PERFORMANCE OF MANGO GERPLASM IN PATUAKHALI CONDITION

M. M. R. TALUKDER ${ }^{1}$, E. MAhMUD ${ }^{2}$, M. R. KARIM ${ }^{3}$
N. AKHTAR ${ }^{4}$ AND M. N. ISLAM ${ }^{5}$

Abstract

A study was conducted for four consecutive years from 2014 to 2917 at the Regional Horticultural Research Station (RHRS), Bangladesh Agricultural Research Institute (BARI), Lebukhali, Patuakhali. Six mango varieties, viz. BARI Aam-1, BARI Aam-2, BARI Aam-3, BARI Aam-4, BARI Aam-5, BARI Aam-8 developed by BARI and six popular cultivars Khirshapat, Langra, Mallika, Gopalbhog, Fazli and Pahutan were evaluation for their performance. The germplasm were planted in 2010. All the cultivars bloomed in $1^{\text {st }}$ to $3^{\text {rd }}$ week of February. Harvesting time ranged from $2^{\text {nd }}$ week of May to $1^{\text {st }}$ week of July and Gopalbhog and BARI Aam-4 were earlier while Fazli was late season cultivar. In the last year of study (2017), maximum number of fruits per plant was recorded 259 in BARI Aam-3 and minimum 11 in BARI Aam-1. Individual maximum fruit weight was 663.09 g in BARI Aam-4 in 2016. Average, individual fruit weight ranged from 553.92 to 183.13 g where Fazli was the maximum followed by 465.94 g in BARI Aam-4. Minimum individual fruit weight was measured in BARI Aam-3. Total Soluble Solids percent (TSS\%) ranged from 16.83 to 2166% and BARI Aam- 3 was maximum and BARI Aam2 was minimum. Number of fruits per plant, individual fruit and sweetness (TSS\%) of variety/and cultivar fluctuated in different year although the trend of results in the succeeding years was consistent.

Keywords: Mango variety, cultivar, growth behavior, fruiting, flowering.

Introduction

Mango production in Bangladesh is increasing day by day. According to Bangladesh Bureau of Statistics (BBS), the country has produced 1.2 million tons of mango from 95.16 thousand hectares of land in 2019-2020 (BBS, 2021). Good quality elite mangoes are produced in the north and north-western parts of Bangladesh. Mangoes grown in other parts of the country are mostly anonymous, propagated by seeds and quality is not as expected. Prevailing low temperature at flowering and fruit setting and warm to hot during fruiting favor the production of good quality mango in northern Bangladesh (Biswas et al., 2021). However, climate related changes has made mango cultivation possible
${ }^{1}$ Principal Scientific Officer, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute (BARI), ${ }^{2,3 \& 4}$ Scientific Officer, RHRS, BARI, Lebukhali, Patuakhali. ${ }^{5}$ Director General, BARI, Gazipur, Bangladesh.
in new areas of the country and the hilly areas in the south-east has become the new hot-spot for mango cultivation. In addition, existing varietal differences for their performances in wet and dry conditions will offer opportunities of expansion mango cultivation in more areas of Bangladesh particularly in the southern part (Rajan, 2016). This area consists of about 20 million hectares of arable lands of the country, enjoys a subtropical climate with high temperature, high humidity and heavy rainfall with occasionally gusty winds in AprilSeptember and less rainfall associated with moderately low temperature during October-March. Capacity to survive seasonal crops in this areas is largely irrelevant due to excessive soil salinity, inadequate irrigation facilities in dry season. Productivity of this area may be increased by introducing annual fruits in the production system. Mango might be one of the leading species for this region because of its wider climatic adaptation capability. Considering the aforesaid facts, the experiment was under taken with a view to evaluating the performance of elite mango cultivars and BARI developed varieties in southern region of Bangladesh.

Materials and methods

The study field was conducted at the Regional Horticultural Research Station (RHRS), Bangladesh Agricultural Research Institute (BARI), Lebukhali, Patuakhali Lebukhali, Patuakhali during 2014-2017. Geographical notation of the station is $22^{\circ} 35^{\prime \prime} \mathrm{N}$ latitude to $90^{\circ} 31^{\prime \prime} \mathrm{E}$ (Fig.1). The experiment was laid out in a randomized complete block design (RCBD) with three replications. Each plant was considered as a replication. Six BARI developed varieties BARI Aam-1, BARI Aam-2, BARI Aam-3, BARI Aam-4, BARI Aam-5, BARI Aam-8 and six commercial and exotic elite cultivars Pahutan, Khirshapat, Langra, Gopalbhog, Mollika and Fazli were included in this study. The saplings were planted on October, 2010 with a spacing of 8 mx 8 m . Regular training and pruning were done to provide good shape to the plants. Flowers were removed unto first three years to obtain a good plant vigor. Irrigation, fertilization and other intercultural operations were done as per recommended schedule by Chowdhury and Hossain (2013). Girth of the trunk was measured at a height of 15 cm from the ground level and canopy area was calculated following formula by Shaw (2005), such as $\mathrm{K}=\pi \mathrm{ab}$, where: K is projected crown area, a and b are the major and minor radius of the ellipse. Data on plant height, flowering and harvesting time, fruit weight, number of fruits per tree and TSS content were also recorded.

Fig. 1. Map of Patuakhali District

Fig. 3. Average rainfall in number of rainy days of Patuakhali during the study period

Fig. 2. Minimum and maximum temperature of Patuakhali during the study period

Fig. 4. Cloud and relative humidity (RH) of Patuakhali during the study period

Sources: ${ }^{\text {a }}$ Google Map, ${ }^{\text {b }}$ www.worldweatheronline.com

Results and Discussion

Physiography of the study location

Patuakhali is an administrative district in south-central part of Bangladesh, which is located at $22^{\circ} 35^{\prime \prime} \mathrm{N}$ latitude to $90^{\circ} 31^{\prime \prime} \mathrm{E}$ longitude with an altitude of 1.5 meter (Figure 1). The area falls under AEZ 13 which belongs to the Ganges tidal floodplain. Patuakhali enjoys a subtropical climate with high temperature, high humidity and heavy rainfall with occasionally gusty winds in April-September and less rainfall associated with moderately low temperature during OctoberMarch. The temperature, rainfall and relative humidity data during the study period are presented in figure $2-4$. The whole area lies within the cyclone affected region and affected with tidal surge and medium to high salinity. Noncalcareous Grey Floodplain soil is the major component of general soil types (Ahmed and Hussain, 2009; BBS, 2021).

Flowering and harvesting time

A four year study revealed that flowering of genotypes under study occurred during $1^{\text {st }}$ to $3^{\text {rd }}$ weeks of February where BARI Aam-1 was consistently earlier. BARI Aam-4, BARI Aam-5, BARI Aam-8 and Pahutan flowered lately. Harvesting of fruits study started from $2^{\text {nd }}$ week of May to $1^{\text {st }}$ week of July and Gopalbhog was the earliest in all through the study years. In the $1^{\text {st }}$ year of study it was observed that BARI Aam-1, Gopalbhog and Khirshapat were harvested in $1^{\text {st }}$ week of June (earlier) while Fazli and Pahutan started harvesting in $1^{\text {st }}$ week of July (Table 1). Although flowering and harvesting times of a particular variety found different from different years, the time intervals between different varieties were continued in every cropping season. Variation in air temperature, rainfall, number of rainy days, soil moisture might influence these sequences of phonological changes and harvesting period (Fig. 1-4). Rajan (2012) in a study of phonological response of mango to environmental changes similarly observed early or delay flowering in mango. Barua et al. (2013), Bally (2006) and Makhmale et al., (2016) also reported weather factors infuencing flowering and harvesting of mango.

Tree growth characteristics

Considering the plant height, trunk height, base girth and canopy area a rapid growth rhytm was observed among the genotypes. Tree stature of BARI Aam-8 was found bushy while BARI Aam-1, Mallika, Langra and BARI Aam-3 found taller (Table 2). However, oberved variations between the genotypes on tree stature and vegetative growth might be genetically determined (Rajan, 2012).

Fruit number, individual fruit weight and percent total soluble solids (TSS\%) of pulp

BARI Aam-3 and BARI-Aam- 8 in the $1^{\text {st }}$ year of study produced the highest number of fruits per plant. The lowest number of fruits per plant was recorded in BARI Aam-1 followed by Fazli, Gopalbhog and Khirshapat. No fruit was harvested in variety Mollica in the first year of study. It was observed that the number of fruits of the genotypes increased with increased of age of plant and the trend of fruit set between the genotypes was consistent in the succeeding years (Table 3).
Individual fruit weight ranged from 167 g in BARI Aam-8 in 2014 to 663.09 g in BARI Aam-4 in 2016. In an average, fruit weight 553.92 g was measured maximum in Fazli followed by 465.94 g in BARI Aam-4. Fruit weight 1883.13 g in BARI Aam-3 was minimum (Table 3). It is to be noted that the weight of fruits of a particular variety/cultivar differed in different growing seasons. This variation might associated with climatic factors (Rajan et al., 2012). Normand et al., (2015) also explained that fruit size, shape, color and other qualitative traits are genetically controlled and which might be fluctuated by variability of growing environment.
Table 1. Flowering time and harvesting time of different mango cultivars/ varieties.

Variety	Flowering time				Harvesting time			
	2014	2015	2016	2017	2014	2015	2016	2017
BARI Aam-1	1st week of February	1st week of June	1st week of June	3rd week of May	1st week of June			
BARI Aam-2	2nd week of February	2nd week of June	2nd week of June	4th week of May	1st week of June			
BARI Aam-3	2nd week of February	2nd week of February	2nd week of February	3nd week of February	3rd week of June	3rd week of June	1st week of June	3rd week of June
BARI Aam-4	3nd week of February	4th week of June	4th week of June	3rd week of June	1st week of July			
BARI Aam-5	3nd week of February	1st week of June	1st week of June	4th week of May	4th week of May			
BARI Aam-8	3nd week of February	4th week of June	4th week of June	2nd week of June	3nd week of June			
Gopalbhog	1nd week of February	2nd week of February	2nd week of February	2nd week of February	1st week of June	1st week of June	2nd week of May	3rd week of May
Pahutan	3nd week of February	2nd week of February	2nd week of February	2nd week of February	1st week of July	1st week of July	4th week of June	4th week of June
Mallika	2nd week of February	2nd week of February	1st week of February	2nd week of February	4rd week of June	4rd week of June	3nd week of June	3nd week of June
Langra	2nd week of February	3rd week of June	3rd week of June	2nd week of June	2nd week of June			
Fazli	2nd week of February	1st week of July						
Khirshapat	2nd week of February	1st week of February	2nd week of February	2nd week of February	1st week of June	1st week of June	3nd week of May	4th week of May

Table 2. Tree growth characteristics of different mango cultivars/ varieties.

Variety	Plant Height (cm				Trunk height (cm)				Base girth (cm)				Canopy area (\mathbf{m}^{2})			
	2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017	2014	2015	2016	2017
BARI Aam-1	283.30	$346.67 \mathrm{a}-\mathrm{c}$	403.67b	91.00a	54.67de	73.70d-f	79.67 de	82.00c	22.00 d	31.33de	37.67f	40.67 cd	3.51c	6.71de	0.37de	11.45 ef
BARI Aam-2	275.00	316.00 cd	410.67b	449.67a-d	45.67ef	53.30 g	70.33 e	71.00de	24.33 d	36.00 cd	44.67 de	46.00bc	4.44b	8.35 c	10.50c-e	12.31e
BARI Aam-3	266.70	346.67a-c	468.33a	470.67a-c	62.67 cd	79.70de	100.67b	103.00b	22.33 d	33.33de	57.67ab	63.33a	4.69b	11.24b	18.78a	20.37b
BARI Aam-4	193.30	268.67ef	316.33c	352.67 e	71.00bc	82.30de	76.67e	82.67c	21.67d	29.33 e	34.00f	44.00bc	2.76 d	5.88ef	9.20ef	11.17ef
BARI Aam-5	273.00	366.67ab	429.33ab	433.00b-d	89.00a	107.00a	125.00a	162.67a	22.00 d	29.66e	38.00ef	44.33bc	2.82 d	4.33 g	13.50b	17.74c
BARI Aam-8	286.70	318.33cd	405.00b	481.67ab	73.33 b	85.30b-d	87.33cd	94.33b	30.00c	39.33c	54.67a-c	59.33a	6.92a	11.44 b	16.99a	23.75a
Gopalbhog	226.00	336.67bc	310.00c	341.33 e	43.33f	94.70b	70.33 e	79.67 cd	34.67 bc	39.00c	49.67 cd	50.67b	2.83 d	6.42 e	9.96ce	10.96ef
Pahutan	231.70	253.33 f	398.33 b	427.33 cd	42.33 f	70.70ef	52.00f	69.00 e	23.67d	31.66de	41.33 ef	44.00bc	3.17c	5.58 ef	11.96b-d	15.44d
Mallika	225.00	250.00f	453.67a	474.33a-c	38.00 fg	84.50 cd	51.00f	57.00f	22.43d	28.00 e	34.00f	36.67d	2.99 cd	5.00fg	17.32a	18.87bc
Langra	312.00	340.00bc	401.67b	461.33a-d	85.00a	97.30 ab	94.33bc	98.33b	41.67a	45.66a	57.00ab	61.33a	4.88b	11.14b	18.80a	19.67b
Fazli	292.50	376.67a	392.00 b	419.67 d	31.33 g	65.50f	56.00f	64.67ef	39.50ab	50.33a	61.33a	63.00a	4.43b	12.67a	12.31 bc	14.38d
Khirshapat	264.70	293.33de	323.33 c	345.33 e	69.33bc	78.30d	91.00bc	94.00 b	30.00c	33.33de	44.67de	46.67bc	3.55 c	7.83cd	7.85 f	9.67 f
Level of Sig.	ns	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
CV (\%)	17.53	14.92	11.40	11.95	15.78	14.42	11.28	11.04	17.49	14.30	14.09	12.80	0.64	1.16	1.85	1.81

Table 3. Fruit number, fruit weight and TSS of different mango cultivars/ varieties.

Variety	Fruit Number plant ${ }^{1}$					Average Fruit Weight (g)					TSS (\%)				
	2014	2015	2016	2017	Average	14	2015	2016	2017	Average	2014	2015	2016	2017	Average
BARI Aam-1	5.00g	5.66 f	19.33 f	10.67f	0.17	208.50ef	220.00ef	145.83h	285.67cd	215.00	18.50c-e	18.00cd		16.33b	17.61
BARI Aam	29.67e	48.66c	99.67 c	48.33e	56.58	245.00cd	244.00e	233.34	204.00e	231.59	17.25de	17.00d		16.25b	16.83
BARI Aam	58.33a	186.67a	394.67a	395.00a	258.6	174.00gh	183.00 g	6.50 g	189.00	83.13	22.33 a	23.33a		9.33 a	21.66
BARI Aam	36.33d	49.00c	79.00	102.00	6.58	.00	409.00b	663.09a	527.67a	465.94	20.65ab	21.50ab		8.65 a	20.27
BARI Aam	45.85 c	12.00	13.338	9.67	7.7	. 00	184.00g	198.00fg	312.67	221.9	19.30 bc	18.25c		8.25ab	8.6
BARI Aam-8	53.00ab	96.66b	193.00b	196.00b	134.6	167.00	208.00fg	180.55g	260.00d	203.8	20.00 bc	20.00b		8.00ab	9.33
Gopalbhog	23.00	12.00	. 33	93.67	2.75	32.00	244.00e	174.39gh	252.00d	225.60	16.72e	16.72d		8.76	17.40
utan	33.67de	48.33c	46.67e	76.67d	1.34	259.90bc	340.20c	355.00c	389.67b	336.19	19.15b-d	19.15c		17.72ab	18.6
Mallika	OOh	0.00 g	26.67 f	66.67d	3.34			294.00d	393.67b	343.84				8.68	18.86
Langra	46.00 bc	,0e	6.00 g	74.67d	4.17	55.00 b	83.00d	287.56 d	289.00cd	283.64	21.43a	21.50ab		9.68	20.8
Fazli	19.50f	.00e	16.00fg	19.33 f	6.21	0.00	554.00a	523.00b	488.67a	553.92	$18.76 \mathrm{b-e}$	18.00cd		7.68ab	8.15
Khirshapat	23.67ef	22.00 d	47.00e	86.67c	44.84	198.00fg	337.00c	239.15e	274.33 cd	262.12	18.68 c -e	18.28 cd		19.15a	18.70
Level of Sig	**	**	**	**		**	**	**	**		**	**	-	**	-
CV (\%)	20.07	16.05	13.11	15.47	-	10.07	11.05	13.11	12.70	-	10.07	11.05	-	14.47	

Table 4. Yield data of different mango cultivars/ varieties

Variety	Fruit Yield per Plant (kgPlant ${ }^{-1}$)					Fruit Yield per Unit Canopy Area (kg m${ }^{\mathbf{2}}$)				
	2014	2015	2016	2017	Average	2014	2015	2016	2017	Average
BARI Aam-1	1.04 c	1.25 d	2.82 fg	2.99 d	2.02	0.30i	0.19j	0.27 g	0.26h	0.25
BARI Aam-2	7.27 bc	11.71 c	23.26 d	9.74 d	12.99	1.64 f	1.40d	2.21c	0.79 gh	1.51
BARI Aam-3	10.18 ab	34.22 a	63.61 a	74.57 a	45.64	2.17e	3.04b	3.39b	3.66 b	3.06
BARI Aam-4	9.59 ab	20.00 b	52.38 b	53.77 ab	33.93	3.47 b	3.40a	5.69a	4.81a	4.34
BARI Aam-5	8.85 ab	2.21 d	2.64 fg	11.20 d	6.22	3.13 c	0.51f	0.20 g	0.63 gh	1.12
BARI Aam-8	8.75 ab	20.11 b	34.85 c	50.64a-c	28.59	1.26 g	1.76c	2.05c	2.13 cd	1.80
Gopalbhog	12.65 a	2.93 d	7.38 f	23.58 cd	11.63	4.46a	0.46 f	1.66 d	2.72c	2.33
Pahutan	8.75 ab	16.32 bc	16.57 de	29.87b-d	17.88	2.76 d	2.92b	0.94e	1.54 ef	2.04
Mallika	0.0 d	0.0 e	7.84 f	$26.08 \mathrm{~b}-\mathrm{d}$	8.48	0.00j	0.00k	0.48f	0.51 h	0.25
Langra	12.68 a	2.83 d	1.73 g	21.83 cd	9.77	2.60d	0.25fj	0.09 g	1.11 fg	1.01
Fazli	4.69 c	5.54 d	8.37 f	9.61 d	7.05	1.06h	0.44f	0.60f	1.64 de	0.93
Khirshapat	5.34 bc	7.41 d	11.24 ef	23.85 cd	11.96	1.50f	0.95e	1.00e	2.70 c	1.54
Level of Sig.	**	**	**	**	-	**	**	**	**	-
CV (\%)	10.07	11.05	13.11	34.47	-	10.07	11.05	13.11	34.47	-

Percent of total soluble solid (TSS\%) is the measure of the sweetness of fruits. TSS\% of fruits of genotypes ranged from 16.72 to 23.33% during the study period. Minimum TSS\% was recorded in Gopalbhog while it was maximum in BARI Aam-3 in harvesting season of 2015. Like fruit weight, it and was also observed that TSS\% of individual variety fluctuated in different years (Table 3). Barua (2013) and Kobra et al., (2013) similarly reported fluctuation in fruit weight, fruit size and TSS\% of same variety in different locations and different years. This variation might be correlated to environmental variables which are either spatial or temporal issues (Normand et al., 2015). However, overall performance of the genotypes in southern region was not found as per expectation (Sarkar et al., 2021). Similar findings were obtained from the reports of Barua (2013) and Kobra et al., (2013).

Fruit yield per plant and per unit canopy Area

At the onset of the study fruit yield per plant was measured maximum in Langra which was similar to Gopalbhog. Statistically similar yields were also measured in BARI-Aam-3, BARI Aam-5, BARI-Aam-8, BARI Aam-4 and Pahutan. Yield of fruit of individual plant was found to increase in the succeeding cropping seasons. Consistently higher yield per plant was recorded in BARIAam-3 and BARI Aam-4. Regarding fruit yield per unit area, BARI Aam-4 and BARI Aam3 also performed better than other genotypes (Table 4). Like number of fruits, per plant yield was also fluctuated in different years due to prevailing growing environmental factors.

Conclusion

It is not possible to draw a conclusion on the basis of the findings of current study. Performance of the genotypes should be further evaluated considering regional and seasonal variability as well as soil and water salinity. However, BARI Aam-3, BARI Aam-4 and BARI Aam-8 may be considered capable to cope with the stress environment of the southern region on the basis of yield potentials and quality attributes.

References

Ahmed, A. U. and S. G. Hussain. 2009. Climate Change And Livelihoods: An Analysis of Agro-Ecological Zones of Bangladesh. Centre for Global Change, Dhaka.
Bally, I.S., 2006. Mangifera indica (mango). Species profiles for pacific island agroforestry, Permanent Agriculture Resources (PAR), Holualoa, Hawai. pp.1-25.
Barua, H., M. M. A. Patwary and M. H. Rahman. 2013. Performance of BARI Mango (Mangifera Indica L.) varieties in chittagong region. Bangladesh J. Agril. Res. 38(2): 203-209.

BBS. 2021. Yearbook of Agricultural Statistics-2020. Bangladesh Bureau of Statistics (BBS) Statistics and Informatics Division (SID), Ministry of Planning, Government of the People's Republic of Bangladesh. pp 198-199.

Biswas J.C; M. Maniruzzaman; M. M. Haque; M. B. Hossain; A.H N. Kalra. 2021. Major fruit crops production in Bangladesh and their relationships with socio-ecological vulnerabilities. Journal of Food Science and Nutrition Research. 4 (2021): 131-143.
Chowdhury, M. A. H. and M. S. Hassan (Eds.). 2013. Hand Book Of Agricultural Technology. Bangladesh Agricultural Research Council (BARC), Dhaka. pp. 107113.

Kobra, K., M. Hossain, M. Talukder and M. Bhuyan. 2013. Performance of Twelve Mango Cultivars Grown in Different Agroecological Zones of Bangladesh. Bangladesh J. Agril. Res. 37(4): 691-710.
Makhmale, S., P. Bhutada, L. Yadav and B.K. Yadav. 2016. Impact of Climate Change on Phenology of Mango-The Case Study. Ecology. Environ. and Conservation. 22(9): 127-132.

Normand F., P. E. Lauri., J. M. Legave. 2015. Climate change and its probable effects on mango production and cultivation. Acta Horticulturae (1075):21-32
Rajan S. 2012. Phenological Responses to Temperature and Rainfall: A Case Study of Mango. Chapter. In Tropical Fruit Tree Species and Climate Change. Division of Crop Improvement and Biotechnology, Central Institute for Sub-tropical Horticulture, Lucknow, India. Pp. 71-96.
Sarker B. C; M. N. Islam; J. C. Barman; M. Islam; M. S. Uddin; 2021. Amer Jat O Adhunik Utpadan Projukti. (Mango Variety and Modern Cultivation Technique). Fruit Division, Horticulture Research Centre, Bangladesh Agricultural Research Institute, Gazipur. Pp 190.

Shaw, J. D. 2005. Models for Estimation and Simulation for Crown and Canopy Cover. Proceedings of the Fifth Annual Forest Inventory and Analysis Symposium; 2003 November 18-20; New Orleans, La. Gen. Tech. Rep. Wo-69. Washington, Dc: U.S. Department of Agriculture Forest Service. 69: 183-191.

