymptomatic neonatal hypoglycemia in IDMs stress the importance of systematic glucose monitoring at risk babies to prevent severe and recurrent hypoglycemia.of these neonates.

Neonatal hypoglycemia is associated with poor psychoneurological development. Blood glucose should be maintained above 2.6 mmol/l to ensure normal neural function¹⁰.

Measuring HbA1C % is considered as the gold standard for monitoring metabolic control in diabetes. A normal non-diabetic HbA1_C is 3.5-5.5%. In diabetes about 6.5% is good¹⁷. International Diabetes Federation guidelines in pregnancy give emphasis the target HbA1c level in pregnancy $<6\%^9$, considering this value 46.7% of mothers in cases were in good glycemic control compared to 76.7% of controls (HbA1c <6%). Nielsen et al¹⁸ in a study demonstrated accepted upper level of HbA1c level as 5.6% in third trimester of pregnancy whereas Valaji and Seshiah in India recommended target value in pregnancy to be maintained 5.3%¹². So morbidities considering good control at this level of HbA1c <6.5% or <6% may underscore the need to evaluate the different target value to overcome the effect of HbA1c lowering effect of pregnancy. Mean HbA1C level of mothers was in cases was significantly higher than mothers of controls $(6.02 \pm 0.98\% \text{ vs } 5.44 \pm 0.78\%)$; P=0.014); signifies the association of maternal HbA1c with the development of hypoglycemia in IDMs. Recently Banerjee et al¹⁹ observed the lower incidence of hypoglycemia in IDMs of mothers with tight glycemic control where HbA1C cut-off value was considered <6.5%.

Kline and Edwards⁸ using multiple logistic regression methods found that a third trimester HbA1c of >6.5% had a stronger association with neonatal hypoglycemia requiring aggressive intervention. Ylien et al²⁰ found that neonatal hypoglycemia was seen in those mothers with higher mean HbA1c levels in the second and third trimester. Kulenthran and Nathira in their study reported HbA1c level of 6.8% in late pregnancy as optimal threshold value for predicting neonatal hypoglycemia by ROC (Receiver operator characteristic curve) curve with the area under curve 0.997 (95% CI 0.992 to 1)²¹.

On the other hand, Taylor et al²² showed that there was no correlation between neonatal hypoglycemia and HbA1c levels at any point in pregnancy or with mean pregnancy HbA1c levels. Stenninger et al²³ in his study of 59 mothers with insulin-treated diabetes, showed that neonatal hypoglycemia could still occur despite well controlled diabetes. We also examined the relationship by correlation analysis between maternal HbA1c and blood glucose level of IDMs at 4 hours of age , where a significant negative correlation was observed (r = -0.422, P= 0.001) which is in agreement with the studies done by Ylinen K et al²⁰ and Cooper et al²⁴.

Conclusion:

Even in good glycemic control there is a risk of hypoglycemia in IDMs, needs blood glucose monitoring to prevent severe and recurrent hypoglycemia in these neonates, which is risk for brain injury.

Limitation of the study

Sample size was small. Blood glucose monitoring was not done in first 3 hours of age, which could demonstrate different frequency or values.

Recommendation: Studies with larger sample size, including blood glucose monitoring within first 3 hours, and to investigate if HbA1c could be a good predictor for neonatal hypoglycemia and to find the appropriate threshold value.

References:

- 1. http://www.idf.org/diabetesatlas.
- Diagnosis and classification of diabetes mellitus. American Diabetes association. Diabetes care 2006; 29 suppl : 1; S43-8.
- L. Sailo, V. L. Bhargava M. G. Karmarker, A. K. Deorari, G. Kinra. Glycosylated Haemoglobin as a marker of neonatal morbidity and mortality. INTNL J.DIAB. DEV. COUNTRIES 1991;11:7-9
- Hawdon, J.M. Aynsley-Green, A. The infant of diabetic mother. In: N.R.C. Roberton, Janet M. Rennie, eds. Textbook of Neonatology. 3rd edition. Churchill Livingstone: Edinburgh 1999; 401-07.
- Richard E. Wilker. Hypoglycemia and Hyperglycemia. In: Cloherty JP, Eichenwald EC, Stark AR,editors. Mannual of Neonatal Care. 6th Edition. Lippincott Williams Wilkins. Philadelpia:2008: 541

- R R Kapoor, SE Flanagan, C James, J Shield, E Ellard, K Hussain. Hyperinsulinaemic hypoglycemia. Arch Dis Child 2009;94:450-57
- Goldstein DE, Little RR, Lorenze RA. et al. Test of Glycemia in Diabetes. Diabetes care 2004;27:1761-73
- Kline GA, Edwards A. Antepartum and intrapartum insulin management of type 1 and type 2 diabetic women: Impact on clinically significant neonatal hypoglycemia. Diabetes Res Clin Pract. 2007; 77(2):223-30.
- International Diabetes Federation Clinical Guidelines Task Force. Global Guideline on Pregnancy and Diabetes. Brussels, Belgium:International Diabetes Federation; 2009.
- Koh TH, Aynsley-Green A, Tarbit M, Eyre JA. Neural dysfunction during hypoglycaemia. Archives of disease in childhood 1988; 63: 1353 –58.
- Lois Jovanovic. Advances in Diabetes for the Millennium: Diabetes in Women. MedGenMed 2004; 6(3 Supple): 3
- Balaji V, Seshiah V. Management of Diabetes in Pregnancy. Journal of Association Of Physicians of India. 2011;59: 33-36
- Kuhl C, Andersen GE, Hertel J, Mghted-Pedersen L. Metabolic events in infants of diabetic mothers during the first 24 hours after birth. I. Changes in plasma glucose, insulin and glucagon. Acta Paediatr Scand 1982; 71: 19-25.
- 14. Robert S, Van Howe, Michelle R, Storms. Hypoglycemia in Infants of Diabetic Mothers: experience in a Rural Hospital. Amer J Perinatol 2006; 23(2): 105-10.
- Lin MS. Ho NK. A five year study of neonatal hypoglycemia in Toa Payoh Hospital (1984-1988). J Singapore Paediatr Soc 1989; 31 (3-4): 116-21

- Croke J, Sullivan M, Ryan-Drover A, Randell Ed, Andrews W, Aziz K. Two hours blood glucose levels in at-risk babies: An audit of Canadian guidelines. Paediatr Child Health 2009;14(4): 238-44
- 17. www.diabeticretinopathy.org.uk
- Lene R Nelson, Pia Ekbom, Peter dam, Charlotte Glumer, Merete M, Dorte M, Jensen, Elezabeth R. Mathiesen. HbA1c level Are significantly Lower in Early and late pregnancy. Diabetes care 2004;27(5):1200-1201.
- Banerjee S, Ghosh US, Banerjee D. Effect of tight glycemic control on fetal complications in diabetic pregnancies. J Assoc Physicians India 2004 ;52: 109-13
- Ylinen K, Raivio K, Teramo K. Hemoglobin A1c predicts the perinatal outcome in insulin dependent diabetic pregnancies.Br J Obstet Gynaecol 1981; 88(10): 961-67.
- 21. Kulenthran Arumugam, Nathira Abdul Majeed. Glycated haemoglobin is a good predictor of neonatal hypoglycemia in pregnancies complicated by diabetes. Malaysian J Pathol 2011; 33(11) : 21-24
- Taylor R, Lee C, Kyne-Grzebalski D, Marshall SM, Davidson JM. Clinical outcomes of pregnancy in women with type I diabetes. Obstet Gynecol 2002; 99(4): 537-41.
- Stenninger E, Schollin J, Aman J. Early postnatal hypoglycemia in newborn infants of diabetic mothers.. Acta Paediatr 1997; 86:1374-76.
- Cooper MJ. Enderlein MA. Tarnoff H. Roge CL. Asymmetric septal hypertrophy in infants of diabetic mothers. Fetal echocardiography and the impact of maternal diabetic control. Am J Dis Child. 1992; 146 (2): 226-29.