ISSN 0258-7122 (Print), 2408-8293 (Online) Bangladesh J. Agril. Res. 43(2): 219-234, June 2018

PROFITABILITY OF WINTER MAIZE CULTIVATION IN DROUGHT PRONE AREAS OF BANGLADESH

S. KHANDOKER¹, M. A. MONAYEM MIAH², M. A. RASHID³ M. KHATUN⁴ AND M. Z. A. TALUKDER⁵

Abstract

The study was conducted in four districts namely Rajshahi, Chuadanga, Comilla and Rangpur during 2015-2016 to estimate the effect of drought in maize production, technical efficiency and adaptation strategy of maize farmers, and explore related problems of maize cultivation in the study areas. Rajshahi and Chuadanga were selected as drought prone areas whereas Rangpur and Comilla were selected as favorable environment. A total of 200 farmers taking 50 from each district were selected randomly for the study. Per hectare total cost of maize cultivation in drought prone areas was found Tk. 92,582, whereas in normal environment it was Tk. 79,594. Per hectare average yield in drought prone and normal areas were 7576 kg and 8729kg, respectively. Per hectare net return of maize in drought prone and normal areas were Tk. 28,062 and Tk. 59, 871, respectively.On full cost basis benefit cost ratio (BCR) in drought prone and normal areas were 1.31 and 1.75, respectively. Result of semi-logarithmic regression model indicated that maize production was decreased by 22.4 percent in drought prone areas than normal environment. Loss of yield (70%), loss of plant growth (55%) and problem in flowering stage (43%) were reported to be the major effects of drought. The major adaptation strategies in the drought prone areas were increase number of irrigation (77%), increase amount of fertilizer (42%) and seed (31%) and change of planting date (30%). Higher price of irrigation (70%), lack of drought tolerant variety (48%) and lack of quality seed (31%) were the major problem in drought prone areas. Again, disease infestation (64%), lack of quality seed (41%) and high price of seed (36%) were the major problem in normal environment. Scientists should take attempt to develop drought tolerant maize variety.

Keywords: Consequence, drought, maize, net return and adaptation strategy.

1. Introduction

Bangladesh is an agriculture based country. It is recognized as one of the most vulnerable areas to the impacts of global warming and climate change. This is due to its unique geographic location, dominance of floodplains, low elevation, high population density, and overwhelming dependence on nature for its resources and services. Many of the anticipated adverse effect of climate change, such as sea level rise, higher temperature, enhanced monsoon precipitation and an increase in drought intensity, will aggravate the existing

^{1&4}Scientific Officer and ^{2&3}Principal Scientific Officer, Agricultural Economics Division, BARI, Joydebpur, Gazipur, ⁵Senior Scientific Officer, Plant Breeding Division, BARI, Joydebpur, Gazipur.

stresses that already impede the development of Bangladesh, particularly by reducing food security (Quazi and Quddus,2010). For ensuring food security, production of maize can play a vital role. The importance of maize crop cannot be over-emphasized. Maize is the third most important cereal crop in Bangladesh. It is much better than rice in terms of nutrients like protein, fat, minerals, phosphorus, carotene and thiamine (INFS, 2003). More than 90% of maize is used as poultry feed and the remaining in fish sector and as human food products (Hasan, 2008). The area under maize cultivation during 2013-2014 was about 3.07 lakh hectares with a total production of about 2.12 million metric tons and yield of 6.60 ton/ha (BBS, 2014). The area, production and yield of maize are increasing day by day (Table 1). If optimal irrigation and other inputs are given in appropriate way then it may be possible to obtain an average yield of 8 to 10 tons per hectare.

Drought is one of the crucial problems for many countries and the severity of such issue goes gigantic when it comes as obstacle to ensure an optimum agricultural production for a country like Bangladesh. Droughts are becoming more frequent, more intense, more spatially extensive, and of longer duration (IPCC, 2010). It is one of the major abiotic stresses which adversely affect crop growth and yield and thus a constraint for productivity worldwide (Jaleel et al., 2009). This problem occupied an extreme position in the northwest region of Bangladesh. In the northwest region, drought can have devastating impacts on maize production. Further, every year farmers in this areas incurred high cost as well as a huge crop loss due to drought. The impact of drought not only leads to the shortage of water and food but also have a long-term environmental, socioeconomic and health impact on the population (Sheffield et al., 2009; WHO, 2011). At present, the phenomenon is causing enormous difficulties towards maintaining livelihoods and has become a severe problem in the northwestern parts of Bangladesh. Keeping this in mind, the present attempt has been made to focus the effect of drought on maize production and adaptation strategy of the farmers in Bangladesh.

· -	-		
Year	Area	Production	Yield
2009-10	1.52	0.89	5.84
2010-11	1.66	1.02	6.15
2011-12	1.97	1.30	6.59
2012-13	2.35	1.55	6.59
2013-14	3.07	2.12	6.91

Table 1. Area, production and yield of maize in Bangladesh

Source: BBS, 2014.

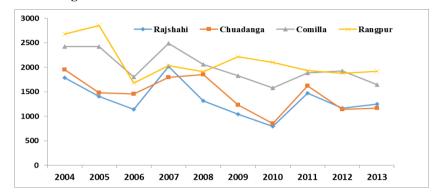


Figure 1. Average annual rainfall in selected areas

Source: BBS, 2013.

Fig. 1 reveals the average annual rainfall of four districts from 2004 to 2013. In 2004, average annual rainfall was found higher in Rangpur district and lowest in Rajshahi district. In Rajshahi district, highest rainfall was found in 2007 which was 2018 millimeter and lowest in 2010 which was 792millimeter. Similarly, in Chuadanga district, highest rainfall was found in 2004 which was 1951 millimeter and lowest in 2010 which was 852millimeter. Among four districts highest rainfall was found in Rangpur in 2005 and lowest in Rajshahi in 2010.During the period (from 2004 to 2013), annual rainfall of Rangpur and Comilla was found higher than Rajshahi and Chuadanga district.

1.1 Objectives

- i. To estimate the cost and return of maize in drought prone and normal environment;
- ii. To assess the effect of drought in maize production and adaptation strategies of the farmers in drought prone areas;
- iii. To identify problems of cultivating maize in the study areas.

2. Methodology

2.1 Sampling Procedure and Sample Size

Purposive sampling and multistage stratified random sampling technique were followed to collect sample farmers for this study. The study was conducted in four districts of Bangladesh. At first stage, two production environments namely drought prone and normal environment were purposively selected in consultation with the scientists of Plant Breeding Division of BARI. In order to capture two production environments, two districts under each environment were selected in this study. Rajshahi and Chuadanga were selected as drought prone areas, whereas Rangpur and Comilla were selected as favorable areas. Then one upazila from each four districts and two blocks from each upazila were purposively selected in consultation with DAE personnel and maize scientists. Godagari upazila from Rajshahi district, Sadar upazila from Chuadanga, Daudkandi from Comilla and Mithapukur upazila from Rangpur district were selected for administering questionnaire survey. Finally, a total of 200 farmers taking 50 from each district were randomly selected for the study.

2.2 Data Collection

The study was mainly based on primary data collected through face to face interview during the month of January to April 2016. Field investigators under the direct supervision of the researcher collected field level cross-sectional data using pre-tested interview schedule. Necessary information regarding this study was collected based on input costs, price, yields etc.

2.3 Analytical Techniques

Collected data were edited, summarized, tabulated and analyzed to fulfill the objectives of the study. Descriptive statistics using different statistical tools like averages, percentages and ratios were used in presenting the results of the study. The profitability of maize production was examined on the basis of gross return, gross margin and benefit cost ratio analysis. Besides, the opportunity cost of family supplied labour was taken into consideration in estimating total cost. Land use cost was calculated on the basis of per year lease value of land.Semilogarithmic regression model with dummy variable was used. A z- test for the two sample mean with known variance was conducted to test the mean difference between two groups of farmers i.e. drought prone and normal environment.

2.3.1 Profitability analysis

Profitability of maize was analyzed to compare the return received by the farmers.

Measurement on profitability of crop cultivation

Equations for cost analysis are as follows

Variable Cost = $VC_i = \sum (X_i P_i)$

 $TVC_i = VC_i + 10C_i$

 $TC_i = TVC_i + TFC_i$

Where, TC_i = Total cost for ith farmer (Tk/ha) TVC_i = Total variable cost (Tk/ha) TFC_i = Total fixed cost (Tk/ha) VC_i = Variable cost (Tk/ha) IOC_i = Interest of operating capital (Tk/ha) X_i = Quantity of inputs (kg)

222

PROFITABILITY OF WINTER MAIZE CULTIVATION

P_i = Price of inputs (Tk/kg) i = Number of farmers (1.2.3.....n)

Equations for profitability analysis Gross return = $GR_i = Y_iP_i$ Net return = $GR_i - TC_i$ Gross margin = $GR_i = VC_i$

Where,

 $GR_i = Gross return (Tk/ha)$ $P_i = Price (Tk/ha) received by ith farmer$ $Y_i = Quantity (kg/ha) produced$

2.3.2 Functional analysis

Production variability analysis

Semi-logarithmic regression model with dummy variable was used to estimate production variability of maize between drought prone and normal environment. In this regression model, production was considered as the dependent variable and the drought considered as independent variable. Production of maize varied extremely due to drought. To estimate the production variability of maize the following semi-logarithmic regression model was employed:

 $\ln Y = \beta 0 + \beta_1 D_1 + U$

Where, ln = Natural logarithm;

Y = Output of maize (kg/ha);

 D_1 = Dummy for drought (1 = drought; 0 = otherwise);

 β_1 = Slope coefficient of dummy for drought;

U = Random error term.

3.1 Technology Used in Maize Cultivation

Land preparation:Land preparation for maize production included ploughing, laddering and other activities needed to make the soil suitable for sowing seeds (Karim *et al.*, 2010). The number of ploughing varies from location to locations (Table 2). In the study areas cent percent farmers used Power tiller for land preparation which is mostly done on hire basis. Majority of farmers (35%) of drought prone areas ploughed their maize plot four times whereas in normal areas highest percentage of farmers (40%) ploughed two times.

Variety used by maize farmers: A total of 13 hybrid maize varieties were found in the study areas (Table 3). Among the varieties, Elite was the highly adopted variety (30%) in drought prone areas. On the other hand, innormal areas NK-40 was the mostly adopted varieties (53%). In normal areas the second and third

positions were secured by Miracle (26%) and Pioneer-3396 (12%). Responded farmers of Comilla district cultivated NK-40 and Miracle. Farmers of drought prone areas cultivated more varieties. Farmers in this areas also cultivated, Nk-40,981 and Super-999, CP-383 etc. BARI has developed some improved maize varieties, but these varieties could not found in the study areas. The main reason for non-adoption of BARI varieties mightbe the non-availability of seeds. The extent of using maize variety depends on the availability of seed at local level.

Table 2. Number of ploughing done by maize farmers

Normh an af	% farmers responded						
Number of	Drought prone area			Normal area			
ploughing	Rajshahi	Chuadanga	All areas	Comilla	Rangpur	All areas	
1	-	2	1	10	16	13	
2	10	22	16	34	46	40	
3	30	10	20	40	32	36	
4	44	26	35	14	6	10	
5	16	38	27	-	-	-	
6	-	2	1	2	-	1	
Total	100	100	100	100	100	100	

Source: Field survey, 2016

	% farmers responded						
Varieties	Dro	ought prone are	ea	Normal area			
	Rajshahi	Chuadanga	All areas	Comilla	Rangpur	All areas	
NK-40	18	4	11	54	52	53	
Miracle	12	14	13	46	6	26	
Elite	6	54	30	-	2	1	
Pioneer-3396	32	-	16	-	24	12	
981	2	20	11	-	4	2	
Pacific Super- 999	12	-	6	-	6	3	
CP-838	10	-	5	-	-	-	
Uttaran	-	8	4	-	-	-	
740	-	-	-	-	4	2	
Kissanvutta	4	-	2	-	-	-	
962	2	-	1	-	-	-	
Vision agro	2	-	1	-	-	-	
Kanok	-	-	-	-	2	1	
Total	100	100	100	100	100	100	

Source: Field survey, 2016

Irrigation:For maize cultivation, four irrigations are recommended by BARI. Variations were found among the responded farmers in irrigation application

(Table 4). In normal environment, highest percent of farmers (49%) irrigated two times followed by three times (33%). About 14% farmers in Comilla district irrigated their crop once a season. In Rangpur district, 26% farmer irrigated 3 times. However, farmers of drought prone areas irrigated 4-7 times. The highest percent of farmers (38%) irrigated 5 times followed by 6 times (36%). Sixteen percent farmers irrigated 7 times and 10% irrigated 4 times. Farmers of Rajshahi district provided more irrigation.

Normhan af	% farmers responded						
Number of Irrigation	Drought prone area			Normal area			
Inigation	Rajshahi	Chuadanga	All areas	Comilla	Rangpur	All areas	
1	-	-	-	14	-	7	
2	-	-	-	56	42	49	
3	-	-	-	30	36	33	
4	-	20	10	-	26	13	
5	22	54	38	-	-	-	
6	52	20	36	-	-	-	
7	26	6	16	-	-	-	
Total	100	100	100	100	100	100	

Table 4. Percent responses on the number of irrigation given to maize

Source: Field survey, 2016

Level of input use in Maize Cultivation

The account of input use by the farmers in different areas is presented in Table 5. Human labour was required for plantation of seed, application of manures and fertilizers, spraying, weeding, irrigation, and harvesting. Farmers of drought prone areas used 163 man-days of human labour per hectare of which 36% were family supplied and 64% were hired. On the other hand, in normal environment farmers used 144 man-days of human labour out of which 40% were family supplied and 60% were hired. Farmers of drought prone areas used more seed which was 20 kg per hectare than normal areas (18 kg). Per hectare manures used in maize cultivation was 2906 kg in drought prone areas whereas in normal areas it was 2450 kg. Farmers of drought prone areas used 335 kg urea, 188 kg TSP, 114 kg MoP etc. per hectare which was higher than normal environment. Farmers of drought prone areas also used slightly higher dose of other chemical fertilizers than normal environment.

3.2 Cost of Maize Cultivation

The cost of production included different variable cost items like land preparation, human labour, seed, manures, fertilizer, irrigation, insecticides etc. Both cash expenditure and imputed value of family supplied inputs were included in the analysis. Besides, interest on operating capital was also considered for the estimation of cost of maize cultivation.

Inputs	Drought prone area	Normal area	t- test values	Results				
Human labour (man-day)								
Family labour	58 (36)	57 (40)	0.1881	No difference				
Hired labour	103 (64)	87 (60)	0.0000	Difference				
Total human labour	161 (100)	144 (100)	0.0000	Difference				
Seed (kg)	20.48	18.47	0.0000	Difference				
Manures (kg)	2906	2450	0.0000	Difference				
Chemical fertilizers(Kg)								
Urea	335	276	0.0000	Difference				
TSP	188	158	0.0000	Difference				
MoP	114	88	0.0000	Difference				
Zipsum	4	0.84	0.0000	Difference				
Zinc	98	77	0.0000	Difference				
DAP	76	41	0.0000	Difference				
Boron	8	2	0.0000	Difference				

 Table 5. Per hectare input use pattern for maize cultivation

Source: Field survey, 2016

Note: Figures in the parenthesis indicate percentage

Table 6 represents the cost of maize cultivation in the study areas. Per hectare total cost of maize cultivation in drought prone areas was found Tk. 92,582 of which 70% were variable cost and the rest 30% were fixed cost. On the other hand, average total cost of maize cultivation in favourable environments was Tk. 79,594 per hectare of which 64% were variable cost and the rest 36% were fixed cost. Human labour was the major cost items incurred in both areas, which covered about 37% of the total cost in drought prone area and 39% in normal environment. Among the variable cost items, the second important cost item in drought prone areas was irrigation which occupied 9% of the total cost. Farmers of drought prone areas incurred Tk. 7,932 for irrigation whereas in normal environment it was Tk. 4,112 per hectare. The cost of seed and land preparation were 8% and 6% of the total cost, respectively. Land use cost occupied about 16% and 21% of the total cost in drought prone and normal environment. The cost of chemical fertilizers shared more than 15% of the total cost. Farmers of drought prone and favorable areas spent Tk. 3,331 and Tk. 2,652 per hectare, respectively for manures. The cost of insecticides occupied 2% of the total cost in the study areas.

PROFITABILITY OF WINTER MAIZE CULTIVATION

Contribution (Devil	N 1	Z-test	Results
Cost items	Drought prone area	Normal area	(p-values)	
A. Variable cost				
Cost of land preparation	5288 (5)	5732 (7)	0.0327	No difference
Hired labour	22064 (23)	18621 (23)	0.0251	No difference
Cost of seed	7904 (8)	6987 (9)	0.0000	Difference
Manures	3331 (3)	2652 (3)	0.0000	Difference
Chemical fertilizers				
Urea	5442 (6)	4550 (6)	0.0000	Difference
TSP	4281 (4)	3554 (4)	0.0000	Difference
MoP	1913 (2)	1417 (2)	0.0000	Difference
Zinc	612 (0.65)	126 (0.15)	0.0000	Difference
Zipsum	626 (0.67)	474 (0.60)	0.0000	Difference
DAP	1659 (2)	1091 (1)	0.0000	Difference
Boron	1362 (1)	282 (0.35)	0.0000	Difference
Cost of irrigation	7932 (9)	4112 (5)	0.0000	Difference
Cost of insecticides	2001 (2)	1539 (2)	0.0286	No difference
IOC@ 6% for 4 months	692 (0.74)	537 (0.67)		
Total variable cost B. Fixed cost	65107 (70)	50874 (64)		
Family labour	12450 (14)	12793 (16)	0.1085	No difference
Land use cost	15025 (16)	16427 (20)	0.0582	No difference
Total fixed cost	27475 (30)	28719 (36)		
C. Total cost (A+B)	92582 (100)	79594(100)		

Table 6. Cost of maize cultivation in the study areas(*in Tk./ha*)

Source: Field survey, 2016

Note: Figures in the parenthesis indicate percentage

3.3 Profitability of Maize Cultivation

The return from maize cultivation in different district is presented in Table 7. Farmers in the drought prone areas obtained an average yield of7576 kg per hectare. In the favorable areas, per hectare average yield was found 8729 kg. The higher gross return of maize was found in favourable environment (Tk. 1, 39,465/ha) and lower in drought prone environment (Tk.1, 20,644/ha). Similarly, higher net return of maize was found in favourable environment (Tk. 59,871/ha) and lower in drought prone environment (Tk.280, 62/ha). Benefit cost ratio (BCR) on full cost basis in drought prone and normal areas were 1.31 and 1.75, respectively. In drought prone areas, farmers spent on an average Tk. 12 for

producing 1 kg of maize whereas farmers of normal areas spent Tk. 9. Finally, it was revealed that the farmers of drought prone areas used more inputs but received less output from maize cultivation compared to the farmers of normal area which might be the consequences of drought.

3.4 Effect of Drought in Maize Plant

Farmers of drought prone areas were asked what type of effect they found in maize plant due to drought. About 79% farmers reported that serious problem occurred in maize plant and the remaining 21% mentioned that problem was not significant (Table 8).Reduction of yield was the major effect of drought.Fifty five percent farmers said that due to drought plant growth hampered (Table 9). Problem in flowering stage (43%), dryness of cob (42%), leaf rolling (37%) and loss of grain (29%) were reported to be the major effect of drought in maize cultivation.

Particulars	Drought prone area	Normal area	Z-test (p-values)	Results
A. Total cost (Tk./ha)	92582	79594		
Total variable cost (Tk./ha)	65107	50874		
Total fixed cost (Tk./ha)	27475	29719		
B. Yield (kg/ha)	7576	8729	0.0000	Difference
C. Price (kg)	16	16	0.1250	No
				difference
D. Gross return (Tk./ha)	120644	139465	0.0000	Difference
E. Gross Margin (Tk./ha)	55537	88590	0.0000	Difference
F. Net Return (Tk./ha)	28062	59871	0.0000	Difference
G. Benefit cost ratio (BCR)				
BCR on full cost basis	1.31	1.75	0.0000	Difference
BCR on cash cost basis	1.85	2.74	0.0000	Difference
H. Production cost (Tk./kg)	12	9		
Source: Field survey, 2016				

Table 7. Profitability of maize cultivation

Table 8. Severity	of the	effects	of drou	ıght in	maize	plant

Items	Rajshahi	Chuadanga	All areas
Serious problem	82	76	79
Problem was not significant	18	24	21

Source: Field survey, 2016

3.5 Production Variability of Maize

In order to estimate the production variability of maize due to drought occurrence, semi-logarithmic regression model with dummy variable was employed. Drought greatly affects maize production in some areas of

228

PROFITABILITY OF WINTER MAIZE CULTIVATION

Bangladesh. Maize is grown during the dry season (November to March), usually after the Aman harvest when drought occurs in some areas. Drought negatively affects the growth of maize in all stages, but the reproductive stage is the most sensitive to drought stress (Grant *et al.*, 1989). Drought stress occurred during this period result in a significant reduction of grain yield (Bolanos et al., 1993).

Table 9. Types of effects of drought in the study areas

	-		
Types of effects	Rajshahi	Chuadanga	All areas
Reduced yield	76	64	70
Stagnant of plant growth	52	58	55
Problem in flowering stage	62	24	43
Dryness of cob	34	50	42
Leaf rolling	42	32	37
Loss of grain	36	22	29
Plant die	6	14	10

Source: Field survey, 2016

Table 10 revealed that maize production decreased by 22.4 percent in the drought prone area compared to normal environment. In normal environment maize production increased due to favourable climate. This reduction of yield is consistent with (Miah, 2010). Miah found that in Bangladesh due to drought yield of maize decreased from 30% to 60%.

Variable	Coefficient	Standard error	t-value	Significant
Constant	9.104	0.007	1379.417	0.000
Drought dummy	-0.224	0.009	-23.958	0.000

3.6 Farmer's Perceptions about the Effect of Drought on Maize Yield

The study examined farmer's perception about the effect of drought on maize yield which is presented in Table 11. Highest percent of farmers (61%) in drought prone areas mentioned that due to drought their maize production decreased to a large extent and 25% said that the reduction of yield was moderate. Some farmers also mentioned that yield reduced slightly and some did not find any effect.

3.7 Farmer's Opinion about the Effect of Drought on Cost of Maize Cultivation

Hundred percent farmers in drought prone areas reported that due to drought their production cost increased to a large extent. Among them 41% farmers mentioned that cost increased highly and 26% reported that cost increased moderately (Table 12). About 33% farmers said that cost increased slightly.

Table 11. Farmer's perceptions about the effect of drought on maize yield

Acuteness of the effect	% farmers responded				
	Rajshahi	Chuadanga	All areas		
Highly	64	58	61		
Moderately	22	28	25		
Slightly	10	8	9		
Don't know	4	2	3		
No effect	-	4	2		
Total	100	100	100		

Source: Field survey, 2016

Table 12. Farmer's perception about effect of drought on cost of maize

Acuteness of the effect	% farmers responded				
Acutelless of the effect	Rajshahi	Chuadanga	All areas		
Highly	54	28	41		
Moderately	20	32	26		
Slightly	26	40	33		
Total	100	100	100		

Source: Field survey, 2016

3.8 Adaptation Strategy of the Farmers

Farmers of the drought prone areas follow some strategies to cope up with the environment for cultivating maize which is presented in Tables 13 and 14. About 84% farmers reported that they took some strategies maize cultivation for mitigating drought. The main reasons for not taking strategy were lack of knowledge about strategy, unavailability of strategies and unwillingness.

Majority of the farmers (77%) reported that they increased number of irrigation for cultivating maize in drought prone areas. The highest 7 number of irrigation was found in those areas. About 42% farmers mentioned that they use more doses of fertilizer which was highest in Rajshahi district. Increasing amount of seed (31%) was also important strategy in both areas. About 30% farmers opined that they changed the date of planting for mitigating drought problem. Farmers of drought prone areas planted seed in 2^{nd} week of October which they thought as vital strategy.

 Table 13. Percent of drought affected farmers adopted adaptation strategy in maize cultivation

Items	Rajshahi	Chuadanga	All areas
Taking adaptation strategy	86	82	84
No strategy	14	18	16
Total	100	100	100

Source: Field survey, 2016

Table 14. Different adaptation	strategies	adopted	by the	farmers in	drought pr	one
areas						

Strategies	% farmers responded				
Strategies	Rajshahi	Rajshahi Chuadanga			
1. Increase in the number of irrigation	76	78	77		
2. Use more fertilizer	58	36	42		
3. Increase of seed rate	24	38	31		
4. Change sowing date	38	22	30		
5. Cultivate maize near water bodies	18	-	9		
6. Set up shallow tube well in pond	10	-	5		

Source: Field survey, 2016

Table 15.	Problems of	f maize cu	ltivation in	the study areas
-----------	-------------	------------	--------------	-----------------

	% farmers responded						
Type of problems	Dre	Drought prone area Norma			ormal area	nal area	
Type of problems	Rajshahi Chuadanga A	All areas	Comilla	Rangpur	All		
	5	U			01	areas	
High price of irrigation	76	64	70	-	-	-	
Lack of quality seed	12	50	31	60	68	64	
Disease infestation	20	38	29	50	32	41	
High price of seed	16	48	32	34	38	36	
Non availability of quality insecticides	12	28	20	8	26	17	
High price of fertilizers	-	6	6	2	36	19	
Lack of drought tolerant variety	54	42	48	-	-	-	
Bird cause disturbance	16	34	25	20	14	17	
Dominance of intermediaries	-	8	4	-	28	14	
Weighted loss	-	-		-	46	23	
Water logging	-	-	-	20	6	13	
High price of land preparation	-	12	12	4	18	11	
Lack of training facility	18	2	10	4	10	7	
Lack of credit		8	4		6	3	
Lack of irrigation facility	4	-	2	-	-	-	

Source: Field survey, 2016

3.9 Problems of Maize Cultivation

Although maize is a profitable crop in the study areas, there are some constraints to its higher production. The first and foremost constraint of maize cultivation in drought prone areas was high price of irrigation (70%). Due to low water aquifers, low discharge of water and high price of labour irrigation cost was high. Lack of quality seed (64%) was the main constraint of maize cultivation in

normal areas. About 31% farmers of drought prone areas also reported this problem. Farmers of all areas said that the price of seed was also very high. Infestation of diseases was the important problem for farmers of all districts which hampered higher yield of maize. Non availability of pure insecticides, high price of fertilizers, lack of training facility and facing disturbance for bird were opined to be the important constraints for farmers of all areas. About 48% farmers of drought prone areas reported that lack of drought tolerant variety was one of the major problems. Dominance of intermediaries and weighted loss were major problem for the farmers of Rangpur district (Table 15).

Facilities	% farmers responded					
Facilities	Rajshahi	Chuadanga	Comilla	Rangpur	All areas	
Timely supply of quality seed	22	36	58	52	42	
Reasonable price of seed	28	46	32	36	35	
Provide drought tolerant variety	78	54	-	-	33	
Provide irrigation facility at low price	46	32	-	4	20	
Timely supply of quality insecticides	4	26	12	22	16	
Reduce dominance of intermediaries	-	4	-	36	10	
Monitoring system for quality seed	-	12	14	26	13	
Arrange training facility	18	4	6	12	10	
Provide credit facility	8	16	2	10	9	
Improve irrigation system	16	4	-	-	5	
Increase market demand	-	2	6	2	3	

Source: Field survey, 2016

3.10 Facility Demanded by the Maize Farmers

Respondent farmers in the study areas wanted some facilities for cultivating maize. All of their demands are presented in Table 16. Majority (42%) of the farmers wanted quality seed because good quality seed is a pre-requisite for higher yield. Some farmers reported that they were cheated by seed dealers and experienced with low seed germination resulting in decline of production. Therefore, farmers wanted monitoring system for quality seed (13%) and also reasonable price (36%). In the study areas, farmers were very much enthusiastic to cultivate BARI hybrid maize. About 16% farmers wanted timely supply of pure insecticides. Reducing dominance of intermediaries was demanded by 13% farmers which was higher in Rangpur district (36%). A good number of farmers of drought prone areas wanted drought tolerant variety and low price of irrigation. Arranging training facility (10%), providing credit facility (9%), improving irrigation system (5%), and increasing market demand (3%) were also required for increasing maize production in the study area.

4. Conclusions and Recommendations

4.1. Conclusions

The study assessed the effect of drought in maize cultivation. Profitability indicators clearly indicate that maize is a remunerative crop both in drought prone and normal environment. The production of maize in drought prone areas was lower than normal areas. But the cost of production in drought prone areas was found higher than normal areas due to higher cost of irrigation and more use of inputs. The farmers in drought prone areas received less produce but incurred higher costs compared to normal environment which may be due to drought. Loss of yield, loss of plant growth and dryness of cob were the major effects of drought. About 100% farmers have taken some strategy to cope up with drought. Although maize is a profitable crop, due to some setbacks few farmers showed negative attitudes toward its production. High price of irrigation, lack of quality seed, disease infestation and high price of seed were the major problem in the study areas. Farmers also wanted some facilities for increasing maize production and improving livelihood status of maize farmers in study areas.

4.2 Recommendations

- Quality seed should be made available to the farmers at reasonable price. For this, Government should encourage BADC and private seed companies to produce quality maize seed.
- Scientists should take attempt to developdrought tolerant maize variety.
- High price of fertilizers affected the yield of maize. In this regard, government should take necessary step for supplying fertilizers to the farmers at reasonable price.

References

- BBS. 2013. Yearbook of Agricultural Statistics, Bangladesh Bureau of Statistics, Statistics and Information Division, Ministry of Planning, Government of the People's Republic of Bangladesh.
- BBS. 2014. Yearbook of Agricultural Statistics, Bangladesh Bureau of Statistics, Statistics and Information Division, Ministry of Planning, Government of the People's Republic of Bangladesh
- Bolanos, J., G. O.Emeades, and L. Martinez. 1993. Eight ccles of selection for drought tolerance in tropical maize. III. Responses in drought adaptive physiological and morphological traits. Field Crops Res. 31: 269-286.
- Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, R. Somasundaram, R. Panneerselvam. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. *Int. J. Agric. Bio.* 11:100–105.
- Grant, R. F., Jackson, B. S., Kiniry, J. R., and Arkin G. F. 1989. Water deficit timing effects on yield components in maize. Agron. J. **81:**61-65.
- Hasan F.M. 2008. Economic Efficiency and Constraints of Maize Production in the Northern Region of Bangladesh. j. innov.dev.strategy. **2**(1): 18-32 (April 2008).

- INFS. 2003. Nutritive Survey of Bangladesh, Institute of Nutrition and Food Science, Dhaka University, Bangladesh.
- IPCC. 2010. World climate report-global drought pattern. Retrieved February 2011 from www.worldclimaterepor.com/indexphp/2010/02/24/update on-global-drought-patterns-ipcc-take-note
- Karim, M. R., Moniruzzaman, Alam, Q. M. 2010. Economics of Hybrid Maize Production in Some Selected Areas of Bangladesh. Bangladesh J. Agril. Res. 35(1): 83-93, March 2010.
- Miah, M. U. 2010. Assessing long term impacts of vulnerabilities on crop production due to climate change in the coastal areas of Bangladesh, Final Report PR #100/08, National Food Policy Capacity Strengthening program, Food planning and monitoring Uit, Ministr of Food and Diseaster Management, FAO, Bangladesh.
- Quazi, N. U., &Quddus, K. M. G. 2010. 'Climate Chenge in Bangladesh (Term Paper). StudyMode.com. Retrieved from http://www.studymode.com/essays/Climate-Chenge-In-Bangladesh-1164777.html
- Sheffield, J, K.M. Andreadis, E.F. Wood and D.P. Lettenmaier. 2009. Global and continental drought in the second half of the twentieth century: severity-areaduration analysis and temporal variability of large-scale events. J. Climate, **22**: 1962-81.
- WHO (World Health Organization). 2011. Health action in crisis-drought-natural disaster profiles. WHO. Retrieved from August 2011.

Appendix Table

T-11.1 A		
Table 1. Average annual	rainiali in	selected areas

Year	Rajshahi	Chuadanga	Comilla	Rangpur
2004	1786	1951	2424	2680
2005	1405	1482	2424	2853
2006	1145	1452	1803	1682
2007	2018	1797	2491	2037
2008	1315	1851	2057	1907
2009	1043	1234	1824	2217
2010	792	852	1578	2102
2011	1475	1622	1884	1932
2012	1164	1138	1929	1877
2013	1248	1165	1643	1916

Source: BBS, 2013

234