ISSN 0258-7122 Bangladesh J. Agril. Res. 36(3) : 427-435, September 2011

PROFITABILITY OF ONION CULTIVATION IN SOME SELECTED AREAS OF BANGLADESH

M. A. HAQUE¹, M. A. MONAYEM MIAH², S. HOSSAIN³ M. S. RAHMAN⁴ AND MONIRUZZAMAN⁵

Abstract

The present study was conducted in three major onion growing districts to estimate the profitability of onion cultivation. Total of 150 onion farmers taking 50 farmers from each area were selected randomly. The cost of onion cultivation was found to be Tk 93517 per hectare on total cost basis. Seedling cost (41%) was the major cost item followed by human labour cost (24%). The yield of onion was found 9869 metric tons per hectare. The gross margin and net return were found to be Tk. 85308 and 79487 per hectare, respectively. The benefit cost ratio was found 1.85. Inputs like human labour, seedling, manures, urea, TSP, irrigation, and insecticide had positive effect on the yield of onion. The profit obtained from onion cultivation was found higher than that of other competitive crops like mustard, groundnut, and cabbage. Non-availability of HYV onion seed at proper time, lack of appropriate storage facility were the major problems of onion cultivation in the study areas and needs immediate attention to solve these problems.

Keywords: Onion, input use pattern, profitability

Introduction

Onion is an important spice crop in Bangladesh. It ranks first in production (889000 MT) and second in area (125101 ha) among the spices (BBS, 2008). It covers almost 36% of the total areas under spices. The mean yield of onion in Bangladesh is very low (4 t/ha) compared to world average of 17.27 t/ha (FAO, 1998). During winter, onion is widely cultivated all over Bangladesh. Farmers generally follow traditional method for cultivating onion in Bangladesh. Area and production of onion in Bangladesh during the last five years are given below;

Although production of onion is increasing day by day, but in a land hungry country like Bangladesh it may not be possible to meet the domestic demand due to increase in population. There is an acute shortage of onion in relation to its requirement. Every year, Bangladesh has to import a big amount of onion from neighbouring and other countries to meet up its demand. Total import of onion stood at 55499 metric tons in 2005 (BBS, 2007).

¹Principal Scientific Officer, ²Senior Scientific Officer, ³Chief Scientific Officer, ^{4&5}Scientific Officer, Agricultural Economics Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh.

Table 1. Area and production of onion in Bangladesh.

Year	Area ('000 ha)	Production ('000 MT)
2003-04	52.0	272.2
2004-05	86.4	589.4
2005-06	115.6	768.6
2006-07	129	894
2007-08	125	889

The high demand of onion can only be met by increasing its production vertically. Efficient use of resources can provide the farmers to have higher production from the available resources. The situation is particularly critical in a country like Bangladesh where per hectare recommended amount is seldom used in production (Jabbar and Alam, 1979; Jabbar and Islam, 1981). As a result, farm level yield of onion is very low compared to their recommended yield. Farmers in the study areas also follow different levels of management depending upon their infrastructural facility and socio-economic conditions which ultimately results variability in yields. Few studies (Awal *et al.*, 2004; Saha and Elias, 1990) have been conducted on onion cultivation. But the information on production and input use pattern in onion cultivation is still scarce. Lack of farm level information on onion cultivation frequently prevents researcher from undertaking priority research areas. Keeping in view the above related facts, the present study was undertaken with the following objectives:

- (i) To know the existing agronomic practices of onion cultivation;
- (ii) To estimate the profitability from onion cultivation;
- (iii) To measure the relative profitability of onion cultivation with major competing crops; and
- iv) To find out the socio-economic constraints to its higher yield.

Materials and Method

Study area

The present study was conducted in three districts, namely Magura, Faridpur, and Rajshahi of Bangladesh. From each district, one upazila i.e, Shalikha Upazila under Magura district, Nogarkanda Upazila under Faridpur district, and Bagmara Upazila under Rajshahi district were purposively selected for the study based on the extensive onion cultivation area. From each Upazila, two villages were selected purposively for collecting cross sectional data and information from the sample farmers.

Sample size

A total of 150 onion growers taking 50 farmers from each upazila were selected by random sampling technique for the study.

PROFITABILITY OF ONION CULTIVATION

Data collection and analytical technique

Data were collected by survey method with the help of pre-designed and pretested interview schedule during April to May 2009. The collected data were edited, summarized, tabulated, and analyzed to fulfill the objectives of the study.

Tabular method of analysis using different statistical tools was used in presenting the results of the study. Profitability of onion production was examined on the basis of gross margin, net return, and benefit cost analysis.

Functional analysis

Cob-Douglas production function was used to estimate the contribution of factors to onion cultivation. The functional form of the Cobb-Douglas production function model is given below:

The production function was linearized by transforming it into the following logarithmic form:

 $Log Y = Log a + b_1 Log X_1 + \dots + b_n Log X_n + U_i$

The empirical production function was the following:

$$\label{eq:log} \begin{split} &Log \; Y = Log \; a + b_1 \; Log X_1 + b_2 \; Log X_2 + b_3 \; Log X_3 + b_4 \; Log X_4 + b_5 \; Log X_5 + b_6 \\ &Log X_6 + b_7 \; Log X_7 + b_8 \; Log X_8 + b_9 \; Log X_9 + U_i. \end{split}$$

Where,

Y = Yield of onion (kg/ha)

 X_1 = Human Labor (Man-days/ha)

 $X_2 =$ Land preparation cost (Tk./ha)

 $X_3 =$ Seedling (kg/ha)

 $X_4 = Manure (kg/ha)$

 $X_5 = Urea (kg/ha)$

 $X_6 = TSP (kg/ha)$

 $X_7 = MP (kg/ha)$

 $X_8 = Cost of insecticide (Tk./ha)$

A = Intercept

 b_1, b_2 ------ b_8 = Coefficients of the respective variables to be estimated.

 $U_i = Error term.$

Results and Discussion

Agronomic practices

It was revealed from Table 2 that the average number of ploughings per farm was 4.9 and laddering was 2.9. In the study areas, cent percent farmers planted onion seed in line. The planting time of onion ranged from 1st week of December to 4st week of January. The planting time varied from area to area. The average number of weedings, urea top dressing, spraying insecticides, and irrigation per farm was 2.27, 2.33, 0.75, and 2.88, respectively. The harvesting time was started from 3rd week of March and continued up to 3rd week of April. The farmers in the study areas used different varieties of onion seed, such as Faridpuri, Taherpuri, and local. On an average, 55% farmers used Taherpuri, 12% used Faridpuri and 33% farmers used local varieties of onion seed.

Items	Magura	Faridpur	Rajshahi	All areas
Ploughing (no./farm)	4.5	4.9	5.4	4.9
Laddering(no./farm)	4.4	1.7	2.8	2.9
Planting method (% of farmer)				
Line	100	100	100	100
Planting time	1st week of	1st week of	3rd week of	1 st week of
	Dec. to 4 th week of Dec.	Dec. to 4 th week of Dec.	Dec. to 4 th week of Jan.	Dec. to 4 th week of Jan.
Weeding (no./farm)	2.16	1.96	2.70	2.27
Urea top dressing (no./farm)	2.0	2.0	3.0	2.33
Spraying insecticides (no./farm)	0.60	0.70	0.96	0.75
Irrigation (no./farm)	2.3	2.7	3.63	2.88
Harvesting time	3rd week of	4 th week of	4 th week of	3 rd week of
C .	March. to 2 nd	March to 2 nd	March to 3 rd	March to 3 rd
	week of April	week of April	week of April	week of April
Variety used (% of farmer)				
Faridpuri	23	13	-	12
Taherpuri	-	67	97	55
Local	77	20	3	33
Total	100	100	100	100

Table 2. Agronomic practices of onion production in different study areas.

Input use pattern

It was found from Table 3 that on an average, 183 man days/ha of human labour were used for producing onion in which 45% were family supplied. The use of human labour was found higher in Rajshahi (190 man-days/ha) followed by

430

Magura (186 man-days /ha). Farmers in the study areas used 1874 kg seedling per hectare. Highest 6250 kg per hectare of manures was applied by the farmers of Rajshahi district. The farmers in the study areas used chemical fertilizers like urea, TSP, and MP at the rate of 162 kg/ha, 120 kg/ha, and 97 kg/ha, respectively. The recommended dose of Urea, MP, and TSP were 201-265 kg/ha, 202-267 kg/ha and 102-132 kg/ha, respectively (Anon., 2005). Farmers in the study areas use lower amount of Urea and MP compared to the recommended dose.

I I I I I I I I I I I I I I I I I I I	F		,	-
Items	Magura	Faridpur	Rajshahi	All areas
Human labor (man days/ha)	186 (100)	174 (100)	190 (100)	183 (100)
Family	90 (48)	75 (43)	85 (45)	83 (45)
Hired	96 (52)	99 (57)	105 (55)	100 (55)
Seedling (kg/ha)	1799	1966	1856	1874
Manures(kg/ha)	4950	2300	6250	4500
Fertilizers (kg/ha)				
Urea	159	166	160	162
TSP	114	123	140	120

103

92

97

Table 3. Input use pattern of onion production in different study areas.

Figures within the parentheses indicate percentage of total cost

96

Cost of onion cultivation

MP

The cost of onion cultivation included different variable and fixed costs. The cost of human labour, land preparation, seed, cow dung, fertilizers, insecticides, irrigation, interest on operating capital and land use, etc. were calculated on per hectare basis. The total cost of onion cultivation was found to be Tk. 93517 per hectare in the study areas. The average variable and fixed cost was estimated at Tk. 87696 and Tk. 5821, respectively, for all the areas. The cost of seedling (Tk. 38251/ha) was the major cost item of onion cultivation followed by human labour cost (Tk. 22890/ha). The cost of onion cultivation at Rajshahi was found higher compared to Faridpur and Magura due to higher cost of manures, fertilizer, and insecticides (Table 4).

Return from onion cultivation

The average yield of onion was found 9869 kg per hectare which was much lower than the potential yield (16 t/ha) (BARC, 2005). The yield of onion was found higher in Rajshahi (12376 kg/ha) compared to Faridpur (9216 kg/ha) and Magura (8013 kg/ha) due to better land preparation, good soil condition, and quality seed. Awal *et al.* (2004) found the yield of onion 6.03 t/ha and it was lower compared to the yield of present study probably due to low management practices. Gross return and gross margin from onion cultivation was found Tk.

173004 and Tk. 85308 per hectare in the study areas. Gross margin was found higher in Rajshahi followed by that of Faridpur and Magura district. The net return of onion cultivation was Tk. 79487 per hectare. It was found highest in Rajshahi (Tk. 153788/ha) followed by Faridpur (Tk. 58632/ha) due to higher gross return. The benefit cost ratio was also higher in Rajshahi (2.59) compared to Faridpur and Magura.

 Table 4. Cost of onion production in different study areas (Tk/ha).

Items	Magura	Faridpur	Rajshahi	All areas
Variable cost				
Human labour	23250 (25)	22620 (25)	22800 (24)	22890 (24)
Family	11250	9750	10200	10400
Hired	12000	12870	12600	12490
Land preparation cost	8 121(9)	5090 (6)	7405 (8)	6872 (7)
Seedling	34486 (38)	42406 (46)	37862 (39)	38251 (41)
Organic manures	2970 (3)	1150(1)	3125 (3)	2415 (3)
Chemical fertilizers:	6488 (7)	6602 (7)	8000 (8)	7030 (8)
Urea	1022	996	1000	1006
TSP	3332	3391	4480	3734
MP	2134	2215	2520	2290
Insecticides	1116(1)	1263 (1)	1847 (2)	1409 (2)
Irrigation	6065 (7)	5442 (6)	6340 (7)	5949 (6)
Interest on operating capital	2731(3)	2947 (3)	2962 (3)	2880 (3)
A. Total variable cost	85227	87520	90341	87696
Fixed costs				
Land use cost	6237 (7)	4990 (5)	6237 (6)	5821 (6)
B. Total fixed cost	6237	4990	6237	5821
Total cost(A+B)	91464 (100)	92510 (100)	96578 (100)	93517 (100)

Figures within the parentheses indicates percentage of total cost

Table 5	5. Return	from oni	on cultiva	tion in di	fferent stud	v areas.
Lable	. iterui ii	n om om	on cultiva	uon m un	ner ent stud	'y arcas.

Items	Magura	Faridpur	Rajshahi	All areas
Total cost (Tk./ha)	91464	92510	96578	93517
Total variable cost (Tk./ha)	85227	87520	90341	87696
Yield (kg/ha)	8013	9216	12376	9869
Average price (Tk./kg)	15.97	16.40	20.23	17.53
Gross return (Tk./ha)	127968	151142	250366	173004
Gross margin (Tk./ha)	42741	63622	160025	85308
Net return (Tk./ha)	36504	58632	153788	79487
Benefit cost ratio	1.40	1.63	2.59	1.85
Unit cost of production (Tk./kg)	11	10	8	9

PROFITABILITY OF ONION CULTIVATION

Factors affecting onion yield

In order to determine the contribution of some inputs like human labour, manures, seed, urea, TSP, MP, irrigation, and insecticides Cobb-Douglas production function was constructed. The estimated values of co-efficients and related statistics of Cobb- Douglas production function were presented in Table 6. It is clear from the model that the co-efficient of human labour, seedling, TSP, and insecticides were positive and significant, which indicated that 1% increases in the use of human labour, seedling, TSP, and insecticides, keeping other factors constant would increase the yield by 0.01%, 0.01%, .005%, and .002%, respectively. The co-efficient of manures, urea, and MP were found negative and significant which indicated inefficient use of these inputs. Farmers in the study area use lower amount of manure, urea, and TSP compared to recommended dose but their coefficient was found negative. This may be for the fact that respective plots of the respondents are already enriched with the ingredients of these inputs or these plots are getting the ingredients from other sources which are not considered for the study.

The value of the coefficient of determination (\mathbb{R}^2) was 0.79, which indicated that around 79% of the variation in yield was explained by the independent variables included in the model. The F-value was found 34.08 which was significant at 1% level implying that the variation of yield mainly depends on the explanatory variables included in the model.

Explanatory Variables	Co-efficient	t-values
Intercept	0.98***	217.53
Human labor (X1)	0.01***	2.03
Land preparation cost (X_2)	0.003ns	0.86
Seedling (X ₃)	0.0I***	3.96
Manure (X ₄)	0.0007***	-4.17
Urea (X ₅)	0.002***	-4.88
TSP (X_6)	0.005***	339
MP (X ₇)	0.003**	-2.2.08
Insecticides (X ₈)	0.002***	10.84
\mathbb{R}^2	0.79	
F value	34.68***	

Table 6. Estimated coefficients and their statistics of production function for onion.

Note: *** and ** indicate significant at 1% and 5% level, respectively.

Comparative profitability of onion with other competitive crops

An attempt was made to compare the profitability of onion with other competitive crops in different study areas. The competitive crops in these study areas were mustard, groundnut, mungbean, cabbage, cauliflower, wheat, and maize. In this study, three major competitive crops, such as mustard, groundnut, and cabbage were taken into consideration. The average cost, return, and benefit cost ratio of four different crops are shown in Table 6. The gross return was found higher from onion cultivation than that of mustard, groundnut, and cabbage. Although total cost of production was higher for onion but gross margin was found higher for onion (Tk. 85308) compared to mustard (Tk. 47935), ground nut (Tk. 34721), and cabbage (Tk. 82109).

 Table 7. Comparative economic performance of onion with other competitive crops.

 (Figure in Tk/ha)

						(8	
Items	Onion	Mustard	% higher	Ground nut	% higher	Cabbage	% higher
A. Gross return	173004	64778	62.56	55496	67.92	119558	30.89
B.Totalvariablecost	87696	16843	-80.79	20775	-76.31	37449	-57.29
C.Total cost	93517	29102	-68.88	32275	-65.48	63012	-32.61
Gross margin (A-B)	85304	47935	43.81	34721	59.30	82109	3.75
Net return (A-C)	79487	35676	55.12	23221	70.79	56545	28.86
Benefit cost ratio	1.85	2.23	-20.54	1.72	7.02	1.90	-2.70

Problems of onion production

The farmers in the study areas encountered different problems during onion cultivation. The problems were ranked based on their priority. First problem was non-availability of HYV seed at proper time followed by lack of technical knowledge, high price, and non- availability of fertilizer in time, infestation of insects and diseases, low market price, and lack of storage facility. The nature of problems slightly varied from area to area (Table 8).

Table 8. Constraints to onion cultivation in different study areas.

Constraints	Rank value					
Constraints	Magura	Faridpur	Rajshahi	All areas		
1. Non- availability of HYV onion seed at proper time	1	1	2	1		
2. Lack of technical knowledge	3	2	1	2		
3. High price and non-availability of fertilizer in time	2	3	3	3		
4. Infestation of insects and diseases	4	5	4	4		
5. Low market price	6	4	5	5		
6. Lack of storage facilities	5	6	6	6		

434

PROFITABILITY OF ONION CULTIVATION

Conclusions and Recommendations

The onion cultivation is found profitable in the study areas although the yield is lower than the potential yield. Human labour, seedling, TSP, and insecticide had positive and significant effect on the yield of onion, while Urea and MP had negative effect on the yield of onion in the study areas. Among the competitive crops like mustard, groundnut, and cabbage, the highest profit was obtained from onion. Non-availability of HYV onion seed at proper time was mentioned as a major problem of onion cultivation in the study areas followed by lack of technical knowledge and high price of fertilizer. Based on the findings of the study, the following recommendations can be made;

- HYV onion seed should be made available to the farmers at proper time to increase the production of onion.
- Training on onion cultivation should be organized by government and non-government organizations to develop technical knowledge of the farmers, which will help the farmers to use the inputs in efficient way.

References

- Anonymus. 2005. Fertilizer Recommendation Guide, Published by Bangladesh Agricultural Research Council, Farmgate, Dhaka-1215.
- Awal, M. A., S. R. Saha, M. S. Alam and M. A. Matin. 2004. Onion Cultivation at Farm Level: Input Use, Productivity and Resource Use Efficiency. *Bangladesh J. Agril. Res.* 29(1): 143-151.
- BBS. 2008. Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh.
- BBS. 2007. Hand Book of Agricultural Statistics, Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh.
- BBS. 2004. Year book of Agricultural Statistics, Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh.
- FAO. 1998. FAO Yearbook, Production 1998. Food and Agriculture Organization of United Nations, Rome, Italy. 51: 135-136.
- Jabbar, M. A. and M. F. Alam. 1979. An economic study of fertilizer distribution and utilization in selected areas of Mymensingh District. Research Report, Dept. of Agricultural Finance, BAU, Mymensingh. pp-20-32.
- Jabbar, M. A. and M. F. Alam. 1981. Elasticity Demand for Fertilizer and its implication for subsidy. *Bangladesh J. Agricultural Economics* **IV**(1): 30-35.
- Saha, J. K. and S. M. Elias. 1990. Productivity and input use efficiency of onion at farmers' level in some selected areas of bangladesh. *Bangladesh J. Agril. Res.* 15(1): 42-46.