PERFORMANCE OF DIFFERENT PROTOCOLS ON IN VITRO TUBERIZATION IN POTATO (Solanum tuberosum)

M. ZAKARIA¹, M. M. HOSSAIN²
M. A. KHALEQUE MIAN³ AND T. HOSSAIN⁴

Abstract

Five protocols of micro tuberization were used to induce large size microtuber in three recommended potato varieties, namely Cardinal, Diamant, and Heera under complete dark condition. Tuberization was the earliest (11.8 days) in the protocol P₂ (MS + 5 mg/l BAP + 500 mg/l CCC + 8% sucrose), which was closely followed by that in P₁ (12.7 days) (MS + 5 mg/l BAP + 50 mg/l coumarin + 8% sucrose) Maximum number of microtubers/flask (12.8) was obtained from the protocol P_1 followed by that of P_2 (11.6) that contained growth retardant; but higher average weight of microtuber was obtained in the protocols P₅ (30 days old plantlet + MS media containing 40 meq K + 10 mg/l BA + 9% sucrose), P₄ (MS + 10 mg/l BA + 8% sucrose), and P₃ (MS + 5.0 mg/l BAP + 6% sucrose) which contained BA in absence of growth retardant. The average weight of microtuber was the highest (329.0 mg) in protocol P₅, followed by that in P₄ (280.7 mg), while it was the lowest in protocol P₁. The variety Diamant produced maximum average weight of microtuber (246.3 mg), while Heera produced minimum (226.1 mg), which was statistically similar to Cardinal (228.7 mg). The highest percentage (52.2) of >300 mg size and lowest percentage (19.3) of <150 mg size microtuber was produced in P₅ protocol in the variety Diamant. On overall consideration, all the varieties performed best with the protocol P₅.

Keywords: Protocol, microtuber, potato.

Introduction

Micropropagation systems through node and shoot culture and *in vitro* tuberization have enabled maintenance and propagation of disease-free planting materials in the laboratory for the potato breeder and farmer. Both shoot and *in vitro* tuberization systems are advantageous because of maintenance of disease-free materials. Moreover, *in vitro* tuberization of potato in the laboratory helps produce planting materials which are convenient to handle in transport, storage, and field planting. There are several published protocols for *in vitro* tuberization in potato (Kim, 1982; Wang and Hu, 1982; Hussey and Stacey, 1984; Tovar *et al.*, 1985). In general, there are two basic stages in all protocols. The first stage

¹Associate Professor, Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, ²Professor, Department of Horticulture, BSMRAU, Gazipur, ³Professor, Department of Genetics and Plant Breeding, BSMRAU, Gazipur, ⁴Professor, Department of Crop Botany, BSMRAU, Gazipur, Bangladesh.

aims to produce vegetative growth and the second stage to induce tuberization and allow enlargement of the tuberlets. Different authors recommended different media for vegetative multiplication and tuberization. Tovar et al. (1985) recommended MS + 0.5 mg/l BAP + 0.4 mg/l GA+ 0.01 mg/l NAA + 2% sucrose for the propagation phase and MS + 5.0 mg/l BAP + 500 mg/l CCC + 8% sucrose for the tuberization phase, which was useful for over 50 different genotypes covering a wide genetic base and ploidy levels and found 10 microtubers per flask having a weight of 49.8 to 143.5 mg. Wang and Hu (1982) obtained microtubers having an average weight of 250 mg in MS +10.0 mg/l BAP + 8.0% sucrose while Hussey and Stacey (1984) found microtubers having a weight of 60 to 120 mg by using MS + 2.0 mg/l BAP + 6.0% sucrose. Kim (1982) induced 1-2 microtubers per node in MS + 5.0 mg/l BAP + 6% sucrose. It is clear that microtuber number and average weight varied among protocols. The discrepancies between these findings are probably due to the use of different genotypes (Coleman and Coleman, 2000; Zakaria et al., 2008a) different mixtures of nutrient salts, and/or different concentrations of the growth regulators added (Zakaria et al., 2008b), together with possible variation in the size of vessel, light intensity and temperature. Therefore, the present study was undertaken to evaluate the performance of different protocols on in vitro tuberization in different potato varieties and to find out variety specific protocols.

Meterials and Method

In vitro grown microplants of three recommended potato cultivars viz., Cardinal, Diamant and Heera were used in the study. The microplants were multiplied through subculture of single stem nodes at every three weeks interval in Tissue culture laboratory of Horticulture Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University. The experiment was carried out during the period from July to September 2008. The propagation media used for different protocols are mentioned in the Table 1. All the propagation media were solidified with 0.8% agar. Temperature of the growth chamber was maintained at 23 $\pm 1^{\circ}$ C with 16 hours photoperiod at 3000 lux intensity from fluorescent tubes. At first phase, microplants were multiplied in solid media and then these were transferred into liquid media for microtuberization. Eight stem segments (Each with 3 nodes) of 30 days old in vitro microplants of Cardinal, Diamant, and Heera were cultured in 250 ml Erlenmeyer flasks containing 40 ml microtuber induction liquid medium, which was based on MS medium supplemented as per different protocols as shown in Table 2. The cultures were incubated in the dark at 20° C in continuous dark. The experiment included five protocols and three recommended potato varieties which in combination made 15 treatment combinations. The experiment was laid out in a factorial Completely Randomized Design (CRD) with three replications. The induced microtubers were harvested aseptically after 70 days of incubation. The collected data were

analyzed with the help of computer using MSTAT-C programme and the mean separation was done by Duncan's New Multiple Range Test.

Table 1. Propagation media for in vitro multiplication of plantlet in potato.

Media code	Media composition	Reference
DOD	MS (Murashige and Skoog, 1962) + GA 0.4 mg/l + BAP 0.5 mg/l + NAA 0.01 mg/l + 2.5% sucrose	Dodds, et al., 1988
CIP	MS+GA~0.4~mg/l+BAP~0.5~mg/l+NAA~0.01~mg/l+2%~sucrose	Tovar <i>et al.</i> , 1985
KIM	$MS + 0.1 \ mg/l \ GA + 0.5 \ mg/l \ Kinetin + 2\%$ sucrose.	Kim, 1982
SAR	MS + 0.1 mg/l GA + 0.01 mg/l NAA + 4 mg/l Calcium pantathonate + 3% sucrose.	Sarkar <i>et al.</i> , 1997

Table 2. Different tuberization protocols of potato.

Protocol code	Propagation medium code	Tuberization media
P_1	DOD	MS + 5 mg/l BAP + 50 mg/l coumarin + 8% sucrose (Dodds <i>et al.</i> , 1988).
P_2	CIP	MS + 5 mg/l BAP + 500 mg/l CCC + 8% sucrose (Tovar <i>et al.</i> , 1985).
P_3	KIM	MS + 5.0 mg/l BAP + 6% sucrose, (Kim, 1982).
P_4	SAR	MS + 10 mg/l BA + 8% sucrose (Naik et al., 1998)
P_5	SAR	MS with 60 meq N & 40 meq K + 10 mg/l BA + 9% sucrose (Zakaria, 2003)

Results and Discussion

Performance of protocols: Tuberization was the earliest (11.8 days) with P₂ (CIP) protocol closely followed by P₁ (Table 3). Tuberization was most delayed (15.9 days) with P₃ protocol. Rapid tuberization with P₂ protocol might be due to the presence of optimum concentrations of BA and CCC in the medium. Microtuberization promoted in presence of CCC (Hossain and Sultana, 1998; Zakaria *et al.*, 2008b) and BA (Islam, 1995 and Zakaria *et al.*, 2008b). Protocol P₅ showed earlier tuberization than P₃ which may be due to the presence of high concentration of BA and sucrose. Such a result was also reported by Palmer and Smith (1969) and Wang and Hu (1982). The maximum number of microtubers/flask (12.8) was with protocol P₁ closely followed by P₂ (11.6). The minimum number of tubers/flask was with P₃ (9.9). The protocols P₁ and P₂ showed higher number of microtubers per flask because of the presence of 50 mg/l coumarin and 500 mg/l CCC, respectively. More number of microtubers was reported with 50 mg/l coumarin (Dodds *et al.*, 1988) and with 500 mg/l CCC

(Hossain and Sultana, 1998). Coumarin at the rate of 50 mg/l produced more number of microtubers than 500 mg/l CCC (Dodds et al., 1988) which corroborate with the present findings. The average weight of microtuber was the highest (329.0 mg) with P₅ protocol, which was closely followed by P₄ (280.7 mg), while it was the lowest with P₁ protocol. The protocol P₅ produced the highest average weight of microtuber might be due to the presence of high concentrated BA (10 mg/l) and sucrose (9%). High concentration of BA in presence of high concentration of sucrose showed best performance in micro tuberization (Texeira and Pinto, 1991 and Naik et al., 1998). The heaviest microtuber with 10 mg/l BA (Teixeira and Pinto, 1991) and with 9% sucrose was reported by Jeoung-Lai et al. (1996). Production of lower weight of microtubers by protocols P₁ and P₂ might be due to presence of growth retardant (Dodds et al., 1988; Harvey et al., 1991 and Lian-Yong et al., 1996). The highest percentage (44.6) of large size (>300 mg) microtuber was produced with protocol P₅ followed by P₄ (29.3%), while in P₁, no large sized microtubers were produced. The maximum percentage (45.4) of <150 mg size microtubers was found with P₁. Dodds et al. (1988) found very small (<100 mg) microtubers with P₁ protocol. Tovar et al.(1985) also reported small microtubers (<150 mg) with P₂ protocol. Wang and Hu (1982) found the highest microtuber by using 10 mg/l BA in combination with 8% sucrose.

Table 3. Effect of protocols on induction and development of potato microtuber.

Protocols	Days to tuber initiation	No. of microtubers/ flask	Av. wt of microtuber (mg)	Grade of microtubers by number (%)		
				<150mg	150-300mg	>300 mg
P_1	12.7 с	12.8 a	157.4 e	45.4	54.6	0
P_2	11.8 c	11.6 b	177.5 d	44.3	52.0	3.7
P_3	15.9 a	9.9 d	223.9 c	32.4	48.2	19.5
P_4	14.9 ab	10.4 c	280.7 b	27.0	43.7	29.3
P ₅	14.2 b	10.9 c	329.0 a	21.3	34.0	44.6
Level of significance	**	**	**	NA	NA	NA
CV (%)	3.57	3.14	2.16	-	-	-

Means bearing same letter (s) in the same column do not differ significantly at 1% level of probability. NA- Not analyzed

Performance of potato variety: Microtuber initiation was most delayed (15.1 days) in the variety Diamant, while it was most rapid (12.3 days) in Heera (Table 4). This finding is consistent with the normal behaviour of potato cultivar in the field condition where tuberization occurs earlier in Heera than in Cardinal and Diamant (Rashid, 1999). Islam (1995) reported that microtuber initiation time

varied with genotype. He found earlier microtuber initiation with exotic varieties (Cardinal, Kufri Shindhuri) compared to local varieties of potato. Statistically similar numbers of microtuber per flask were observed with Cardinal and Diamant. The minimum number of microtubers was found with Heera. Varietal differences on the number of microtubers were found by Islam (1995) who reported that the local varieties of potato produced poor number of microtubers compared to exotic varieties. Hossain and Sultana (1998) also found that the variety Chamak produced very poor number of microtubers compared to Patrones. Average weight of microtuber was the highest (246.3 mg) in Diamant (Table 4). The minimum average weight of microtuber was shown by Heera, which was statistically similar to Cardinal. Genotypic variation on average weight of microtuber was observed by Islam (1995) who reported that the exotic varieties of potato produced higher average weight of microtuber than local varieties. Hossain and Sultana (1998) found that the variety Patrones produced significantly heavier microtuber compared to Lalsheel and Chamak. The highest percentage (22.0) of >300 mg size microtuber was produced by Diamant, while it was minimum in Heera (17.1%). Cardinal produced maximum percentage (35.7) of <150 mg size microtuber followed by Heera (34.2%) and Diamant (32.4%).

Table 4. Effect of variety on induction and development of potato microtuber.

Variety	Days to tuber	No. of microtubers/	Av. wt of microtuber (mg)	Grade of microtubers by number (%)		
	initiation	flask		<150mg	150-300 mg	>300mg
Cardinal	14.3 b	11.5 a	228.7 b	35.7	45.2	19.1
Diamant	15.1 a	11.9 a	246.3 a	32.4	45.6	22.0
Heera	12.3 c	9.9 b	226.1 b	34.2	48.7	17.1
Level of significance	**	**	**	NA	NA	NA
CV (%)	3.57	3.14	2.16	-	-	

Means bearing same letter (s) in the same column do not differ significantly at 1% level of probability. NA- Not analyzed.

Interaction effect of protocols and variety: The protocol P_2 followed by P_1 enhanced tuber initiation in all the varieties (Table 5). Tuber initiation was most delayed (17.3 days) with protocol P_3 in Diamant. Hossain and Sultana (1998) found that the tuberization was earlier with 5 mg/l BA + 500 mg/l CCC irrespective of genotypes which corroborates the present findings. The highest number of microtubers (13.7) was produced with P_1 protocol in Diamant. The lowest number of microtubers per flask was produced by P_3 protocol in case of all varieties. Hossain and Sultana (1998) found maximum number of microtubers per plant with 5 mg/l BAP + 500 mg/l CCC, which was similar to the

Table 5. Interaction effect of protocols and potato varieties on induction and development of microtuber.

Treatment combination	Days to tuber initiation	No. of microtubers/ flask	Average wt of microtubers (mg)	Grade of microtubers by number (%)		
Protocol × Variety				<150	150-300	>300
				mg	mg	mg
P ₁ X Cardinal	12.7de	13.0ab	145.1j	45.7	54.3	0
Diamant	13.3d	13.7a	162.1i	46.7	53.3	0
Heera	12.0ef	11.7cde	165.0i	43.8	56.2	0
P ₂ Cardinal	11.3f	12.0cd	160.3i	51.6	48.4	0
Diamant	12.7de	12.3bc	171.3i	42.1	57.9	0
Heera	11.3f	10.3gh	201.4h	39.2	49.8	11
P ₃ Cardinal	16.7ab	10.3gh	216.2g	32.3	47.1	20.6
Diamant	17.3a	10.7fg	235.3f	29.4	49.1	21.5
Heera	13.3d	8.7j	220.2g	35.4	48.3	16.3
P ₄ Cardinal	15.7bc	11.0efg	285.4d	28.1	45.2	26.7
Diamant	16.6ab	11.3def	297.4c	24.2	39.3	36.5
Heera	12.3def	9.0ij	259.4e	28.7	46.6	24.7
P ₅ Cardinal	15.0c	11.3def	336.5b	20.6	31.2	48.2
Diamant	15.7bc	11.7cde	365.5a	19.3	28.5	52.2
Heera	12.0ef	9.6i	285.1d	24.1	42.4	33.5
Level of significance	**	**	**	NA	NA	NA
CV (%)	3.57	3.14	2.16	-	-	-

Means bearing same letter (s) in the same column do not differ significantly at 1% level of probability. NA- Not analyzed.

performance of P_2 protocol. Dodds *et al.* (1988) found more number of microtubers by using 50 mg/l coumarin (P_1) instead of 500 mg/l CCC (P_2). The protocol P_5 produced the highest (365.5 mg) average weight of microtuber in the variety Diamant (Table 5). Lower average weight of microtuber was with P_1 and P_2 protocol in all varieties. Lower microtuber weight might be due to the presence of growth retardant which reduced microtuber weight (Harvey *et al.*, 1991; Leclerc *et al.*, 1994 and Lian-Yong *et al.*, 1996). Higher microtuber weight with P_5 and P_4 was obviously due to the presence of high concentration of BA and sucrose (Koda and Okazawa, 1983; Wang and Hu, 1982, and Palmar and Smith, 1969). The highest percentage (52.2) of >300 mg size and lowest percentage (19.3) of <150 mg size microtuber was produced with P_5 protocol in Diamant variety of potato (Table 5). In case of all varieties, the protocol P_1 did not produce any microtuber of size >300 mg, while P_2 produced the highest percentage (51.6) of <150 mg size microtuber in Cardinal.

References

- Coleman, W. K. and S. E. Coleman. 2000. Modification of potato microtuber dormancy during induction and growth *in vitro* or *ex vitro*. *Amer. J. Potato Res.* **77:** 103-110.
- Dodds, J. H., P. Tovar, R. Chandra, D. Estrella and R. Cabello. 1988. Improved methods for *in vitro* tuber induction and use of *in vitro* tubers in seed programs. *In:* Proc. Symp. on Improved Potato Planting Meterial, Kunming, China, June 21-24, 1988. Asian Potato Assoc. Pp. 157-158.
- Harvey, B. M. R., S. H. Crothers, N. E. Evans and C. Selby. 1991. The use of growth retardants to improve microtuber formation by potato. *Plant Cell Tiss. Org. Cult.* 27: 59-64.
- Hossain M. J. and N. Sultana. 1998. Effect of Benzylamino purine (BAP) and chloro choline choride (CCC) on *in vitro* tuberisation of potato. *Bangladesh J. Agril. Res.* **23**(4): 685-690.
- Hussey, G. and N. J. Stacey. 1984. Factors affecting the formation of *in vitro* tubers of potato (*Solanum tuberosum* L.). *Ann. Bot.* **53:** 565-578.
- Islam, M. S. 1995. Indigenous potato varieties of Bangladesh: Characterization by RAPD markers and production of virus free stock. Ph. D. Dissertation. Submitted to Dept. of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706. Bangladesh.
- Jeoung-Lai, C., S. M. Kang and Y. W. Choi. 1996. Effect of shoot culture and tuber inducing conditions on *in vitro* tuberization of potatoes. Proceedings of the fourth Asian Potato Association Triennial Conference. Philippines. Pp. 186-190.
- Kim, Y. C. 1982. *In vitro* tuber formation from proliferated shoots of potato (*Solanum tuberosum*) as a method of aseptic maintenance, Ph. D. Dissertation, South Korea. *In*: P. Tovar, R. Eatrada, L. Schilde-Rentschler and J. H. Dodds. 1985. Induction and use of *in vitro* tubers. *CIP Circular* **13**(4): 1-5.
- Koda, Y. and Y. Okazawa. 1983. Influences of environmental, hormonal and nutritional factors on potato tuberization *in vitro*. *Jpn. J. Crop Sci.* **52:** 582-591.
- Leclerc, Y., D. J. Donnely and J. E. A. Seabrook. 1994. Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. *Plant Cell Tiss. Org. Cult.* **37**(2): 113-120.
- Lian-Yong, D. Huiruo, X. Xin, Y. Hongfu, J. Liping, L. Huan and Z. Ying. 1996.
 Changes of several endogenous phytohormones during *in vitro* tuberization in potato.
 In: E. T. Rasco and F. B. Aromin (eds.). Asian Sweetpotato and Potato Research and Development, Manila. Selected Research Papers. July 1995-June 1996. Vol. 1: *Potato* P. 30-37.
- Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiologia Plantarum* **15:** 473-497.
- Naik, P. S., D. Sarkar and P. C. Gaur 1998. Yield components of potato microtubers *in vitro* production and field performance. *Ann. Appl. Biol.* **133:** 91-99.

Plamer, C. E. and O. E. Smith. 1969. Cytokinins and tuber initiation in the potato (*Solanum tuberosum* L.). *Nature* **221:** 279-280.

- Rashid, M. M. 1999. Shabjee Bighan. Rashid Publishing House, 94 old DOHS, Dhaka. Pp. 129-161.
- Sarkar, D., R. Chandra and P. S. Naik, 1997. Effect of inoculation density on potato micropropagation. *Plant Cell Tiss. Org. Cult.* **48:** 63-66.
- Teixeira, D.M.C. and J.E.B.P. Pinto. 1991. Minituberization of potatoes at different levels of N, saccharose and BAP. *Revista- Brasileria- de- Fisiologia –Vegetal* **3**(3). 77-83.
- Tovar, P., R. Estrada, L. Schilde-Rentschler and J. H. Dodds, 1985. Induction of *in vitro* potato tubers. *CIP Circular* **13:** 1-4.
- Wang, P. J. and C. Y. Hu. 1982. In vitro mass tuberisation and virus-free seed potato production in Taiwan. *Amer. J. Potato Res.* **59:** 33-37.
- Zakaria, M. 2003. Induction and performance of potato microtuber. Ph. D. Dissertation, Dept. of Horticulture. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh. 182P.
- Zakaria, M., M. M. Hossain, M. A. Khaleque Mian, T. Hossain and M. Z. Uddin. 2008a. Role of sucrose in micro tuberization in potato. *Bangladesh J. Agril. Res.* 33(1): 91-97.
- Zakaria, M., M. M. Hossain, M. A. Khaleque Mian, T. Hossain and M. Z. Uddin. 2008b. *In vitro* tuberization of potato influenced by benzyl adenine and chlorocholine chloride. *Bangladesh J. Agril. Res.* **33**(3): 419-425.