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Abstract 
 Both excessive and deficient nitrogen (N) concentration in the growing media can affect the growth, 
development, yield, and quality of rice. Traditional methods of N determination of plant require destructive 
and rigorous sampling, which is also time-consuming and laborious. However, rapid and non-destructive 
nitrogen diagnosis has become an important area of research in precision agriculture. Heilongjiang Province, 
China is a cold climate rice growing area, where the growth and fertilization of rice follows a definite pattern. 
In the present study, two varieties of rice (Wuyoudao4 and Songjing9) and as location Heilongjiang Province 
were selected. Nitrogen diagnosis of rice was carried out based on airborne multi-spectrum methodology. 
Canopy spectral data of rice at key growth periods were obtained by using a UAV equipped with a multi-
spectral camera, and agronomic parameters such as leaf N content and dry matter weight were obtained 
synchronically.  An airborne multispectral canopy normalized vegetation index (NDVI) model for N 
diagnosis based on its critical concentration curve was established as a nondestructive N diagnosis of rice for 
cold region. Results showed that canopy NDVI can estimate rice nitrogen nutrition index (NNI) properly over 
the growth period. The coefficient of determination R2, root mean square error (RMSE) and standard root 
mean square error (nRMSE) were compared to determine the best effect of the index model. The interphase 
nitrogen diagnosis model of WYD-4 based on NDVI for cold region was as follows: NNI=0.3916e1.0809*NDVI 

(RMSE=0.12, nRMSE=12.43%), SJ-9: NNI=0.3325e1.2705*NDVI (RMSE=0.10, nRMSE =10.36%), indicating 
that the established model can better estimate the nitrogen status of rice. 
 

Introduction 
 In analyzing the nutritional status of plants, spectral remote sensing technology is used via 
detecting the optical reflection of the leaves or the spectral characteristics of the leaves and canopy. 
Compared with the traditional methods of crop nutrition diagnosis, spectral remote sensing 
technology has an advantage to cover large cropping areas with no damage to the crop and with 
minimum time. Thus, the technology can play an important role in guiding N fertilizer application 
in precision agriculture. Nitrogen deficiency or its excessive concentration in crops causes changes 
in plant leaf color, thickness, moisture content, and morphological structure, which can lead to 
changes in canopy spectral characteristics. All these are considered as the theoretical basis for 
spectral remote sensing technology to diagnose crop N status. Literature available in favor of use 
of spectral remote sensing technology in corn (Tumbo et al. 2002, Miao et al. 2009), rice (Xue et 
al. 2003), barley (Tang et al. 2003), wheat (Jia et al. 2004, Liu, et al. 2004), and beans (Maderia et 
al. 2000). A correlation between leaf chlorophyll content and its spectral characteristics was found. 
Tumbo et al. (2002) reported chorophyll as the main factor causing the difference in spectral 
characteristics. Xue et al. (2003) observed that spectral reflectance of rice canopy was 
significantly correlated with leaf N content. Therefore, it appears that spectral characteristics can 
be used to monitor N status of plants. 
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 Satellite remote sensing technology can be easily interfered by weather and geographical 
environment, and therefore image data acquisition comes difficult with high operational cost. On 
the other hand, ground remote sensing operations are unable to cover a large area because it is 
time-consuming, labor intensive, and low operation efficiency. Therefore, remote sensing of UAV 
emerges as the complementary to solve those problems. The technology is fast, efficient, low cost 
and simple operation. Thus, UAV fertilization decision-making (Pei et al. 2018, Tian et al. 2018, 
Sun et al. 2019, Wang et al. 2018, Wu et al. 2019, Zang et al. 2019) specially in the small and 
medium-sized family farms, cooperatives and other areas has good prospects for development and 
use. Most of the previous studies used canopy spectral index, plant and leaf N content, leaf SPAD 
value and other indicators to develop N nutrient diagnostic models, and most of the established 
models were diagnostic models of a single period (Yang et al. 2019, Xu et al. 2023). There are 
few studies on N nutrition diagnosis based on NDVI and NNI in the cold region of Northeast 
China. Therefore, in the present study, NDVI was used to estimate the nitrogen status of rice in the 
cold region during the key growth period, so as to provide necessary data support for N nutrition 
diagnosis and growth analysis of crops. Meanwhile, the validity of multi-spectral remote sensing 
data obtained by UAV was verified, which provided more theoretical basis for rational application 
of N in japonica rice in the cold region. 

 
Materials and Methods 

In the present investigation, two  (2) divided experiments were carried out from 2016-17. All 
the basic information related to the experiment is presented in Table 1. 
 
Table 1. Basic information of two experiments. 
 

Experiment 
no. 

(Transplanting/ 
harvesting 
date) 

Location Cultivar N rate 
(kg/ha) 

Sampling 
stage 

Soil characteristics 

Experiment 1 
in 2016 

20-May/ 
25-Sep 

Wuchang 
(44°92′N, 
127°15′E) 

Wuyoudao4 
Songjing9 

N0(0) 
N60(60) 
N120(120) 
N180(180) 
N240(240) 

Active tillering 
Panicle initiation 
Stem elongation 
Booting 
Heading 
Grain filling 
 

Soil type = Brunisolic 
Soil pH= 6.59 
Total P = 2.15 g/kg 
Total K = 17. 5g/kg 
Available N = 114 ppm 
Available P = 37.8 ppm 
Available K = 156 ppm 

Experiment 2 
in 2017 

18-May/ 
24-Sep 
 

Wuchang 
(44°92′N, 
127°15′E) 
 

Wuyoudao4 
Songjing9 

N0(0) 
N60(60) 
N120(120) 
N180(180) 
N240(240) 

Active tillering  
Panicle initiation 
Stem elongation 
Booting 
Heading 
Grain filling 

Same as above 
 

 
 Two cultivars of rice (Oryza sativa L.) viz. Wuyoudao4 and Songjing9 were use in this 
experiment.  Data on crop growth from five separate hills were collected during active tillering to 
heading stages (before onset of flowering) at an interval of 10-12 d, starting from 16 and 18 d after 
transplanting (DAT) in 2016 and 2017, respectively. After completion of field data acquisition, the 
whole plants were manually uprooted and samples were divided into leaf blades (leaf) and culms 
plus sheaths (stem), and fresh plants were separated into different leaves i.e. green parts and rest of 
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the leaf parts, other than green leaves. These samples were analyzed for determining biomass, N 
content, and yield. 
 Shoot biomass (t/ha) was determined by cutting five plants from each plot at ground level on 
each sampling date. Fresh plants were separated into leaf blades (leaves) and culms plus sheaths 
(stems). Leaf dry matter (LDM) was determined after each sample was oven-dried at 80◦C for 48 
hrs. At maturity, the total number of panicles in each plot was investigated. At the same time, 30 
plants were selected for indoor seed examination. Grain number per panicles, grain weight per 
panicles, and 1000-grain weight were recorded. The leaf samples were subsequently ground to a 
powder form to pass through a 1-mm sieve in a Wiley Mill and stored at room temperature until 
further chemical analysis. Total N concentration of leaf samples was determined by using the 
micro-Kjeldahl method (Lu et al. 2015).  
 SPAD values were measured from 10 randomly selected plants from each field plot with the 
help of a SPAD-502 meter (Minolta Camera Co., Osaka, Japan). The measurement was carried out 
from the four uppermost fully expanded leaves, designated asL1, L2, L3, and L4, respectively. 
Ten randomly selected plants from each field plot were measured SPAD that the leaf of around the 
midpoint as the mean SPAD value (Jia et al. 2004). 
 During crop growth period, spectral data of rice canopy at tillering, stem elongation, booting, 
heading, grain filling, and other key growth stages were collected. For the purpose, a four-axis 
eight-rotor UAV (EWT-S1) equipped with mini-MCA 6 and Incident Light Sensor multi-spectral 
array camera produced by Tetracam was used. The multi-spectral camera has six spectral 
acquisition channels, including blue (470 nm), green (550 nm), red (690 nm), orange-red (660 nm), 
red-edge (710 nm), and near-infrared (810 nm) bands. Each channel uses a 25 mm diameter filter 
with a focal length of 9.6 mm. Images are stored in RAW format. During operation, the UAV flies 
at a height of 100 m with the safe cruising speed ~15 m/s having ground resolution 0.05 m. The 
ground is covered with calibration blankets with different reflectance of black, white, and gray. 
The laying position should ensure that the images taken are in the same image, instead of using the 
whiteboard to verify before and after data collection. From 10:00 - 14:00 h, a cloudless day was 
selected to collect canopy spectral data. During the flight, EWT-S1 UAV ground station was used 
to obtain the location and altitude of camera points. The use of mini-MCA 6 multi-spectral camera 
image processing software PiexlWrench 2 to pre-process the multi-spectral image to complete 
atmospheric correction and radiation calibration, because of the modification of the UAV remote 
control system, in the multi-spectral camera and remote-control system to increase a weak current 
single-chip microcomputer closing system. The remote control of the shutter of the multi-spectral 
camera is realized, and the area required for shooting was coordinated with the ground receiving 
system, so the image completely covers the whole test cell, and no image stitching is required. The 
image processing software PiexlWrench 2 selected the test area and extracted the canopy NDVI 
value. 
 The linear relationships and 95% confidence limits were calculated using SPSS 22 (SPSS Inc., 
Chicago, IL, USA) with different SPAD and N indicators at five growth stages, including tillering 
(TI), panicle initiation (PI), stem elongation (SE), booting (BT), and heading (HD), using the 
values collected in the experiment (Table1). Among the five growth stages, the key N 
management stages are SE, PI, and BT. Therefore, the indicators to build up the models with an 
exponential function not only for these specific growth stages, but also for the entire the growth 
period of crop was selected. The SPAD indicators for the different leaf positions were calculated 
as shown in Table 2 (Yuan et al. 2016). 
 For the N indicators, LNC was used to represent the green leaf N concentration based on the 
leaf dry matter in the formula below:  
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 NNI=Na/Nc (1) 
where Na is the actual LNC and Nc is the critical nitrogen of japonica rice based on leaf dry 
matter previously determined by Song et al. (2020) 
 Wuyoudao4:Nc=1.96LDM−0.56 (2) 
 Songjing9:Nc=1.99LDM−0.44 (3) 
 
Table 2. SPAD values in different leaf positions of rice canopy and method for calculating the 

normalized SPAD values. 
 

SPAD 
indicator 

Formula Note 

L1 The SPAD values from the top sides of the 
first fully expanded leaves of rice 

 

L2 The SPAD values from the top sides of the 
second fully expanded leaves of rice 

 

L3 The SPAD values from the top sides of the 
third fully expanded leaves of rice 

 

L4 The SPAD values from the top sides of the 
fourth fully expanded leaves of rice 

 

NSI1 NSI1=L1(i)/L1 in the treatment with the 
highest N rate 

L1(i) instead the SPAD values from the top 
sides of the first fully expanded leaves of rice 

NSI2 NSI2=L2(i)/L2 in the treatment with the 
highest N rate 

L2(i) instead the SPAD values from the top 
sides of the second fully expanded leaves of 
rice 

NSI3 NSI3=L3(i)/L3 in the treatment with the 
highest N rate 

L3(i) instead the SPAD values from the top 
sides of the third fully expanded leaves of rice 

NSI4 NSI4=L4(i)/L4 in the treatment with the 
highest N rate 

L4(i) instead the SPAD values from the top 
sides of the fourth fully expanded leaves of rice 

DSI DSI=L1-L3  
RSI RSI=L1/L3  
RDSI RDSI=(L1-L3)/L3  
NDSI NDSI=(L1-L3)/(L1+L3)  

 

 Microsoft Excel 2016 and SPSS 22.0 statistical analysis software were used for data 
calculation and statistical analysis. GraphPad Prism 7.0 mapping software was used for plotting. 
Based on the experimental data of 2017, the correlation analysis of the NDVI, LNC, NNI, L4, and 
NSI4 in the cold region was conducted. The spectral model of rice N nutrient index in cold region 
was determined by regression fitting method. Independent test data in 2016 were used to verify the 
model. Internationally common RMSE, nRMSE, and R2 were used to evaluate the constructed 
model (Yang et al. 2000, Jamieson et al. 1991). 
 
Results and Discussion  
 As shown in Fig.1, the NDVI of two rice varieties firstly increased and then decreased during 
the whole growth period. With the increase of nitrogen application level, NDVI increased but the 
increase of canopy NDVI gradually slowed down. At the early growth stage, NDVI was affected 
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by bare ground and water layer, and NDVI was relatively low. Therefore, the regression analysis 
of canopy NDVI and N nutrient index (leaf nitrogen content and nitrogen nutrient index) and 
canopy leaf SPAD index were carried out at stem elongation booting and heading stages, 
respectively. 
 

 
Fig. 1. Changes of canopy NDVI of two rice cultivars at different N application levels under and different 

growth stages 

 The results of variance analysis of N nutrition status of rice in cold regions with different 
nitrogen application levels (Table 3). In 2017, under 5 fertilization levels, the LNC, NNI, L4, 
NSI4, and other data of different rice varieties were analyzed. Under the experimental conditions 
of the present study, from stem elongation stage to heading stage, the N nutrition status of rice 
canopy in cold area was mainly affected by N fertilization level, and there were significant 
differences among the N application levels (P<0.01).  
 

Table 3. Analysis of variance for N concentration of leaves at different fertilizer N levels. 
 

Indicator Variation source Sum of Squares df Mean square F-value P-value 

LNC 
Between Groups 4.958 4 1.240 9.205 0.000 
Within Groups 11.446 85 0.135   

Total 16.404 89    

NNI 
Between Groups 2.136 4 0.534 227.181 0.000 
Within Groups 0.200 85 0.002   

Total 2.335 89    

L4 
Between Groups 2251.713 4 562.928 122.833 0.000 
Within Groups 389.546 85 4.583   

Total 2641.259 89    

NSI4 
Between Groups 0.996 4 0.249 139.090 0.000 
Within Groups 0.152 85 0.002   

Total 1.148 89    
 

 Results of analysis of variance (ANOVA) of N nutrition status of rice at different growth 
stages in cold region are shown in Table 4.  There were no significant differences among NNI, L4, 
and NSI4 at different growth stages (P > 0.05), while the difference in leaf nitrogen content at the 
stem elongation stage, booting stage, and heading stage is extremely significant (P < 0.01). 
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Table 4. Analysis of variance of N concentration of plants at different growth stages. 
 

Indicator Variation source Sum of Squares df Mean square F-value P-value 
LNC Between Groups 10.941 2 5.470 87.112 0.000 

Within Groups 5.463 87 0.063   
Total 16.404 89    

NNI Between Groups 0.057 2 0.028 1.082 0.344 
Within Groups 2.279 87 0.026   
Total 2.335 89    

L4 Between Groups 44.086 2 22.043 0.738 0.481 
Within Groups 2597.173 87 29.853   
Total 2641.259 89    

NSI4 Between Groups 0.014 2 0.007 0.556 0.576 
Within Groups 1.134 87 0.013   
Total 1.148 89    

 
 In the present study, N nutrition indexes mainly included leaf N content, nitrogen nutrition 
index, and SPAD value and normalized SPAD index of the fourth fully developed leaf. As it can 
be seen from Table 5, there was a significant positive correlation between canopy NDVI and N 
nutrition index of the two rice varieties at different growth stages i.e., extremely significant 
positive correlation at the stem elongation stage and significant correlation between booting stage 
and heading stages. The linear determination coefficients R2 of leaf N content and N nutrient index 
of WYD-4 rice and canopy NDVI at different growth stages ranged from 0.518 - 0.911 and 0.521 - 
0.941, respectively. The linear determination coefficients R2 of leaf N content and N nutrient 
index of SJ-9 rice and canopy NDVI at different growth stages ranged from 0.577 - 0.738 and 
0.531 - 0.767, respectively. The linear determination coefficients R2 of canopy NDVI, L4 and 
NSI4 ranged from 0.574 - 0.814 and 0.548 - 0.817, respectively. Canopy NDVI of SJ-9 rice 
variety and the linear determination coefficients R2 of L4 and NSI4 ranged from 0.521 - 0.782 and 
0.519 - 0.762, respectively. On the whole, the linear correlation coefficient R2 of WYD-4 rice 
variety was higher than that of SJ-9 rice variety. 
 The linear determination coefficients R2 of nitrogen nutrition indices (LNC, NNI, L4, NSI4) 
and canopy NDVI were the highest in both cultivars at the stem elongation stage (p<0.01). With 
the development of growth process, the linear determination coefficient R2 of nitrogen nutrition 
index and canopy NDVI decreased successively. It might be due to the fact that after the booting 
stage, the rice headed and flowering successively, and the canopy spectral determination changed, 
which led to the change of canopy NDVI. NNI is an effective means for N nutrition diagnosis. 
Since NNI in variance analysis is not significantly affected by growth period, data of the three 
growth periods are summarized and analyzed, and the results are shown in Table 6. In summary of 
the three growth periods, there was a significant correlation between canopy NDVI and NNI of the 
two varieties. The linear determination coefficient R2 of SJ-9 was 0.479 (p<0.01), and that of 
WYD-4 was 0.360 (p<0.05). Further, regression modeling analysis would be conducted. 
 Table 6 summarizes the modeling determination coefficient R2, validation determination 
coefficient R2, root mean square error RMSE and standard root mean square error nRMSE of five 
models from the index, comparative linearity, logarithm, quadratic term and power function 
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between canopy NDVI and NNI of two rice varieties at the stem elongation-heading stage. The 
coefficient of determination of WYD-4 index model was the highest, with R2 of 0.376 (p<0.01), 
and the coefficient of determination of SJ-9 quadratic model was the highest, with R2 of 0.505 
(p<0.01). However, considering the evaluation indexes such as model validation coefficient R2, 
root mean 
 
Table 5. Linear coefficients of canopy NDVI and Nitrogen Index of different rice cultivar at different 

growth periods. 
 

Cultivar Indicator Determination coefficient (R2) 

SE BT HD 

WYD-4 LNC 0.911** 0.518* 0.609* 

NNI 0.941** 0.521* 0.626* 
L4 0.814** 0.651** 0.574* 

NSI4 0.817** 0.586* 0.548* 

SJ-9 LNC 0.738** 0.637* 0.577* 

NNI 0.767** 0.531* 0.583* 

L4 0.782** 0.619* 0.521* 

NSI4 0.762** 0.619* 0.519* 
 

**significance at 0.01; * significance at 0.05; n=15, r0.01=0.641, r0.05=0.514. 
 

square error RMSE and standard root mean square error nRMSE, the results showed that the 
model modeling effect of the two varieties was better. Although the coefficient R2 of the 
interphase (stem elongation-heading stage) model was lower than that of the single period model, 
both reached the extremely significant level of 0.01. The model of stem elongation and booting 
period was: 

WYD-4: NNI=0.3916e1.0809*NDVI, R2=0.376(P<0.01) (4) 

SJ-9: NNI=0.3325e1.2705*NDVI, R2=0.502(P<0.01) (5) 
 
 In the present study, independent test data in 2016 were used to verify the nitrogen diagnosis 
interval model established by canopy NDVI and NNI during stem elongation and booting stages. 
As shown in Fig. 2, rice varieties R2, RMSE and nRMSE of WYD-4 were 0.335, 0.12 and 12.43%, 
respectively. SJ-9 rice varieties R2, RMSE and nRMSE were 0.666, 0.10 and 10.36% respectively. 
The relationship between the observed and simulated values of NNI was good. The model 
accuracy evaluation value RMSE of the two varieties was small, and the model stability evaluation 
value nRMSE was basically within 20%. The model performance was stable and reached a good 
level, indicating that the model developed based on canopy NDVI and NNI had higher prediction 
accuracy and better stability. It can be used for N nutrition diagnosis of rice in the cold region. 
 In a study of winter wheat, Hu et al. (2010) found that the linear correlation between leaf 
nitrogen and chlorophyll content and canopy NDVI at jointing stage and milk ripening stage was 
consistent with SPAD value, and nitrogen diagnosis could be carried out at jointing stage of winter 
wheat. Results of this study showed that the canopy normalized vegetation index NDVI at the 
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early tillering stage was low, because the rice field was not covered by plant canipy. At the early 
growth stage, and soil background and water layer had certain influence on the spectral 
measurement. Therefore, the canopy normalized vegetation index NDVI at the early growth stage 
of rice was not suitable for nitrogen nutrition diagnosis due to the influence of soil background. 
This is consistent with the results of rice nitrogen estimation by Chen et al. (2014). Although, the 
correlation coefficient of nitrogen estimation using Greenseeker is high, RMSE and nRMSE are 
also high, and the accuracy and stability of the model are poor. Therefore, the measurement should 
be carried out after the rice fields are closed in the monitoring process to reduce the estimation 
error, improving the estimation accuracy and the stability of the model. 
 
Table 6. NDVI and NNI regression analysis model for rice cultivars. 
 

Cultivar Types 
Model building Model validation 

R2 R2 RMSE NRMSE (%) 

WYD-4 

E 0.376** 0.335* 0.12 12.43 
Log 0.351* 0.322* 0.13 12.61 
Q 0.366* 0.339* 0.12 12.45 
P 0.368* 0.329* 0.12 12.49 
L 0.360* 0.330* 0.12 12.54 

SJ-9 
 

E 0.502** 0.666** 0.10 10.36 
Log 0.463** 0.659** 0.10 10.85 
Q 0.505** 0.644** 0.10 11.01 
P 0.489** 0.664** 0.10 10.38 
L 0.479** 0.664** 0.10 10.79 

**significance at 0.01; *significance at 0.05; n=45, r0.01=0.372, r0.05=0.288. 
 

 
Fig. 2. Correlation between observed and predicted values of NNI for two rice cultivars. 

 NDVI is an important index reflecting vegetation coverage, which can eliminate most of the 
irradiance changes related to instrument calibration, solar angle, terrain, cloud shadow and 
atmospheric conditions, and enhance the response ability of vegetation index. It is the most widely 
used vegetation index among the existing ones. NDVI is closely related to crop nitrogen status. 
Many researchers use normalized vegetation index NDVI to estimate various indexes in different 
crops (Lu et al. 2008, Chen et al. 2014, Raun et al. 2002), therefore, using NDVI to diagnose 
nitrogen nutrition is more consistent with the law of biology. In the present study, based on the 
leaf dry matter critical nitrogen concentration dilution curve model, canopy NDVI was obtained 
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by using UAV and multi-spectral camera, and canopy NDVI and NNI estimation models were 
developed to estimate the NNI value of japonica rice under different N application levels, and the 
basic theory of N nutrient index was applied to guide the precise fertilization in the field. Because 
canopy NDVI is easily affected by field radiation, soil background, water layer and other factors, 
the established model is extremely significant at the level of 0.01, but the coefficient of 
determination is relatively low. In the future, the above factors should be taken into account and 
new modeling methods should be explored to improve the test results. 
 The multi-spectral camera used in this study can obtain 6 bands, covering the red edge band 
reflecting crop N status. Compared with the spectral camera with hundreds of bands, the effective 
band spectral information is retained, and the workload of lengthy information and data processing 
is reduced. Using the software of the camera to extract NDVI is simple and convenient for 
application and practical operation. However, agricultural low altitude remote sensing technology 
is still a complex system engineering. China is still in the primary stage in this field, and further 
research is still needed in the future. 
 Results of variance analysis showed that the monitoring of rice NNI in the cold region was 
less affected by the growth period. By comparing the determination coefficients R2, RMSE, 
nRMSE and so on, the index model has the best effect in estimating NNI with normalized 
vegetation index NDVI.WYD-4: NNI=0.3916e1.0809*NDVI, R2=0.376(P<0.01), RMSE=0.12, 
nRMSE =12.43%; SJ-9: NNI=0.3325e1.2705*NDVI, R2=0.502(P<0.01), RMSE=0.10, 
nRMSE=10.36%.  
 The UAV platform equipped with multi-spectral camera has good feasibility to dynamically 
monitor the nitrogen status of rice canopy in the cold region, which can solve the problems of 
time-consuming and laborious and limitations of destructive sampling. It is a good choice for 
small and medium-sized regional scale applications.  
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