BACTERIAL DIVERSITY IN SOME SELECTED AGRICULTURAL FOOD PRODUCTS

AMNA ALI*, MUHAMMAD SALEEM HAIDER, SANA HANIF AND MUHAMMAD ASHFAQ

Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan

Key words: Bacterial diversity, Selected, Agricultural products

Abstract

A total of 27 bacterial strains were isolated from apple, potato, turnip, onion, cucumber, zinger, lemon, spinach, radish and mint marketted in Labore, Pakistan. Highest frequency of occurrence (4%) was recorded for each of *Enterobacter aggglomerans, Ensifer adhaerens* and *Bordetella pertussis, Brassica rapa* and *Kurthia gibsonii* showed 30% frequency of occurrence. Frequency of all other bacterial strain ranged from 10 - 20%. Highest number (7) of bacterial speices were recorded from lemon and potato while the minimum number (4) was represented by each of apple, onion, ginger, spinach and radish.

Bacteria enter plant tissue primarily through the root zone; however, aerial portions of plants, such as flowers, stems, and cotyledons, may also be used for entry. Specifically, the bacteria enter tissues via germinating radicles, secondary root, stomata, or as a result of foliar damage. Bacteria inside a plant may either become localized at the point of entry or spread throughout the plant. These microorganisms can reside within cells, in the intercellular spaces, or in the vascular system (Zinniel *et al.* 2002). The aim of the present study was to isolate and identify the bacterial species found in different agronomic crops for their diversity.

Ten infected agricultural products viz: apple (Malus domestica L. Borkh.), potato (Solanum tuberosum L.), turnip (Brassica rapa L.), onion (Allium cepa L.), cucumber (Cucumis sativus L., ginger (Zingiber officinale L.), lemon (Citrus limon L. Burm. f.), spinach (Spinacia oleracea L.), radish (Raphanus sativus L.) and mint (Mentha sativa L.) were collected from markets of Lahore, Pakistan, during September to December 2012. The collected materials were stored in sterilized polythylene bags for further investigation. Surface sterilization of samples was done by stepwise washing in 70% ethanol for 5 min, sodium hypochlorite solution for 5 min, and 70% ethanol for 30 sec, followed by three rinses in sterile distilled water (Ishaq and Khan 2011). Different types of media viz: Luria Bertani agar (LBA), nutrient agar (NA), trypton agar (TA) and yeast extract agar (YEA) were used for isolation and identification (Ali and Naseem 2011, 2012). The surface of infected samples was removed with a sterilized razor blade, and the inner infected tissue was cut into pieces 4 to 6 mm long and were placed on media plates. Incubation was carried out at 37°C for 24 hrs to allow growth of endophytic bacteria. Moreover, fragments of diseased samples were homogenized in 5 ml of sterile saline solution with a blender. The serial dilutions $(1 \text{ ml of } 10^5)$ were spread with sterilized spreader onto media (Ishaq and Khan 2011) incubated at 37°C for 24 hrs. After incubation, distinct individual colonies were selected and sub-cultured by streaking on an agar plate for purification and preservation. Identification of bacterial species was done by following morphological, microscopic characteristics and biochemical tests and consulting the pertinent literature (Holt et al. 2000, Koneman et al. 1997, Benson 1996). After the identification of bacterial species, following values were determined: (i) percentage of each bacterial isolate in

^{*}Author for correspondence: <write2amna@gmail.com>.

the sample, (ii) number of occurrences of each bacterial taxa = number of samples colonized by a specific bacteria, (iii) frequency of occurrence of all taxa (%) = number of samples colonized by a specific bacteria divided by the number of sample examined $\times 100$ (Bajwa *et al.* 2009).

Bacteria Food Number of Occurrence product occurrence frequency (%)

Table 1. Frequency of occurrence (%) of bacterial species isolated from agricultural food products.

Klebsiella sp.	Apple	1	10
Burkholderia pseudomallei	Apple, lemon, mint	3	30
Yersinia ruckeri	Apple	1	10
Corynebacterium minutissium	Apple, radish	2	20
Bacillus farraginis	Potato, onion, spinach	3	30
Kurthia gibsonii	Potato, turnip, lemon	3	30
Enterobacter aggglomerans	Potato, cucumber, spinach	4	40
Ralstonia solanacearum	Potato	1	10
Azospirillium lipoferum	"	1	10
Acinetobacter lwoffii	Potato, onion	2	20
Peptococcus sp.	Turnip, mint	2	20
Acidovorax facilis	Turnip	1	10
Ensifer adhaerens	Turnip, cucumber, lemon, mint	4	40
Acinetobacter calcoaceticus	Turnip, lemon	2	20
Curtobacterium albidum	Onion, ginger	2	20
Acetobacter aceti	Cucumber	1	10
Acidovorax temperans	"	1	10
Bordetella pertussis	Cucumber, lemon, radish, mint	4	40
Lactococcus lactis	Ginger, radish	2	20
Pantoea sp.	Ginger	1	10
Spirillospora albida	"	1	10
Aerococcus sp.	Lemon	1	10
Syntrophospora sp.	"	1	10
Micrococcus luteus	Spinach	1	10
Proteus vulgaris	"	1	10
Microbacterium lacticum	Radish	1	10
Arthrobacter sp.	Mint	1	10
Total		48	480

A total of 27 bacterial strains representing 24 genera were isolated from ten different types of agricultural products. Two species belonged to genus Acinetobacter and Acidovorax whereas the rest of the genera Klebsiella sp., Burkholderia pseudomallei, Yersinia ruckeri, Corynebacterium minutissium, Bacillus farraginis, Kurthia gibsonii, Enterobacter aggglomerans, Ralstonia solanacearum, Azospirillium lipoferum, Peptococcus sp., Ensifer adhaerens, Curtobacterium albidum, Acetobacter aceti, Bordetella pertussis, Lactococcus lactis, Pantoea sp., Spirillospora albida, Aerococcus sp., Syntrophospora sp., Micrococcus luteus, Proteus vulgaris, Microbacterium lacticum and Arthrobacter sp. were represented by a single species (Table 1). The

Sample	Substrate/	Place of	Bacteria	No. of	% of
No.	host	collection		colonies	bacteria
01	Apple	Fruit market,	Klebsiella sp.	04	26
		Lahore, Cantt.	Burkholderia pseudomallei	03	20
		,	Yersinia ruckeri	05	33
			Corynebacterium minutissium	03	20
02	Potato	Vegetable	Bacillus farraginis	08	25
	market.	Kurthia gibsonii	07	22	
		Lahore, Cantt.	Enterobacter agglomerans	07	22
		····, -···	Ralstonia solanacearum	03	9.6
			Azospirillum lipoferum	04	12
			Acinetobacter lwoffii	02	6.4
03	Turnip	Vegetable	Peptococcus sp.	03	18
	1	market.	Kurthia gibsonii	04	25
		Lahore, Cantt.	Acidovorax facilis	02	12.5
		····, -···	Ensifer adhaerens	03	18
			Acinetobacter calcoaceticus	04	25
04	Onion	Vegetable	Bacillus farraginis	04	25
0.	omon	market.	Enterobacter agglomerens	03	18
		Lahore, Cantt.	Curtobacterium albidum	06	37
		Lunore, cunti	Acinetobacter lwoffii	03	18
05	Cucumber	Vegetable	Acetobacter aceti	04	24
00	cucumoti	Market	Acidovorax temperans	05	29
		Lahore Cantt	Rordetella pertussis	03	18
		Lunore, Cuntt.	Ensifer adhaerens	02	12
			Ensiger danaerens Enterobacter agglomerans	02	12
06	Ginger	Vegetable	Lactococcus lactis	04	31
00	Giliger	market	Pantora sp	03	23
		Lahore Cantt	Spirillospora albida	02	15
		Lanore, Cantt.	Curtobacterium albidum	04	31
07	Lemon	Fruit market	Bordetella pertussis	04	22
07	Lamon	Labore Cantt	Acinatobactar calcoacaticus	04	17
		Lanore, Cant.	Ensifer adharrons	04	22
			Aarococcus sp	04	05
			Kurthia aibsonii	01	11
			Swatrophospora sp	02	05
			Syntrophospora sp. Burkholdaria pseudomallai	01	17
08	Spinach	Vagatabla	Micrococcus luteus	03	25
08	Spinaen	wegetable	Enterobactor acclomorans	03	17
		Labora Cantt	Enterobacier aggiomerans	02	17
		Lanore, Cant.	Papillus farraginis	04	25
00	Dadiah	Vagatabla	Mianahastarium lastisum	03	23
09	Kauisii	wegetable	Lastososous lastis	02	20
		Indiket,	Common characterium animationium	03	20
		Lanore, Cantt.	Corynebacterium minutissium	03	30 20
10	Mint	Vagate 1-1-	Bortesessus an	02	20
10	wint	vegetable	reptococcus sp.	04	27
		Inarket,	Burknolaeria pseuaomailei	03	20
		Lanore, Cantt.	Ensiger aanaerens	02	13
			Arthrobacter sp.	03	20
			Bordetella pertussis	03	20

Table 2. Percentage of composition of bacteria in individual agricultural food products.

dominance of genera in the present study accorded with the results of (Hung and Annapurna 2004). Bacterial isolates from different agronomic plants and especially *Enterobacter aggglomerans, Ensifer adhaerens* and *Bordetella pertussis* those one with highest occurrence frequency showed that these are physiologically more versatile, not only in coping with the harshness of the climate but also have strong resistance to pollutants like heavy metals, herbicides, pesticides and antibiotics produced by other microorganisms and/or plants (Bajwa *et al.* 2009). Conversely, some species were isolated from a single locality, perhaps because they prefer a particular type of chemicals present in that locality or they lack competitive saprophytic ability to fight against antibiotics/ toxic substances produced by other flora and/or plants. Data also showed that percentage composition of bacterial flora was considerably influenced by the type of the plant (Table 2). The performance and stability of terrestrial ecosystems are determined by biodiversity and species composition. Distribution patterns of microorganisms provide important clues about the underlying mechanisms that structure ecological communities and are central to setting conservation priorities (Bajwa *et al.* 2009).

Bacterial strains isolated in the present investigation are a novel addition to the microdiversity of agricultural crops in Pakistan.

References

- Ali A and Naseem F 2011. Isolation, cultivation, purification and identification of bacterial species from microfauna of soil. Ital. J. Public Health. 8(1): 34-39.
- Ali A and Naseem F 2012. Frequency distribution of bacteria isolated from different industrial effluents Daffodil Int. Uni. J. Sci. Technol. **7**(1): 28-33.
- Bajwa R, Ibtasam K, Sobia M, Fozia N and Irum M 2009. Analysis of fungal diversity in rhizosphere of some plant species. Mycopath. 1(2): 5-10.
- Benson H 1996. Microbiological applications, laboratory manual in general microbiology. W. M. C. Brown Publishers, Dubuque, U.S.A.
- Holt J, Krieg N, Sneath P and Staley J 2000. Bergey's Manual of Determinative Bacteriology. 9th ed. Williams & Wilkins, Baltimore, USA: 175-189.
- Hung P and Annapurna K 2004. Isolation and characterization of endophytic bacteria in Soybean (*Glycine* sp.). Omonrice **12:** 92-101.
- Ishaq F and Khan A 2011. Isolation, identification and comparative study of fungal and bacterial strains found in organic and inorganic soils of different agricultural fields. Recent Res. Sci. Technol. **3**(11): 30-36.
- Koneman W, Allen D, Janda M, Schreckenberger C and Winn J 1997. Atlas and textbook of diagonistic microbiology. 5th ed. Lippincott Williams & Wilkins, 530 Walnut Street, Philadelphia, USA.
- Zinniel K, Lambrecht A, Harris N, Feng Z, Kuczmarski D, Higley P, Ishimaru, Carol A, Arunakumari A, Barletta G and Vidaver M 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Papers in Plant Pathol. Paper 40. http://digitalcommons.unl.edu/ plantpathpapers/40.

(Manuscript received on 25 February, 2013; revised on 19 January, 2014)