SCREENING OF CELLULASE, PECTINASE AND XYLANASE ACTIVITIES AND OPTIMIZATION OF RADIAL MYCELIAL GROWTH OF TWO THERMOPHILIC FUNGI

KUMKUM AZAD*, FEROZA HOSSAIN AND MD ABDUL HALIM

Department of Botany, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Key words: Thermophilic fungi, Cellulase, Polygalacturonase, Xylanase, Thermomyces lanuginosus, Rhizomucor pusillus

Abstract

The enzymatic activity of *Thermomyces lanuginosus* BPJ-10 and *Rhizomucor pusillus* BPJ-2 were observed through qualitative screening programme which was demonstrated by the hydrolysis of substrate on solid media. Both the fungi exhibited potential xylanolytic and pectinolytic activities whereas no cellulase activity was observed in *T. lanuginosus* BPJ-10 and very low cellulase activity was found in *R. pusillus* BPJ-2. The optimum temperature for mycelial growth of *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2 were found to be 50 and 45°C, respectively, whereas the optimum pH for both of them were 6.5 and 5, respectively. Out of five culture media used, both the fungi showed maximum radial mycelia growth on Potato Dextrose Agar.

Introduction

A few species of fungi have the ability to thrive at temperatures between 45 and 55°C. Such fungi comprise of thermophilic and thermotolerant forms, which are arbitrarily distinguished on the basis of their minimum and maximum temperature of growth. The thermophilic fungi have a growth temperature minimum at or above 20°C and maximum at or above 50°C. The growth of thermotolerant forms have a temperature range from 20 - 55°C (Ghatora *et al.* 2006, Maheshwari *et al.* 2000). Thermophilic fungi have wide applications in production of industrially important thermostable enzymes, antibiotics and other biomolecules, predigestion of animal feed to improve the quality or digestibility of fodder, production of fuels and chemical feedstocks from wastes biomass polymers, enzymatic hydrolysis of biopolymers and single cell protein production from lignocellulosic substrates (Yang *et al.* 2006, Senthilkumar *et al.* 2005, Akhtar *et al.* 2003, Kristjansson 1989, Durand *et al.* 1984).

Interest in thermophilic fungi with thermostable enzymes mainly is due to the fact that most of the existing industrial enzyme processes run at high temperatures using enzymes from mesophilic sources (Ghatora *et al.* 2006, Bruce *et al.* 1991). There are many advantages in using thermostable enzymes in industrial processes as compared to thermolabile enzymes (Yang *et al.* 2006, Kristjansson 1989).

Because of their important applications, two thermophilic fungi *Thermomyces lanuginosus* BPJ-10 and *Rhizomucor pusillus* BPJ-2 were used in this experiment with an objective to study enzymatic activity and radial mycelial growth. Hence the screening for enzymatic activity as well as some of the cultural parameters such as temperature, pH and different culture media were examined to determine the optimum radial mycelial growth of these fungi.

^{*}Author for correspondence: <azadmow@yahoo.com>

Materials and Methods

Saw dust, piles of hay and soil were used for isolation of thermophilic fungi. Samples were inoculated on PDA medium (pH 6.5) and incubated at 50°C temperature. After 4 days of incubation, different colonies with different colours and shapes were found on the culture plates. Then distinct colonies were isolated on PDA medium as pure culture. Pure fungal mycelium was transferred to agar slant for stock culture and the culture was maintained at 4°C and subcultured at 14 days intervals. Then the colonies were observed under microscope.

Enzyme activity to be demonstrated by the hydrolysis of substrate incorporated, generally as the main carbon source such as carboxymethyle cellulose (CMC) for carboxymethyle cellulase (CMCase) activity, xylan for xylanase activity and polygalacturonic acid (PG) for polygalacturonase (PGase) activity, respectively on a solid agar medium following the method of Mohiuddin (1992).

For screening of CMCase activity the fungi were grown on CMC-agar. Culture plates of 4 days were flooded with 10 ml Congo red (0.1%) solution. After 20 minutes, the dye was replaced by 5 mol/l NaCl solution and CMCase activity was revealed by a pale orange zone around the colonies.

For the screening of PGase activity, the fungi were grown on PG-agar. After 5 days of growth the plates were flooded with 1% (w/v) cetyltrimethyl ammonium bromide solution. PGase activity was observed by the formation of hydrolytic zone around the colonies after 5 - 10 min of incubation. For screening of xylanase activity fungal colonies were grown on xylan-agar media. After 4 days the plates were flooded with 96% ethanol. Xylanase activity exhibited by the formation of hydrolytic zone around the colonies after 3 - 4 hrs of incubation.

To determine the maximum vegetative growth, the fungal isolates were allowed to grow on PDA medium at different temperatures such as 40, 45, 50, 55 and 60°C. To determine the optimum pH for maximum mycelial growth, the fungal isolates were cultured on PDA mediun at pH 4, 4.5, 5, 5.5, 6, 6.5, 7, 8 and 9. To investigate the effect of different culture media on radial mycelial growth, the isolated fungi were allowed to grow on different solid media such as carboxy methyl cellulose (CMC), Czapek's Dox Agar, Malt Extract Agar (MEA), Mendel's and PDA media (Hossain *et al.*1999 and Mohiuddin 1992). For each case radial mycelial growth of fungi was recorded at every 24 hrs up to 7 days.

Data obtained from radial mycelial growth diameters were analysed statistically. Means were compared by least significant difference (LSD) at 5% level of significance through one way ANOVA and DMRT by using SPSS program 11.

Results and Discussion

During this study two fungal isolates were identified, namely *Thermomyces lanuginosus* BPJ-10 (according to laboratory specimen) and *Rhizomucor pusillus* BPJ-2 (after Schipper 1978).

To isolate potential cellulase free xylanolytic and pectinolytic thermophilic fungi, a qualitative screening programme was performed by the hydrolysis of substrate in a solid agar medium. The activity can be detected around the colonies by the appearance of zones revealed either by substrate clearances or decolouration. The isolated *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2 were used for determining CMCase, PGase and xylanase activity.

During screening for cellulolytic activity *T. lanuginosus* BPJ-10 did not exhibit any decolouration or hydrolytic zone around their colonies on CMC-agar plate, whereas *R. pusillus* BPJ-2 exhibited a thin pale orange zone around their colonies on CMC-agar plate (Table 1). It

indicates that these fungi do not have the ability to degrade cellulose. In case of *T. lanuginosus*, similar result was found by Akhtar *et al.* (2003).

The fungi *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2 exhibited clear zones around their colonies on PG-agar plate of 3 days old culture and xylan-agar plate of 5 days old culture. It was found that the ratio of radial mycelial growth and hydrolytic zone on PG-agar was 5:1 and 8:1 for *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2, respectively.

			Name of th	e fungi		
Enzymes for	T.	lanuginosus]	BPJ-10	F	R. <i>pusillus</i> BI	PJ-2
screening	Radial mycelial growth (mm)	Hydrolytic zone (mm)	Radial mycelial growth: Hydrolytic zone	Radial mycelial growth (mm)	Hydrolytic zone (mm)	Radial mycelial growth: Hydrolytic zone
CMCase	25	0	25:0	30	3	10:1
PGase	30	6	5:1	40	5	8:1
Xylanase	45	9	5:1	42	7	6:1

Table 1. Enzyme activity measured by the ratio of radial mycelial growth and hydrolytic zone.

The ratio of radial mycelial growth and hydrolytic zone on xylan-agar was 5:1 and 6:1 for *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2, respectively (Table 1). It indicates that *T. lanuginosus* BPJ-10 exhibited higher xylanolytic activity than that of *R. pusillus* BPJ-2. All the xylanolytic fungi grown on xylan-agar medium can hydrolise the xylan (substrate) from white to transparent (Akhtar *et al.* 2003). Therefore, the result of screening programme indicated that *T. lanuginosus* BPJ-10 have higher xylanolytic and pectinolytic activities than that of *R. pusillus* BPJ-2. The result also showed that both the fungi exhibited higher xylanolytic activity than other two enzymes.

As *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2 showed cellulase free xylanase and PGase producing capability, it is therefore imperative to study their radial mycelial growth on solid media for optimizing the cultural parameters. Isolated fungi were grown at different temperature, pH and culture media which lead to determine the optimum cultural condition for mycelial growth of these fungi.

Thermomyces lanuginosus BPJ-10 was found to grow well in the temperature range $45 - 55^{\circ}$ C and the optimum temperature for the growth was found to be 50° C (Table 2). Similar results were also reported by Shing *et al.* (2003). It was observed that *R. pusillus* BPJ-2 grows well at a temperature range of $40 - 50^{\circ}$ C and the optimum temperature for its maximum growth was 45° C (Table 2). Radial mycelial growth was increased gradually during the incubation period. Very poor growth was observed at 40 and 60° C for *T. lanuginosus* BPJ-10, while *R. pusillus* BPJ-2 showed poor growth at 55 and 60° C. Wide range of pH (4.5 to 8.0) was observed for the growth of *T. lanuginosus* BPJ-10 and the optimum pH of its growth was found to be 6.5 (Table 3). In the meantime, *R. pusillus* BPJ-2 can grow well at pH range of 4.0 to 6.5 and the optimum pH for its growth was 5 (Table 3). Similar results were also reported for *T. lanuginosus* by Akhtar *et al.* (2003) and Shing *et al.* (2003). Gomes *et al.* (1993) and Purkarthofer *et al.* (1993) also observed optimum pH 6.5 for the maximum growth of *T. lanuginosus*.

Radial mycelial growth of the fungi followed a definite pattern in different media having different carbon sources in the present study (Table 4). In PDA and in Czapeck's Dox agar media *T. lanuginosus* BPJ-10 and *R. pusillus* BPJ-2 grew very well and their culture plates were covered

Temp.					Incubation period (days)	iod (days)				
(°C)	1	st	2nd	p	31	3rd	4th	h	5th	h
				Average ra	Average radial mycelial growth diameter (mm)**	wth diameter (n	nm)**			
	T. lanuginosus	R. pusillus	R. pusillus T. lanuginosus R. pusillus T. lanuginosus R. pusillus T. lanuginosus R. pusillus T. lanuginosus R. pusillus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus
40	$3.76 \pm 0.14d$	$17.03\pm0.26b$	$17.03 \pm 0.26b 12.16 \pm 0.44c 61.16 \pm 0.60b 25.50 \pm 0.28d 87.93 \pm 0.06a 30.53 \pm 0.29d 88.00 \pm 00a 41.20 \pm 0.61d 88.00 \pm 00a 40.20 \pm 0.06d 80.00 \pm 0.06d $	$61.16\pm0.60b$	$25.50\pm0.28\mathrm{d}$	$87.93\pm0.06a$	$30.53 \pm 0.29d$	$88.00\pm00a$	$41.20\pm0.61d$	$88.00\pm00a$
45	$9.86\pm0.46c$	$20.16\pm0.60a$	$23.00\pm0.57b$	$66.50\pm1.04a$	$38.13\pm0.24b$	$88.00\pm0.03a$	$66.50 \pm 1.04a 38.13 \pm 0.24b 88.00 \pm 0.03a 41.86 \pm .46c$	$88.00\pm00a$	$88.00\pm 00a 55.50\pm 0.28c 88.00\pm 00a$	$88.00\pm00a$
50	$13.90\pm0.21a$	$13.96\pm0.32c$	$27.46\pm0.29a$	$16.83\pm0.44c$	$41.20\pm0.41a 35.53\pm0.29b$	$35.53\pm0.29b$	$64.50\pm0.28a$	$56.00 \pm 0.57b$	$64.50 \pm 0.28a 56.00 \pm 0.57b \ 88.00 \pm 0.06a \ 78.02 \pm 0.50b$	$78.02 \pm 0.50b$
55	$11.50\pm0.28b$	$1.33\pm0.33d$	$22.83\pm0.60b$		$3.40\pm0.31d 33.86\pm0.46c 7.83\pm0.60c$	$7.83 \pm 0.60c$	$48.50\pm0.28b$	$9.00\pm0.57c$	$48.50 \pm 0.28b 9.00 \pm 0.57c 68.60 \pm 0.30b \ 17.03 \pm 0.58c$	$17.03 \pm 0.58c$
60	$4.26\pm0.26d$	0	$9.00 \pm 0.57 d$		$1.166 \pm 0.44e 13.80 \pm 0.61e 4.00 \pm 1.15d$	$4.00\pm1.15\mathrm{d}$	$25.86 \pm \mathbf{0.59e}$	$2.00\pm0.58\mathrm{d}$	$25.86 \pm 0.59e 2.00 \pm 0.58d 27.00 \pm 0.57e 2.04 \pm .057d$	2.04 ±. 057d
*Mean	8.660	10.50	18.893	29.813	30.50	44.653	42.253	48.60	56.046	54.60
LSD (0.05)	0.931	1.129	1.611	1.956	1.341	1.882	1.048	1.409	1.172	1.409

BPJ-2.
pusillus E
ĸ.
and
-10
BPJ
lanuginosus l
L.
0
mm)
ťh
grow
mycelial
radial
00
emperatures
fte
ffect o
. Eff
Table 2

*Means in a column followed by the same letter do not differ significantly at 5 % level. **Data expressed as mean value of 3 replicates.

Hd	1s	st	2nd	pu	3rd	rd	4th	h	51	5th
				Avera	Average radial mycelial growth diameter (mm)**	I growth diamet	er (mm)**			
	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus
4.0	4.10±0.06f	6.10±0.21e	11.40±0.31g	39.40±0.34e	18.16±0.44i	82.00±0.23b	27.50±0.29h	88.00±00a	35.07±0.52f	88.00±00a
4.5	7.17±0.09d	27.13±0.46b	$27.13{\pm}0.46b 19.00{\pm}0.12d 66.73{\pm}0.48a$	66.73±0.48a	33.83±0.44g	87.66±0.33a	47.46±1.01f	88.00±00a	61.10±0.58d	88.00±00a
5.0	9.00±0.06c	29.20±0.45a	12.13±0.07f	67.06±0.29a	46.87±0.69e	88.00±0.00a	58.20±0.45d	88.00±00a	73.93±0.52c	88.00±00a
5.5	12.13±0.09b	24.86±0.35c	31.97±0.09b	63.96±0.14b	51.07±0.52d	82.16±0.44b	73.90±0.66b	88.00±00a	87.00±0.52a	88.00±00a
6.0	13.03±0.09a	23.96±0.43c	31.90±0.21b	61.96±0.26c	63.80±0.76b	79.33±0.66c	76.26±0.37a	88.00±00a	87.06±0.00a	88.00±00a
6.5	13.10±0.15a	13.83±0.17d	33.40±0.83a	49.10±0.26d	66.17±0.76a	61.46±0.29d	77.07±0.63a	75.00±.52b	88.00±0.00a	88.00±00a
7.0	9.13±0.09c	3.73±0.37f	28.07±0.52c	30.96±0.26f	53.83±0.60c	56.80±0.41e	68.17±0.52c	69.00±.57c	82.10±0.49b	85.00±.88ab
8.0	5.17±0.09e	1.96±0.09g	15.03±0.55e	21.70±0.45g	36.60±0.29f	46.20±0.91f	46.20±0.45e	62.00±.56d	60.77±0.62d	82.33±0.45b
9.0	3.03±0.09g	1.13±0.09g	10.07±0.58h	11.53±0.78h	25.46±0.29h	36.33±0.88g	$37.83 \pm 0.44g$	59.00±.57e	55.83±0.44e	78.33±.88c
*Mean	8.429	14.659	22.88	45.825	43.97	68.885	56.40	78.33	69.97	85.96
LSD(0.05)	0.277	0.954	1.316	1.212	1.548	1.621	1.687	1.143	1.395	3.317

7
3PJ
IS F
illa
Sm
2.7
ſ p
an
-10
BPJ.
SB
nsa
inc
ân
lan
Т.
of
Ē
Ē
vth
rov
50
slia
yc
<u>=</u>
dia
ra
00
Hq
f
ere
iff
fd
t o
ffec
Ξ
e 3
ld
Ĩ

*Means in a column followed by the same letter do not differ significantly at 5 % level. **Data expressed as mean value of 3 replicates.

211

Culture media					(a fun) mound mountains	(cfmn) n				
media	1s	t	2nd	Ŧ	3rd	F	4t	h	5	h
				Average radi	Average radial mycelial growth diameter (mm)**	th diameter (m	m)**			
T. la	T. lanuginosus	R. pusillus	R. pusillus T. lanuginosus	R. pusillus T. lanuginosus R. pusillus T. lanuginosus R. pusillus T. lanuginosus R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus	T. lanuginosus	R. pusillus
PDA 13.0	$13.03 \pm 0.14a$	$20.16\pm0.60a$	$20.16\pm 0.60a \qquad 31.46\pm 0.74c$	$71.16 \pm 0.60a 63.60 \pm 0.30b 88.00 \pm 00a 76.46 \pm 0.29b 88.00 \pm 00a 87.93 \pm 0.06a 88.00 \pm 00a 80.00 \pm 0.08a 80$	$63.60\pm0.30\text{b}$	$88.00\pm00a$	$76.46\pm0.29b$	$88.00\pm00a$	$87.93\pm0.06a$	$88.00\pm00a$
MEA 9.6	$9.60 \pm 0.30c$	$12.50\pm0.28c$	$31.86\pm0.46c$	$41.86\pm2.05c$	$41.86 \pm 2.05c 43.16 \pm 0.60c 71.16 \pm 0.72b 52.50 \pm 0.28d 65.00 \pm 5.13c 59.66 \pm 0.88c 10.88c 10.8$	$71.16\pm0.72b$	$52.50\pm0.28d$	$65.00\pm5.13c$	$59.66\pm0.88c$	$83.33 \pm 1.66b$
MENDEL 0.0	0.00 ± 0.00	$8.20\pm0.28d$	$7.60\pm0.30\mathrm{d}$	$19.20 \pm 0.41e$	$19.20 \pm 0.41 e 13.16 \pm 0.60 d 30.86 \pm 0.59 d 14.20 \pm 0.41 e 88.00 \pm 00 a 18.53 \pm 0.86 d 88.00 \pm 00 a 10.20 \pm 0.00 = 0.0$	$30.86 \pm \mathbf{0.59d}$	$14.20\pm0.41e$	$88.00\pm00a$	$18.53\pm0.86d$	$88.00\pm00a$
CZAPEK'S 9.8	$9.86\pm0.46c$	$14.16\pm0.44b$	$52.26 \pm 0.371a$	$55.16\pm0.44b$	$71.16 \pm 0.60a 80.23 \pm 0.23a 80.46 \pm 0.29a 82.66 \pm 1.35b 87.83 \pm 0.16a 88.00 \pm 00a 80.0a \pm 0.0a 80.0a 80.0a 80.0a \pm 0.0a 80.0a 80.0a $	$80.23\pm0.23a$	$80.46\pm0.29a$	82.66 ±1.35b	$87.83\pm0.16a$	$88.00\pm00a$
CMC 11.5	$11.53 \pm 0.80b$	$14.20\pm0.41b$	$45.40\pm0.30b$	$36.80\pm0.98d$	$65.20 \pm 0.41b 57.20 \pm 0.75c 68.20 \pm 0.41c 44 \pm 2.30d 71.26 \pm 0.63b 43.00 \pm 1.52c = 0.63c = 0.64c = 0.63c =$	$57.20\pm0.75c$	$68.20\pm0.41\mathrm{c}$	$44 \pm 2.30d$	$71.26\pm0.63b$	$43.00\pm1.52c$
*Mean	8.807	13.847	33.720	44.840	51.260	67.080	58.367	73.53	65.047	78.06
LSD (0.05)	0.910	1.398	1.473	3.429	1.637	1.733	1.090	4.068	1.975	3.186

5
BPJ-2
S
ille
sma
R. J
p
ar
÷
BPJ
S B
nsa
ine
gm
la
T.
of
Ē
Ē
ţ
5
Pg I
elia
yc.
<u>=</u>
lia
rac
00
lia
ned
en
Ē
In
it
ere
ΪĮ
fd
t o
ffec
Eff
e 4.
ld
T_{2}

*Means in a column followed by the same letter do not differ significantly at 5 % level. **Data expressed as mean value of 3 replicates.

with fungal hyphae on 5 days of incubation. Both CMC-agar and malt-agar medium also served as good source of carbon for these fungi. However, in Mendel's medium very poor colonial growth was recorded for both the fungi.

Thermomyces lanuginosus and *R. pusillus* showed better xylanase and PGase producing capability. *T. lanuginosus* and *R. pusillus* produced maximum hydrolytic or clearing zone indicating that the activity of xylanase and polygalacturonase at 50 and 45°C respectively. The result also revealed that *T. lanuginosus* did not have any cellulase activity whereas *R. pusillus* has negligible amount of cellulase. On the basis of this finding further quantitative enzyme producing experiment has been designed by employing these fungi.

References

- Akhtar N, Hossain F, Halim MA and Mohiuddin G 2003. Morphology and vegetative growth of the thermophilic fungus *Thermomyces lanuginosus*. Bangladesh J. Life Sci. **15**(2): 59-64.
- Bruce LZ, Henrik KN and Robert LS 1991. Thermostable enzymes for industrial applications. J. Industrial Microbiol. 8: 71-82.
- Durand H, Soucaile P and Triaby G 1984. Comparative study of cellulase and hemicellulases from four fungi: mesophiles *Trichoderma reesei* and *Penicillium* sp. and thermophiles *Thielavia terrestris* and *Sporotrichum cellulophilum*. Enzyme Microb. Technol. **6**: 175-180.
- Ghatora SK, Chadha BS, Badhan AK, Saini SH and Bhat MK 2006. Xylanases from fungi. BioResourses 1(1): 18-33.
- Gomes J, Gomes I, Esterbauer H, Sinner M and Steiner W 1993. Production of high level of cellulase free and thermostable xylanase by a wild strain of *Thermomyces lanuginosus* in laboratory and pilot scales using lignocellulosic masterials. Appl. Microbial. Biotechnol. **39**: 700-709.
- Hossain F, Halim MA, Talukder SH and Mohiuddin G 1999. Study of morphological characters and vegetative growth of two white rot fungi *Phanerochaete chrysosporium* DSM6909 and *Fomes lignosus*. Bangladesh J. Life Sci. **11**(1&2): 65-72.
- Kristjansson JK 1989. Thermophilic organisms as sources of thermostable enzymes. Tibtech. 7: 349-353.
- Maheshwari R, Bharadwaj G and Bhat MK 2000. Thermophilic fungi: Their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64 (3): 461-488.
- Mohiuddin G 1992. A manual for imporved processing technique for low grade jute and cuttings. IJO. pp. 6-19.
- Purkarthofer H, Sinner M and Steiner W 1993. Cellulase free xylanase from *Thermomyces lanuginosus*: optimization of production in submerged and solid-state culture. Enzyme Microb. Technol. **15**: 405-410.
- Schipper MAA 1978. On the genera of Rhizomucor and Parasitella. Studies in mycology 17: 53-68.
- Senthilkumar SR, Ashokkumar B, Chandra RK and Gunasekaran P 2005. Optimization of medium composition for alkali-stable xylanase production by *Aspergillus fischeri* Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. **96**: 1380-1386.
- Shing S, Madlala AM and Prior BA 2003. *Thermomyces lanuginosus*: Properties of strains and their hemicellulases. FEMS Microbiol. Rev. **27**(1): 3-16.
- Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM and Wang YZ 2006. High level of xylanase production by the thermophilic *Paecilomyces themophila* J18 on wheat straw in solid state fermentation. Bioresour. Technol. 97: 1794-1800.

(Manuscript received on 17 February, 2013; revised on 24 October, 2013)