

## ROLE OF ASCORBIC ACID AS A SEED PRIMING AGENT IN ALLEVIATING SALT INDUCED DAMAGES IN GERMINATION AND EARLY SEEDLING GROWTH OF RICE (*Oryza sativa* L.)

H. Akter<sup>1</sup>, M. Akther<sup>1</sup>, F. Ahmed<sup>2</sup>, M. G. J. Helal<sup>1</sup> and J. A. Mahmud<sup>1\*</sup>

<sup>1</sup>Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University (SAU), Sher-e-Bangla Nagar, Dhaka; <sup>2</sup>Cerntury Agro Limited, Union Heights West Panthopath, Dhaka. Bangladesh.

### Abstract

Salinity is one of the major brutal abiotic stresses that affect crop productivity worldwide. Seed priming with different bio-regulators has emerged as an effective and practical approach to inducing the plant tolerance against different abiotic stress including salinity. Therefore, a study was conducted at the Agroforestry Field Laboratory, Sher-e-Bangla Agricultural University, Dhaka during July 2022 to September 2022 to find out potential of seed priming with ascorbic acid in alleviation of germination and growth inhibition of rice (*Oryza sativa* L.) seedlings under salt stress. The study included four levels ascorbic acid *viz.* i) 0 mM ( $A_0$ ), ii) 0.125 mM ( $A_1$ ) iii) 0.250 mM ( $A_2$ ) iv) 0.5 mM ( $A_3$ ) for seed priming and four levels of salinity: i) 0 dS m<sup>-1</sup> (S0), ii) 5 dS m<sup>-1</sup> (S1), iii) 10 dS m<sup>-1</sup> (S2), iv) 15 dS m<sup>-1</sup> (S3) NaCl set up in petridishes and pots. Salinity levels significantly affected germination and growth attributes like germination percentage, germination speed, germination energy, radical length, plumule length, plant height, plant fresh weight, plant dry weight, SPAD value and leaf relative water content. However, ascorbic acid primed seeds provided higher germination percentage, germination speed, germination energy, radical length, plumule length, plant height, plant fresh weight, plant dry weight, SPAD value and leaf relative water content in contrast to respective salt stress. Among the doses of ascorbic acids 0.250 mM and 0.5 mM performed better than the 0.125 mM. Thus, this study suggests that use of ascorbic acid as a seed priming agent with appropriate dose can enhance the tolerance of rice seedlings against salt stress.

**Keywords:** Ascorbic acid, Germination and growth, Salinity stress, Seed priming.

### Introduction

Crop production is vulnerable to climate variability, and climate change associated with increases in different abiotic stresses which may lead to a considerable decline in crop yield (Mall *et al.* 2017). Abiotic stresses such as salinity, drought, flooding, heat, cold, freezing, excess light, UV radiation, and heavy metal toxicity have a significant impact on seed which reduce germination rate, seedling growth and yield with

---

\* Corresponding author: jamahmud\_bd@yahoo.com

significant variations from crop to crop worldwide (Zhao *et al.*, 2007). Among them salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas (Ibrahim, 2016) including southern part of Bangladesh. Salt stress adversely affects physiology and biochemistry of plants primarily by creating osmotic stress, ionic imbalance, and toxicity (Hajlaoui *et al.*, 2009). As Reactive oxygen species (ROS) are responsible for damaging plant cells under salt stress, elimination of these toxic compounds is considered a strategy for developing salt stress tolerance. Seed priming has emerged as an effective and practical approach to induce the plant tolerance against different stress factors including salinity. Priming of seed enables the faster and better germination in plants under stressful conditions as they have potential to upregulate the antioxidant defense system.

Different cellular and metabolic events are involved in induction of salinity tolerance after seed priming. Primed seeds can activate the signal pathways during the early growth stage and triggered the faster stress response. Faster emergence and uniform stand establishment in primed seeds ultimately increases the crop productivity under salinity conditions (Hussain *et al.*, 2022). Several priming strategies have been tested in rice under salinity stress. For example, bio-priming with *Trichoderma harzianum* alleviates salinity stress by improving physiological and biochemical traits (Rawat *et al.*, 2012). Halo-priming or osmo-priming with salts such as potassium nitrate ( $\text{KNO}_3$ ) or calcium chloride ( $\text{CaCl}_2$ ) enhances germination and seedling establishment in saline environments (Ahmandvand *et al.*, 2012; Farooq *et al.*, 2019). Even low-cost hydro-priming (soaking seeds in water followed by drying) has proven effective in improving germination and vigor under stress (Casenave and Toselli, 2007; Afzal *et al.*, 2005). More recently, nano-priming approaches using chitosan nanoparticles (CNP) have shown superior enhancement of germination and seedling vigor in rice under salinity stress (Abdel-Aziz *et al.*, 2019).

Despite the availability of these techniques, ascorbic acid (AsA) remains particularly attractive because of its dual role as a potent antioxidant and signaling molecule. AsA regulates enzymatic and non-enzymatic antioxidant activities, modulates gene expression, and improves stress adaptation (Roy *et al.*, 2016). Furthermore, experimental studies on different plants have showed that exogenous application of AsA may reduce salt-induced adverse effects and significant increment of growth and yield (Athar *et al.*, 2009; Salama, 2009; Khan *et al.* 2010). Although there have been few studies regarding the impact of ascorbic acid as seed priming agent on alleviating salt stress in a variety of plants, but no investigation of the roles of ascorbic acid priming agent in seed germination, growth, physiology and yield of aman rice variety under salt stress has been reported. Therefore, this study was designed to investigate the roles of ascorbic acid as priming agents at different concentrations in seed germination, seedling growth and physiological performance of rice (*Oryza sativa* L.) of *T. aman* variety under different salinity conditions.

## Materials and Methods

### Experimental site

The study was conducted from July to September 2022 at the Field Laboratory, Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. It included both laboratory (petri-dish) and pot experiments. The site, situated at 23°74'N and 90°35'E, 8 m above sea level, lies in the "Madhupur Tract" agro-ecological zone (AEZ-28).

### Climate and soil

The Field Laboratory experiences a subtropical climate, marked by hot, humid, and rainy summers with gusty monsoon winds, and cooler, drier winters with scattered rainfall.

### Planting materials

Rice var. BRRI dhan78 (slightly salinity tolerant) seed was collected from BRRI, Gazipur on June, 2022.

### Treatments of the experiment

The following treatments were maintained in this study for each studies. Priming treatments: i) 0 mM (A0), ii) 0.125 mM ((A1)) iii) 0.250 mM (A2) iv) 0.5 mM (A3) ascorbic acid. Before sowing, seeds were sterilized with 70% ethanol, then primed with ascorbic acid for 12 hours. Control seeds were soaked in distilled water for the same duration. After treatment, all seeds were rinsed three times, dried on filter paper, and air-dried for 48 hours at room temperature. Salinity treatments: i) 0 dS m<sup>-1</sup> (S0), ii) 5 dS m<sup>-1</sup> (S1), iii) 10 dS m<sup>-1</sup> (S2), iv) 15 dS m<sup>-1</sup> (S3) NaCl were maintained in growing media of both experiments. So, the total no. of treatments was 16. The treatments were: i. A0S0, ii. A0S1, iii. A0S2, iv. A0S3, v. A1S0, vi. A1S1, vii. A1S2, viii. A1S3, ix. A2S0, x. A2S1, xi. A2S2, xii. A2S3, xiii. A3S0, xiv. A3S1, xv. A3S2, xvi. A3S3

### Design and layout of the experiment

July to September 2022, two experiments were conducted to assess ascorbic acid seed priming effects on rice (*Oryza sativa* L.) under salinity. Both experiments were laid out in Completely Randomized Design (CRD) with 16 treatment combinations based on four ascorbic acid levels and four salinity levels, each with three replications (48 pots) Germination was tested in the lab (petri-dish), and morpho-physiology and early seedling growth were evaluated in the pot experiment.

### Petri-dish and pot preparation

The experiment was conducted in a Completely Randomized Design (CRD) with three replications. In the petri-dish experiment, 9 cm dishes with six layers of blotting paper were used, and 20 seeds per dish were considered an experimental unit. Germination parameters were recorded for all seeds within each dish. In the pot experiment, pots (35 cm

height  $\times$  30 cm top diameter  $\times$  20 cm bottom diameter) were filled with sun-dried soil mixed with recommended organic manures, fertilizers, and Furadan 5G. Ten seedlings were sown per pot, later thinned for uniform growth, and each pot was considered an experimental unit. Growth and physiological parameters, including plant height, biomass, SPAD, and leaf RWC, were recorded on the plants within each pot.

### **Manure and fertilizer application**

In the petri-dish experiment, a nutrient solution of Hyponex (Japan) was used; its composition included N, P<sub>2</sub>O<sub>5</sub>, and K<sub>2</sub>O at 6%, 10%, and 5%, respectively, along with essential micronutrients such as calcium and trace elements. For the pot experiment, soil was mixed with well-decomposed cow dung and supplemented with additional nutrients, with fertilizer doses calculated based on field rates per bigha according to the fertilizer recommendation by BRRI for BRRI dhan 78. Each pot received the recommended doses of urea (3.0 g), TSP (2.0 g), MoP (1.25 g), gypsum (1.2 g), and zinc (0.15 g) before seedling transplantation.

### **Application of salt treatment**

Rice plant is evaluated in different level of salt treatment. S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> indicate 0, 5, 10 and 15 dSm<sup>-1</sup> NaCl, respectively.

### **Intercultural operations**

#### **Irrigation**

After transplanting, seedlings were given light watering immediately to prevent water stress, followed by regular watering every two days.

#### **Weeding**

Weeding was carried out to maintain clean plots and ensure proper soil aeration, promoting better growth. Newly emerged weeds were carefully removed, and mulching was applied as needed to break soil crust.

#### **Data recording**

Data were recorded from each pot based on growth and yield parameters. Data were recorded in respect of the following parameters:

### **Petri-dish experiment**

#### **Germination parameters**

Germination percentage, speed of germination, germination energy, radical and plumule length were measured (for first experiment). Final germination percent (FGP), speed of germination (SG) and germination energy percentage (GE %) were calculated by the following formulae (Ellis and Robert, 1981; Ruan *et al.*, 2002).

$$SG = \frac{\text{Number of germinated seeds}}{\text{Days of first count}} + \dots + \frac{\text{Number of germinated seeds}}{\text{Days of final count}}$$

$$GE (\%) = \frac{\text{Number of germinated seeds at 4 DAS}}{\text{Total number of seed tested}} \times 100$$

$$FGP = \frac{\text{Number final germinated seeds}}{\text{Total number of seed tested}} \times 100$$

Plumule and radicle length: Plumule and radicle length were measured in cm basis.

### Pot experiment

#### Plant height

Plant height (cm) was measured at 15 and 30 DAS from each replication were averaged to obtain mean plant height.

#### Plant fresh weight

Fresh weight (mg) was measured after uprooting plants at 15 and 30 DAS using an electronic balance.

#### Plant dry weight

Dry weight (mg) was recorded after drying plants in an oven at 70°C for 48 hours at 15 and 30 DAS.

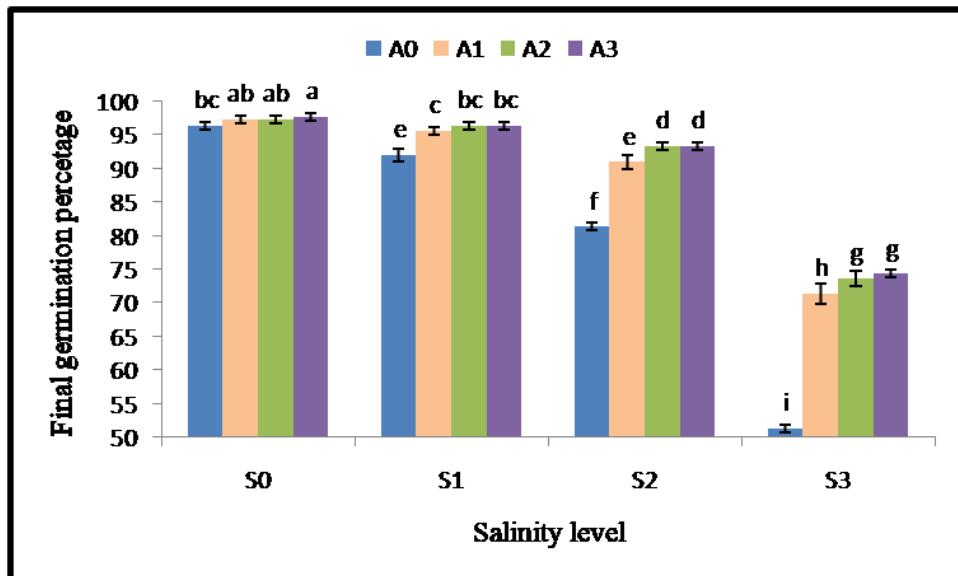
#### SPAD value

SPAD value was estimated using a portable SPAD 502 Plus meter (Konica-Minolta, Tokyo, Japan) at 15 and 30 DAS. Each leaf was measured five times from tip to base, and the average SPAD value was used.

#### Leaf relative water content (RWC)

RWC (%) was determined following Barrs and Weatherly (1962) at 15 and 30 DAS. Leaf laminas were weighed for fresh weight (FW), floated on distilled water for 8 h to get turgid weight (TW), and then dried at 80°C for 48 h for dry weight (DW). RWC was calculated as:  $RWC (\%) = [(FW-DW) / (TW-DW)] \times 100$

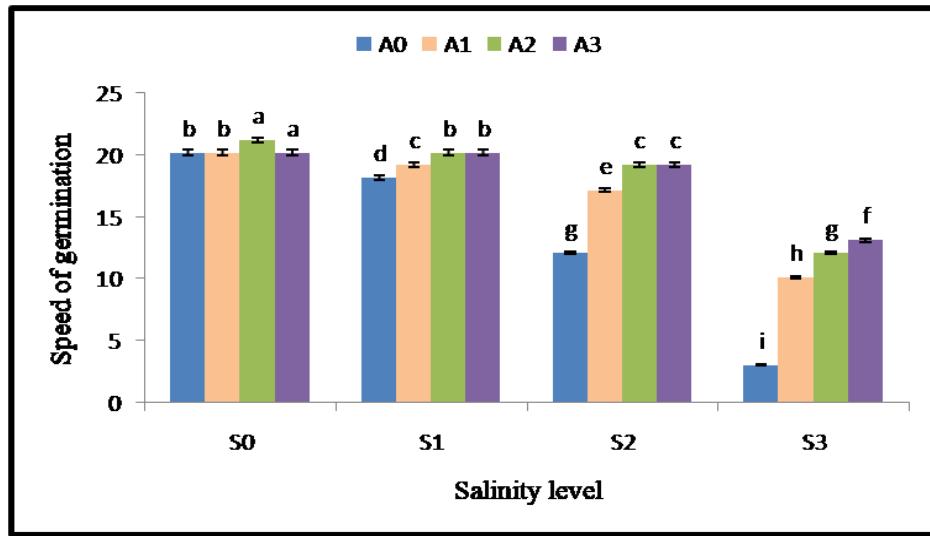
#### Statistical analysis


Data were analyzed using Statistix 10. Data for all parameters were subjected to analysis of variance (ANOVA) to determine the effects of ascorbic acid priming (AsA) and salinity level (NaCl) alone and in combination, using the statistical software Statistix 10. Where the ANOVA indicated significant F-values ( $p \leq 0.05$ ), treatment means were separated using Tukey's Honest Significant Difference (HSD) test.

### Results and Discussion

#### Final germination percentage (FGP)

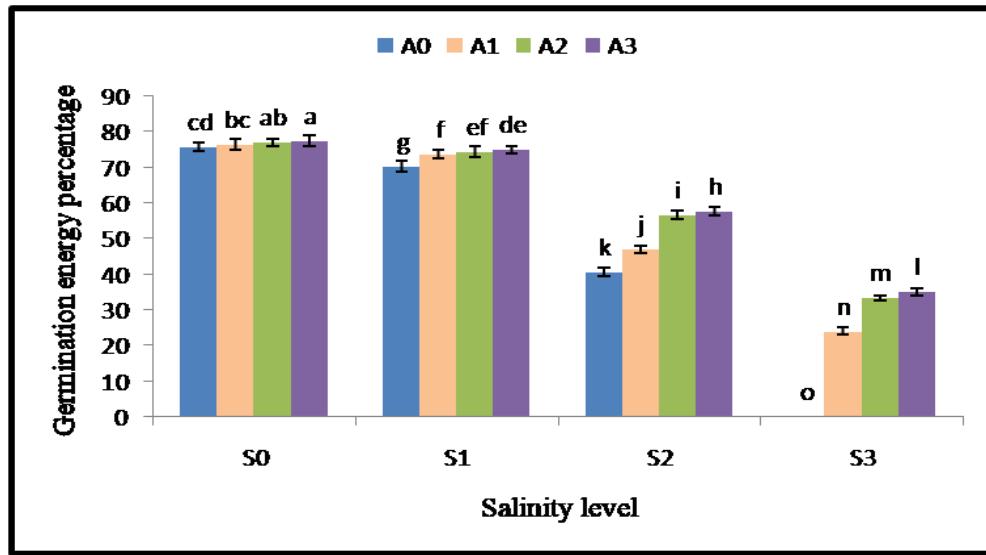
Germination of rice seeds declined with increasing salt stress, with the lowest value in  $S_3$ . In non-primed seeds, germination was 96.3, 92.0, 81.3 and 51.3% under  $S_0$ ,


$S_1$ ,  $S_2$  and  $S_3$ , respectively representing 4.5, 12.5 and 46.7% reductions compared to control. Ascorbic acid priming significantly improved germination under all stress levels (Fig. 1), with the greatest gains from  $A_2$  and  $A_3$ . Under  $S_3$ , germination increased by 43.7% with  $A_2$  and 44.8% with  $A_3$  compared to the respective control.



**Fig. 1.** Effect of ascorbic acid as seed priming agent on final germination percentage of rice under different levels of salt stress. Here,  $A_0$ ,  $A_1$ ,  $A_2$ ,  $A_3$  indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and  $S_0$ ,  $S_1$ ,  $S_2$ ,  $S_3$  indicate 0  $\text{dS m}^{-1}$ , 5  $\text{dS m}^{-1}$ , 10  $\text{dS m}^{-1}$ , 15  $\text{dS m}^{-1}$  NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

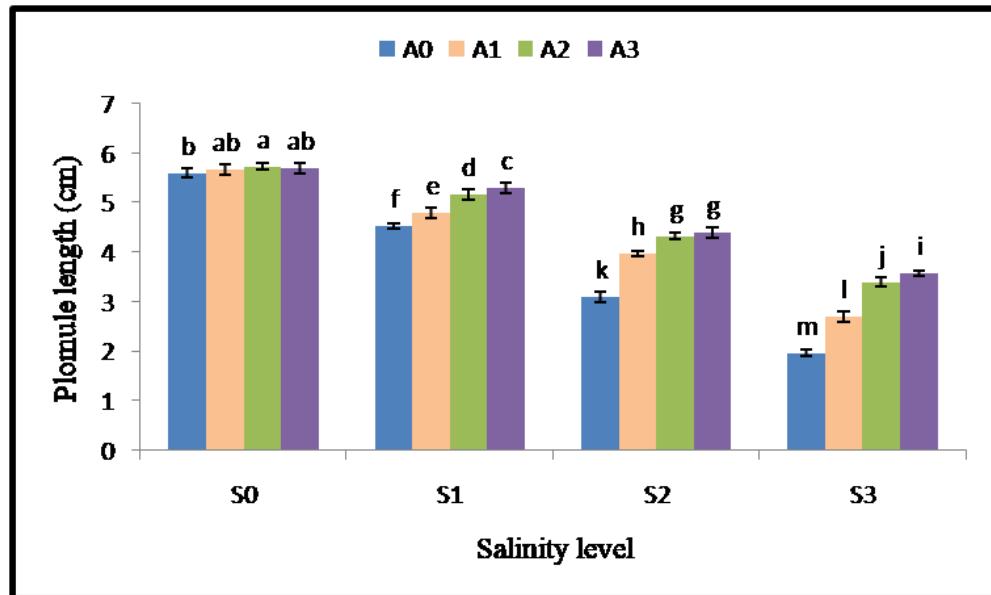
### Speed of germination (SG)


Salinity delayed rice seed germination, reducing germination speed in a dose-dependent manner. In non-primed seeds, germination speed was 20.2, 18.2, 12.1 and 3.0 for  $S_0$ ,  $S_1$ ,  $S_2$  and  $S_3$ , respectively, representing reductions of 9.9, 40.1 and 85.1% compared to control. Ascorbic acid priming accelerated germination under all stress levels (Fig. 2). Under  $S_1$  and  $S_2$ ,  $A_2$  and  $A_3$  performed similarly, while under  $S_3$ ,  $A_3$  showed the highest improvement, increasing germination speed by 336.7% compared to the respective control followed by  $A_2$  with 303.3%.



**Fig. 2.** Effect of ascorbic acid as seed priming agent on speed of germination of rice under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

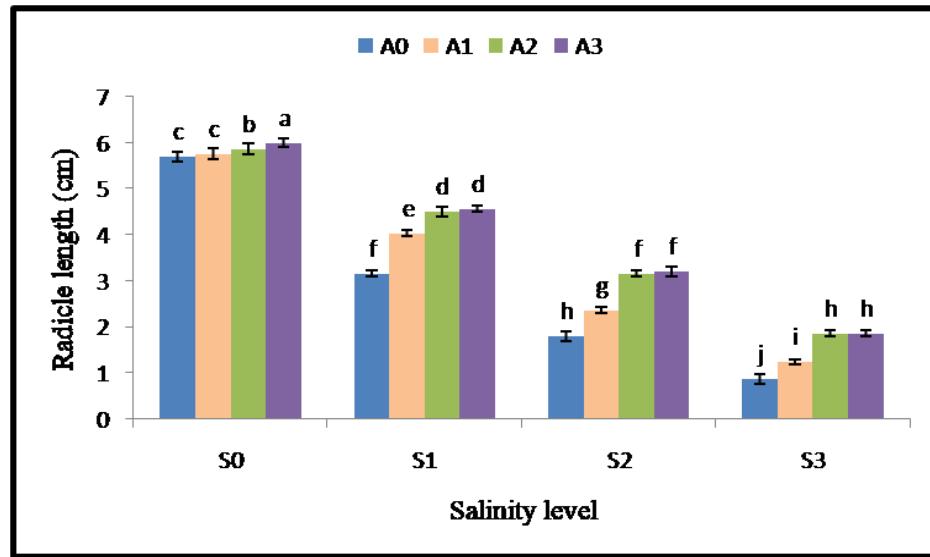
#### Germination energy percentage (GE %)


Germination energy (GE%) measured on the 4th day after soaking declined significantly with increasing salinity, reaching 0% in S<sub>3</sub> under non-primed conditions. Ascorbic acid priming improved GE% under all stress levels (Fig.3), including S<sub>3</sub>, where A<sub>1</sub>, A<sub>2</sub>, and A<sub>3</sub> achieved 24.0, 33.3, and 35.0%, respectively. The maximum GE (77.3%) was observed in A<sub>3</sub>S<sub>0</sub>, followed by A<sub>2</sub>S<sub>0</sub>.



**Fig. 3.** Effect of ascorbic acid as seed priming agent on germination energy percentage of rice under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

### Plumule length


Plumule length of rice declined under all salt treatments, with greater reductions at higher salinity. In non-primed seeds, plumule length was 5.6, 4.5, 3.1 and 2.0 cm for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, representing reductions of 19.6, 29.0 and 64.3% compared to control. Ascorbic acid priming improved plumule length under all stress levels (Fig. 4). Under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, A<sub>1</sub> increased plumule length by 6.7–35.0%, A<sub>2</sub> by 13.5–70.0%, and A<sub>3</sub> by 17.8–80.0% relative to respective stress treatments.



**Fig. 4.** Effect of ascorbic acid as seed priming agent on plumule length of rice under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

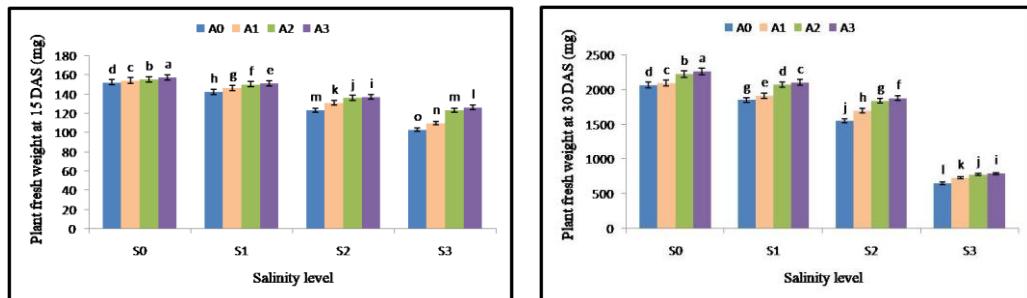
### Radicle length

Similar to plumule length, radicle length decreased with increasing salinity, showing greater suppression than plumule at each salt level. In non-primed seeds, radicle length was 5.7, 3.2, 1.8, and 0.9 cm for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, and S<sub>3</sub>, representing reductions of 19.6, 46.6 and 64.3% compared to control. Ascorbic acid priming improved radicle length under all stress levels (Fig. 5). Under S<sub>1</sub>, S<sub>2</sub>, and S<sub>3</sub>, A<sub>1</sub> increased radicle length by 25.0, 33.3 and 33.3%, A<sub>2</sub> by 40.6, 77.8 and 111.1%, and A<sub>3</sub> by 43.8, 77.8 and 111.1% relative to the respective stress treatments.



**Fig. 5.** Effect of ascorbic acid as seed priming agent on radicle length of rice under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

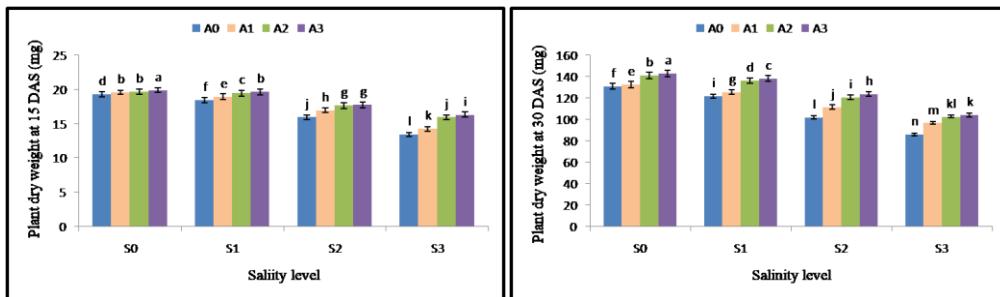
### Plant height


Plant height declined under all salt stress levels in a dose-dependent manner at both 15 and 30 DAS (Fig. 6), with the greatest reduction in S<sub>3</sub>. In non-primed plants, height was 22.2, 21.3, 19.1 and 17.4 cm at 15 DAS, and 41.1, 35.1, 32.1 and 28.1 cm at 30 DAS for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, respectively, representing 4.1, 13.9 and 21.6% and 14.6, 21.9 and 31.6% reductions compared to control. Ascorbic acid priming improved plant height under stress, with A<sub>2</sub> and A<sub>3</sub> performing better than A<sub>1</sub> at 15 DAS, and A<sub>3</sub> showing the greatest improvement at 30 DAS, increasing height by 14.2, 21.8 and 21.4% under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> stress.



**Fig. 6.** Effect of ascorbic acid as seed priming agent on plant height of rice at 15 and 30 DAS (days after sowing) under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

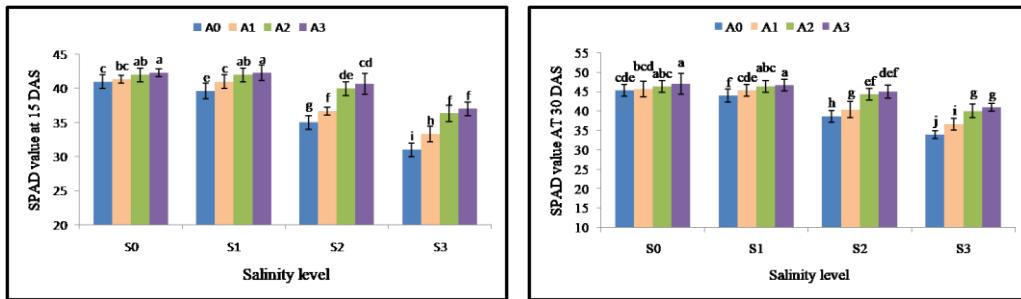
### Fresh weight of plant


Plant fresh weight declined under all salt treatments in a dose-dependent manner at both 15 and 30 DAS, with the highest reduction in S<sub>3</sub> (Fig. 7). In non-primed plants, fresh weight was 152.3, 142.3, 123.2 and 103.0 mg at 15 DAS, and 2067.3, 1851.3, 1553.3 and 1302.0 mg at 30 DAS for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, respectively, showing reductions of 6.6, 19.1 and 32.4% and 10.4, 24.9 and 37.0% compared to control. Ascorbic acid priming increased fresh weight under all stress levels. At 15 DAS, A<sub>1</sub>, A<sub>2</sub> and A<sub>3</sub> increased fresh weight by 2.8, 6.5 and 6.9%, 5.6, 10.6 and 19.6% and 5.9, 11.4 and 22.5%, respectively, under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> stress, with a similar trend at 30 DAS.



**Fig. 7.** Effect of ascorbic acid as seed priming agent on plant fresh weight of rice at 15 and 30 DAS (days after sowing) under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

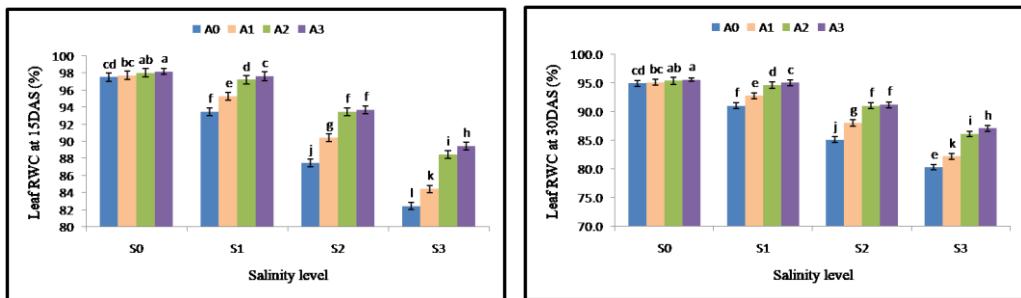
### Dry weight of plant


Like fresh weight, plant dry weight also declined under salinity in a dose-dependent manner at both 15 and 30 DAS (Fig. 8), with the greatest reduction in S<sub>3</sub>. In non-primed plants, dry weight was 19.3, 18.4, 16.0 and 13.4 mg at 15 DAS, and 288.2, 267.7, 224.4 and 189.2 mg at 30 DAS for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, respectively, representing 4.7, 17.1 and 30.6% and 7.1, 22.1 and 34.4% reductions compared to control. Ascorbic acid priming improved dry weight under all stress levels. At 15 DAS, A<sub>1</sub>, A<sub>2</sub>, and A<sub>3</sub> increased dry weight by 3.3, 6.3 and 6.7%, 6.0, 10.6 and 19.4%, and 7.1, 11.3 and 21.6%, respectively, under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> stress, with a similar trend at 30 DAS.



**Fig. 8.** Effect of ascorbic acid as seed priming agent on plant dry weight of rice at 15 and 30 DAS (days after sowing) under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

### Leaf SPAD value


SPAD value declined under salt stress in a dose-dependent manner, with the greatest reduction in S<sub>3</sub> at both 15 and 30 DAS (Fig. 9). In non-primed plants, SPAD values were 41.0, 39.7, 35.0 and 31.0 at 15 DAS, and 45.3, 44.0, 38.7 and 34.0 at 30 DAS for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, respectively, showing reductions of 3.2, 14.6 and 24.4% compared to control. Ascorbic acid priming improved SPAD under stress. At 15 DAS, A<sub>1</sub>, A<sub>2</sub>, and A<sub>3</sub> increased SPAD by 3.3, 4.9 and 7.4%, 5.8, 14.3 and 17.1%, and 6.5, 16.3 and 19.4%, respectively; at 30 DAS, the increases were 3.0, 4.1 and 7.9%, 5.2, 14.5 and 17.6%, and 6.1, 16.3 and 20.6%, respectively, under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> stress.



**Fig. 9.** Effect of ascorbic acid as seed priming agent on SPAD value of rice at 15 and 30 DAS (days after sowing) under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

### Leaf relative water content (RWC) (%)

Leaf relative water content (RWC), an indicator of plant water status, declined significantly under salt stress in a dose-dependent manner at both 15 and 30 DAS, with the greatest reduction in S<sub>3</sub> (Figure 10). In non-primed plants, RWC was 97.5, 93.5, 87.5 and 82.4% at 15 DAS, and 94.9, 91.0, 85.1 and 80.3% at 30 DAS for S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub>, respectively, representing reductions of 4.1, 10.3 and 15.5% compared to the control. Ascorbic acid priming improved RWC under all stress levels. At 15 DAS, A<sub>1</sub> increased RWC by 1.9, 3.4 and 2.4%, A<sub>2</sub> by 4.0, 6.9 and 7.4%, and A<sub>3</sub> by 4.4, 7.1 and 8.6% under S<sub>1</sub>, S<sub>2</sub> and S<sub>3</sub> stress, with similar trends at 30 DAS.



**Fig. 10.** Effect of ascorbic acid as seed priming agent on leaf relative water content of rice at 15 and 30 DAS (days after sowing) under different levels of salt stress. Here, A<sub>0</sub>, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> indicate 0 mM, 0.125 mM, 0.250 mM, 0.5 mM ascorbic acid, respectively, and S<sub>0</sub>, S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> indicate 0 dS m<sup>-1</sup>, 5 dS m<sup>-1</sup>, 10 dS m<sup>-1</sup>, 15 dS m<sup>-1</sup> NaCl stress, respectively. Bars sharing the same letter within a salinity level are not significantly different according to Tukey's HSD test ( $p \leq 0.05$ ). Bars with different letters indicate significant differences at  $p \leq 0.05$  according to Tukey HSD test. The interaction effect (AsA x NaCl) was significant ( $p \leq 0.05$ )

## Discussion

Seed germination, speed of germination, and germination energy are fundamental processes for successful crop establishment, ultimately determining yield potential (Almansouri *et al.*, 2001; Murungu *et al.*, 2003). These processes are often severely hampered under abiotic stress conditions in most crops (Omid *et al.*, 2012). Among all developmental stages, seed germination is considered the most sensitive to environmental stresses, including salinity (Omid *et al.*, 2012; Redmann, 1974).

In the present study, rice seeds were subjected to different levels of salt stress, and the mitigating role of ascorbic acid (AsA) priming was evaluated. Our results (Figures 1–3) show that the tested rice variety was sensitive to salinity, exhibiting marked reductions in final germination percentage, germination speed, and germination energy with increasing NaCl concentration. However, seed priming with AsA (0.125, 0.250, and 0.5 mM) significantly improved germination traits under all stress levels. The observed improvement is consistent with the known role of AsA as a non-enzymatic antioxidant that scavenges reactive oxygen species (ROS) and protects cellular components during germination (Baig *et al.*, 2021). Specifically, the significant enhancement of radicle length under AsA priming (Figure 5) indicates that AsA protects the root-tip meristem from oxidative damage, which is essential for early root elongation (Afzal *et al.*, 2005). Similarly, plumule and radicle lengths were substantially reduced under higher salinity, resulting in shorter seedlings. AsA priming partially restored these growth parameters (Figures 4 and 5), likely due to its role in maintaining osmotic balance and promoting antioxidant defense, which supports cell division and elongation in young tissues. This aligns with previous findings that AsA can stabilize cell membranes and maintain turgor under stress, leading to improved shoot and root growth (Saboor and Kiarostami, 2006; Gupta and Srivastava, 1989).

Plant height, fresh weight, and dry weight were also adversely affected by salinity (Fig. 6–8). The partial recovery of these growth parameters in AsA-primed plants can be explained by enhanced metabolic activity and improved biomass accumulation, as primed seeds exhibit faster germination and uniform seedling establishment. These findings are consistent with reports that priming accelerates seedling vigor and increases shoot and root biomass under stress (Ghoulam and Fares, 2001; Salim, 1991). In addition to growth, physiological traits such as SPAD value and leaf relative water content (RWC) were significantly reduced by salinity (Figures 9 and 10). The maintenance of chlorophyll in AsA-primed plants can be attributed to the antioxidant role of AsA, which prevents pigment degradation and protects pigment–protein complexes. Likewise, the improved RWC in primed plants suggests better osmotic regulation and water retention, helping plants maintain turgor and cellular hydration under salt stress. These physiological improvements clearly correlate with the enhanced growth and biomass observed in AsA-primed seedlings. These results demonstrate that salinity negatively impacts seed germination, seedling growth, and key physiological processes in rice. Exogenous application of AsA through seed priming mitigates these effects by enhancing antioxidant defense, protecting meristematic tissues, maintaining osmotic balance, and supporting chlorophyll and water status. The significant improvements observed in germination traits, radicle and plumule lengths, plant height, biomass, SPAD values, and RWC

directly reflect the underlying physiological mechanisms, confirming that AsA priming is an effective strategy to improve salinity tolerance in rice at germination and early seedling stages.

## Conclusion

Soil salinity is one of the most pressing challenges for agriculture worldwide, and in Bangladesh, it is a major constraint, especially in coastal areas where over half of the land is affected. This study revealed that priming rice seeds with ascorbic acid (AsA) improved germination, growth, and physiological traits under different salinity levels, with 0.25 mM and 0.5 mM proving more effective than 0.125 mM. These findings indicate that AsA seed priming can enhance rice tolerance to salinity, but further field-level research is needed to confirm its effects on overall growth, development, and yield.

## Acknowledgement

The authors gratefully acknowledge the financial support provided by Ministry of Science and Technology, Bangladesh. The authors also thank the Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, for providing additional logistical and laboratory support.

## Conflicts of interest

The authors declare no conflicts of interest regarding publication of this paper.

## Authors' contribution

Conceptualization, Supervision, Writing-original draft: JAM, MA and HA; Data curation: MA, HA and FA; Formal analysis: JAM; Funding acquisition: JAM; Investigation: HA, MA, FA and MGJH Methodology: HA and JA; Project administration: JAM and MGJH; Validation: JAM and HA; Review and editing: JAM, MA and MGJH.

## References

Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2019). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. *Span. J. Agri. Res.*, 14(1): e0902.

Afzal, I., Basra, S. M. A., Ahmad, N., Cheema, M. A., Warraich, E. A., & Khaliq, A. (2005). The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. *J. Stress Physiol. Biochem.*, 1(1):6-14.

Afzal, I., Basra, S. M. A., Ahmad, N., & Farooq, M. (2005). Optimization of hormonal priming techniques for alleviation of salinity stress in wheat (*Triticum aestivum* L.). *Plant Physiol.*, 17: 95-109.

Ahmandvand, G., Soleimani, F., Saadati, B., & Pouya, M. (2012). Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress. *Am.-Eurasian J. Agri. Environ. Sci.*, 12:769-774.

Almansouri, M., Kinet, J.-M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (*Triticum durum* Desf.). *Plant Soil*, 231(2):243-254.

Ashraf, M., & O'Leary, J. M. (1997). Ion distribution in leaves of salt-tolerant and salt-sensitive lines of spring wheat under salt stress. *Acta Bot. Neerl.*, 46: 207–217.

Athar, H. R., Khan, A., & Ashraf, M. (2009). Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. *J. Plant Nutr.*, 32: 1799–1817.

Baig, Z., Khan, N., Sahar, S., Sattar, S., & Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (*Triticum aestivum* L.) cultivars. *Acta Ecologica Sinica*, 41(5):491-498.

Casenave, E. C., & Toselli, M. E. (2007). Hydro-priming as a pretreatment for cotton germination under thermal and water stress conditions. *Seed Sci. Tech.*, 35:88-98.

Ellis, R. H., & Robert, E. H. (1981). The quantification of ageing and survival in orthodox seeds. *Seed Sci. Technol.*, 9: 373-409.

Farooq, M., Usman, M., Nadeem, F., Rehman, H., Wahid, A., Basra, S. M. A., & Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. *Crop Pasture Sci.*, 70:731-771.

Ghoohestani, A., Gheisary, H., Zahedi, S. M., & Dolatkhahi, A. (2012). Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxide on germination and plantlet growth in saline conditions. *Int. J. Agron. Plant Prod.*, 3:700-704.

Ghoulam, C., & Fares, K. (2001). Effect of salinity on seed germination and early seedling growth of sugar beet (*Beta vulgaris* L.). *Seed Sci. Technol.*, 29: 357–364.

Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. *Plant Physiol. Biochem.*, 48:909-930.

Gupta, S. C., & Srivastava, C. P. (1989). Effect of salt stress on morphophysiological parameters in wheat (*Triticum aestivum* L.). *Ind. J. Plant Physiol.*, 2:169-171.

Hajlaoui, H., Denden, M., & El-Ayeb, N. (2009). Changes in fatty acid composition, hydrogen peroxide and lipid peroxidation of salt-stressed corn (*Zea mays* L.) roots. *Acta Physiol. Plant.*, 31:787-796.

Hussain, S., Ali, B., & Saqib, M. (2022). Seed priming to enhance salt and drought stress tolerance in plants: Advances and prospects. In: Shanker, A. K., Shanker, C., & Maheswari, M. (Eds.), *Climate Change and Crop Stress: Molecules to Ecosystems*. Academic Press, pp. 441-464.

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. *J. Plant Physiol.*, 192:38-46.

Khan, A., Iqbal, I., Shah, A., Ahmad, A., & Ibrahim, M. (2010). Alleviation of adverse effects of salt stress in brassica (*Brassica campestris*) by pre-sowing seed treatment with ascorbic acid. *J. Agric. Environ. Sci.*, 7:557-560.

Levitt, J. (1972). *Responses of Plants to Environmental Stresses*. Academic Press, New York, USA.

Mahmud, J. A., Bhuyan, M. H. M. B., Anee, T. I., Nahar, K., Fujita, M., & Hasanuzzaman, M. (2019). Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Hasanuzzaman, M., Hakeem, K. R., Nahar, K., & Alharby, H. F. (Eds.), *Plant Abiotic Stress Tolerance*. Springer, pp. 221-257.

Mall, R. K., & Sonkar, G. (2017). Effect of climate change on agricultural crops. In: Dubey, S. K., Pandey, A., & Sangwan, R. S. (Eds.), *Effect of Climate Change on Agricultural Crops*. Elsevier, pp. 23-42.

Murungu, F., Nyamugafata, P., Chiduza, C., Clark, L., & Whalley, W. (2003). Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (*Gossypium hirsutum* L.) and maize (*Zea mays* L.). *Soil Tillage Res.*, 74(2):161-168.

Omid, A., & Farzad, S.-Z. (2012). Osmo and hydro priming improvement germination characteristics and enzyme activity of mountain rye (*Secale montanum*) seed under drought stress. *J. Stress Physiol. Biochem.*, 8(4).

Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2012). Seed biopriming with salinity-tolerant isolates of *Trichoderma harzianum* alleviates salinity stress in rice: Growth, physiological and biochemical characteristics. *J. Plant Pathol.*, 94:353-365.

Redmann, R. (1974). Osmotic and specific ion effects on the germination of alfalfa. *Can. J. Bot.*, 52(4): 803-808.

Roy, P. R., Tahjib-Ul-Arif, M., Akter, T., Ray, S. R., & Sayed, M. A. (2016). Exogenous ascorbic acid and hydrogen peroxide alleviates salt-induced oxidative stress in rice (*Oryza sativa* L.) by enhancing antioxidant enzyme activities and proline content. *Adv. Environ. Biol.*, 10(10):148-154.

Ruan, S., Xue, Q., & Tylkowsko, K. (2002). The influence of priming on germination of rice (*Oryza sativa* L.) seeds and seedling emergence and performance in flooded soils. *Seed Sci. Technol.*, 30:61-67.

Saboor, A., & Kiarostami, K. (2006). Salinity tolerance of wheat genotype at germination and early seedling growth. *Pak. J. Biol. Sci.*, 9(11):2009-2021.

Salama, K. H. A. (2009). Amelioration of NaCl-induced alterations on the plasma membrane of *Allium cepa* L. by ascorbic acid. *Aust. J. Basic Appl. Sci.*, 3:990-994.

Salim, M. (1991). Comparative growth responses and ionic relations of four cereals during salt stress. *J. Agron. Crop Sci.*, 166:204-209.

Singh, M., Kumar, S., & Verma, S. K. (2017). Seed priming with proline and glycine betaine for salinity tolerance in chickpea (*Cicer arietinum* L.). *Int. J. Curr. Microbiol. Appl. Sci.*, 6(3):901-907.

Zhao, T. J., Liu, Y., Yan, Y. B., Feng, F., Liu, W. Q., & Zhou, H. M. (2007). Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of *Brassica napus*. *FEBS Lett.*, 581:3044-3050.

Mamun, F., Ali, M. H., Chowdhury, I. F., Hasanuzzaman, M., & Matin, M. A. (2014). Performance of rapeseed and mustard varieties grown under different plant density. *Sci. Agri.*, 8(2):70-75.