FUNCTIONAL CHARACTERIZATION AND SALT-STRESS-INDUCED EXPRESSION ANALYSIS OF SOYBEAN GMCYP86A1S GENES

ZHAOBO LI*

College of Agronomy, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, Jilin Province, P. R. China

Keywords: Soybean, Expression analysis, Salt stress, Cytochrome P450

Abstract

This study cloned the homologous genes (GmCYP86A1a and GmCYP86A1b) of AtCYP86A1 in soybean by homology comparison. Subsequently, systematic analyses of the gene structures, regulatory elements in promoter sequences, and physicochemical properties of GmCYP86A1a and GmCYP86A1b were conducted using bioinformatics approaches. Additionally, quantitative assessment of the expression patterns of these two genes and their transcriptional responses to NaCl stress was performed via qRT-PCR assays. The experimental evidence demonstrated that GmCYP86A1a and GmCYP86A1b exhibit highly similar gene structures, and both encode proteins harboring characteristic structural motifs typical of CYP450 enzymes. The promoter regions of the GmCYP86A1a and GmCYP86A1b genes contain diverse cis-acting elements that regulate growth and development, mediate phytohormonal signaling, and coordinate environmental stress adaptation mechanisms. The physicochemical properties of GmCYP86A1a and GmCYP86A1b proteins show distinct differences, both proteins are localized on the endoplasmic reticulum. Furthermore, GmCYP86A1a and GmCYP86A1b are root-specific genes and are induced and upregulated under NaCl stress. The current findings establish a framework for further investigation of molecular mechanisms by which GmCYP86A1a and GmCYP86A1b genes mediate salt stress adaptation in soybean.

Introduction

Cytochrome P450 proteins enzymes (CYP450) catalyze the biosynthesis of diverse secondary metabolites and phytohormones, serving as critical regulators in developmental processes and environmental adaptation mechanisms (Nelson *et al.* 2006, Chakraborty *et al.* 2023, Zhao *et al.* 2023). Members of *CYP86* clan genes are one of the most important subfamily members of plant *CYP450* genes. Heterologous expression of the *Arabidopsis thaliana AtCYP86A1* gene in yeast can catalyze the production of ω-hydroxy acids from fatty acids with varying chain lengths (Benveniste *et al.* 1998). In *Arabidopsis*, it was found that *AtCYP86A8* gene encodes a CYP450 monooxygenase which could catalyze ω-hydroxylation of fatty acids with varying chain lengths and regulates epidermal hair growth and development processes (Wellesen *et al.* 2001). Morphological characterization of *AtCYP86A2* T-DNA insertion mutants revealed that the leaf cuticle of the mutant *AtCYP86A2* was thinner than that of the wild type and potential suppression of bacterial type III gene expression by *AtCYP86A2*-derived cutin monomers within the apoplastic compartment (Xiao *et al.* 2004). Heterologous overexpression of *Avicennia officinalis AoCYP86B1* gene in *Arabidopsis* enhanced salinity tolerance of transgenic lines (Krishnamurthy *et al.* 2021).

Soybean (*Glycine max*) is pivotal in bridging food security and sustainable energy, with seed proteins exceeding 40% and oleic acid-rich oil (>80%) acting as a premium substrate for carbonneutral biofuel refineries (Li *et al.* 2021). With the rapid growth of human consumption and industrial materials, the demand for soybeans has also increased significantly and will continue to grow. However, in salinized zones soybean faces Na⁺/K⁺ dyshomeostasis-induced osmotic-ROS

^{*}Author for correspondence: lizhaobo@jlnku.edu.cn>.

722

cascades, causing yield declines of 20-40% (Xu et al. 2023). To date, extensive functional characterization of CYP450 superfamily genes has been achieved in established model systems, including Arabidopsis thaliana, Solanum lycopersicum, and Oryza sativa, with particular emphasis on their regulatory roles in stress-responsive signaling pathways (Maeda et al. 2019, Pastorczyk et al. 2020, Gupta et al. 2021). Although labeled a salt-sensitive crop (SSC), the molecular basis of its tolerance, especially the CYP86 subfamily's role in responding to environmental stresses, especially saline-alkaline stress remains enigmatic.

In this study, two genes, GmCYP86A1a (Glyma.11G175900) and GmCYP86A1b (Glyma.14G192500), with high homology with the Arabidopsis AtCYP86A1 gene were cloned from soybean cultivar Williams 82 (W82) and analyzed by using bioinformatics. Subsequently, the qRT-PCR technology was used to detect the expression of GmCYP86A1a and GmCYP86A1b genes in different tissues and organs of soybean, as well as their response to salt stress. This work establishes a foundation for investigating soybean GmCYP86A1s' functions under salt stress.

Materials and Methods

Seeds of the soybean cultivar W82 were sown in pots. The light incubators were set to 16 hrs of light, 8 hrs of darkness, temperature of 25°C and relative humidity of 60% (Li *et al.* 2021). Soybean cultivar W82 plants were used for total RNA isolation following the instructions of the column-based Trizol RNA extraction kit. The total RNA was used as a template for reverse transcription into cDNA through cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing, China) after its quality was examined by agarose gel electrophoresis. The cloning specific primers of *GmCYP86A1a* and *GmCYP86A1b* genes were designed based on the annotated *Glycine max* reference genome assembly version *Wm82.a2.v1* of Phytozome v13 (Table 1). Using the cDNA obtained from the aforementioned steps as the template, PCR amplification was performed with the high fidelity enzyme PrimeSTAR Max Premix (Takara, Beijing, China). The amplified fragments were ligated into the pEASY-Blunt cloning vector and sequenced. PCR conditions were 95°C 5 min, 35 cycles of 98°C 10 sec, 55°C 15 sec, 72°C 2 min, the final extension was 72°C for 10 min.

To analyze the expression patterns of GmCYP86A1a and GmCYP86A1b genes in soybean tissues, total RNA was isolated from different tissues of soybean cultivar W82. The methods of salt treatment were carried out according to Liu et~al.~(2020) and Ma et~al.~(2020). Briefly, 15 d old soybean seedlings were subjected to 200 mmol/L NaCl solution. The roots under various treatments were collected at 0, 3, 6, 9 and 12 hrs and stored at -80°C for subsequent RNA isolation. Gene expression quantification was conducted with Roche Light Cycler480 instrumentation using SYBR Green chemistry. The reference gene GmTubulin~(Glyma~05G157300) served as the endogenous reference, with transcript abundance calculated via the $2^{-\Delta\Delta Ct}$ method (Do et~al.~2019). All experimental data are expressed as mean \pm standard error of the mean (SEM). Each experiment conducted with three biological replicates and samples per replicate were pooled from three plants. The data of the tissue-specific expression patterns analysis was subjected to Tukey's test. For salt treatment, the data analysis was subjected to Student's t-test. All primers employed for qRT-PCR analysis are presented in Table 1.

The basic information of the *GmCYP86A1a* and *GmCYP86A1b* was obtained by searching in Phytozome (https://phytozome-next.jgi.doe.gov/), and then the GmCYP86A1a and GmCYP86A1b proteins underwent systematic bioinformatic characterization (*cis*-acting elements, physicochemical properties, subcellular localization) using dedicated platforms: PlantCARE, ExPAsy, Plant-mPLoc. The names of the specific online analysis tools and websites are listed in the Table 2.

Table 1. Primers used in this study.

Primer name	Primer sequence (5'-3')	(5'-3') Usage of primer	
GmCYP86A1a-F	GCTCTAGAATGGCTCTGG		
GmCYP86A1a-R	CGCGGATCCGTATTGAGGG	Duimara for cons aloning	
GmCYP86A1b-F	ATGAATTTCAGAAACTTTGA	Primers for gene cloning	
GmCYP86A1b-R	CCATGGGCCAGTCAGTGTTC		
GmCYP86A1a-qRT-F	GCATCGGTAAGGAGAAGA		
GmCYP86A1a-qRT-R	ATAGCAAGTCGTCGGAAG		
GmCYP86A1b-qRT-F	CTTACAACACCATGATGAT	D. Sarana Cara DE DCD	
GmCYP86A1b-qRT-R	AAGGAAGTAGGCTGATAG	Primers for qRT-PCR	
GmTubllin-qRT-F	TCTTGGACAACGAAGCCATCT		
GmTubllin-qRT-R	GGTGAGGGACGAAATGATCT		

Table 2. Bioinformatics analysis software and websites.

The names of the software	Functions	Websites
PlantCARE	Cis-acting elements prediction	https://bioinformatics.psb.ugent.be/web tools/plantcare/html/
ExPAsy	Computation of physicochemical properties for given proteins	https://web.expasy.org/protparam/
Plant-mPLoc	Prediction of protein localization	http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/

The protein sequences of *GmCYP86A1s* and *AtCYP86As* were used to perform multiple sequence alignment using Clustal W of MEGA 5.0. Following the method for phylogenetic tree construction described by Wu *et al.* (2016), the phylogenetic tree was reconstructed using Neighbor-Joining (NJ) method in MEGA software (P-distance model, partial deletion with 50 % cutoff, 1000 bootstrap replicates).

Results and Discussion

Using the cDNA obtained by reverse transcription of soybean cultivar W82 plants total RNA as template, the 1566bp nucleotide sequence and 1623bp nucleotide sequence were obtained by PCR amplification and sequencing, respectively, which was consistent with the expected size (Fig. 1A). The amino acid sequences of *GmCYP86A1a*, *GmCYP86A1b* and *AtCYP86A1* proteins were analyzed by multiple sequence alignment and it was found that they all contained heme binding domain (FxxGxxCxG) and K-helix (ExxR) (Fig. 1B). Heme binding domain and K-helix are the main characteristic structures of CYP450 proteins, which are highly conserved in CYP450 proteins (Hasemann *et al.* 1995). The gene structure analysis of *GmCYP86A1a* and *GmCYP86A1b* genes showed that the two soybean genes were highly similar to *AtCYP86A1* gene in structure, both containing two exons and one intron (Fig. 1C).

To explore the physical and chemical properties of GmCYP86A1a and GmCYP86A1b proteins, the putative peptides of GmCYP86A1a and GmCYP86A1b proteins were profiled by ExPAsy and Plant-mPLoc, respectively. The number of amino acids of GmCYP86A1a and

724 LI

GmCYP86A1b proteins were 521 amino acid residues and 540 amino acid residues, the molecular weights (MW) were 59086.31Da and 61203.02Da, respectively, and the theoretical isoelectric points (pI) were 8.89 and 9.93, respectively. Consistent with their pI, all GmCYP86A1s proteins are basic proteins. The instability index of GmCYP86A1a was 40.68. In contrast, the instability index of GmCYP86A1b was 36.30. Protein stability is typically determined by the instability index, with stable proteins exhibiting values below 40 and unstable proteins those above 40 (Zheng et al. 2020). Therefore, GmCYP86A1a protein was classified as an unstable protein, and GmCYP86A1b protein was categorized as a protein with inherent stability. The hydrophobicity analysis revealed that there was little difference in hydrophobicity between GmCYP86A1a and GmCYP86A1b proteins, with computational assessment yielding the GRAVY indices of -0.128 for GmCYP86A1a and -0.139 for GmCYP86A1b, suggesting that they are all hydrophilic proteins. Furthermore, the subcellular localization prediction results showed that both GmCYP86A1a and GmCYP86A1b proteins were predicted to be located on the endoplasmic reticulum (ER), indicating that the GmCYP86A1a and GmCYP86A1b genes may have the same catalytic effect on fatty acids as the AtHORST gene. (Table 3). The above findings suggest that the similarities and differences in protein physical and chemical properties among GmCYP86A1s may confer conservation and diversification of gene function in GmCYP86A1a and GmCYP86A1b genes.

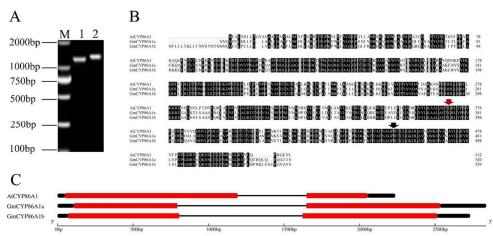


Fig. 1. PCR amplification of *GmCYP86A1s*, gene structure analysis of *GmCYP86A1s*, and sequence alignment of *GmCYP86A1s* and *AtCYP86A1*. A: PCR amplification products of *GmCYP86A1a* and *GmCYP86A1b*, M: DL2000 DNA marker, 1: PCR amplification products of *GmCYP86A1a*, 2: PCR amplification products of *GmCYP86A1b*. B: Sequence alignment of *GmCYP86A1a*, *GmCYP86A1b* and *AtCYP86A1*. Red arrowhead indicates K-helix location, black arrowhead indicates heme binding domain location. C: Exon-intron structure of *GmCYP86A1a*, *GmCYP86A1b* and *AtCYP86A1*. Continuous black lines indicate introns, red rectangular boxes indicate exons, black rectangular boxes indicate untranslated regions (UTRs).

Table 3. Characterization of the GmCYP86A1a and GmCYP86A1b proteins.

Name	ID	Protein		Subcellular			
		Size (aa)	MW (Da)	pI	Instability index	GRAVY	localization
GmCYP86A1a	Glyma.11G175900	521	59086.31	8.89	40.68	-0.128	ER
GmCYP86A1b	Glyma.14G192500	540	61203.02	9.93	36.30	-0.139	ER

In order to clarify the evolutionary relationship of *CYP86A* genes, the amino acid sequences of *CYP86A* subfamily genes encoding proteins in soybean and *Arabidopsis thaliana* were multi aligned, and the phylogenetic tree was constructed containing seven *CYP86A* members, with five members from *A. thaliana* (Table 4). Furthermore, all seven *CYP86A* members were divided into two groups named I to II (Fig. 2). Group I were largest group with four members from *Arabidopsis thaliana*. In contrast, *GmCYP86A1a* and *GmCYP86A1b* clustered with *AtCYP86A1* in group II. These findings suggest that the two soybean GmCYP86A1s proteins are more closely related to *AtCYP86A1* and may have the same biological function as *AtCYP86A1*.

Table 4. AtCYP86A genes in Arabidopsis thaliana.

Name	ID
AtCYP86A1	AT5G58860
AtCYP86A2	AT4G00360
AtCYP86A4	AT1G01600
AtCYP86A7	AT1G63710
AtCYP86A8	AT2G45970

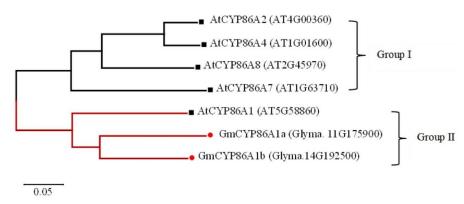


Fig. 2. Phylogenetic tree of seven CYP86A members from Glycine max and Arabidopsis thaliana. MEGA5.0 was used to construct the NJ tree. Black boxes, red circles indicate the CYP86A proteins of Arabidopsis thaliana and Glycine max, respectively.

To investigate the potential functions of the *GmCYP86A1a* and *GmCYP86Ab* genes, this study defined the 2000 bp genomic sequences upstream of their start codons as promoter regions and subjected them to prediction and identification of *cis*-acting elements using the PlantCARE database. This study identified multiple *cis*-acting elements associated with phytohormone signaling and environmental stress adaptation within the promoter regions of the *GmCYP86A1a* and *GmCYP86A1b* genes, such as TGACG-motif, TCA-element, GC-motif, ABA-responsive element (ABRE), P-box, anaerobic-responsive element (ARE), CGTCA-motif, TGA-element (Fig. 3). *Cis*-acting elements analysis showed that *GmCYP86A1a* and *GmCYP86A1b* genes may involve various signaling pathways and biological processes and *GmCYP86A1s* genes coordinate regulatory networks underlying both environmental stress resistance and ontogenetic development in soybean.

726 LI

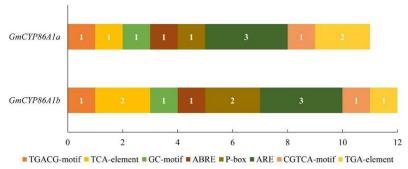


Fig. 3. Cis-acting elements identified in the promoters of GmCYP86A1a and GmCYP86A1b genes. The different cis-acting elements were color-coded in the schematic diagram, with corresponding numerical labels denoting their number within the promoter regions.

To further elucidate the potential functions of *GmCYP86A1a* and *GmCYP86A1b*, this study employed qRT-PCR analysis to quantify the expression levels of these two genes across five soybean tissues: cotyledons, unifoliate leaves, trifoliate leaves, stems and roots. As Fig. 4A-B depicted, *GmCYP86A1a* and *GmCYP86A1b* genes showed strong tissue-specific expression patterns. To be specific, *GmCYP86A1a* and *GmCYP86A1b* genes were highly expressed in roots, but lowly expressed or almost not expressed in cotyledons, unifoliate leaves, trifoliate leaves and stems, implying that *GmCYP86A1a* and *GmCYP86A1b* genes are root tissue-specific expression genes that play obligatory roles in root-specific developmental processes.

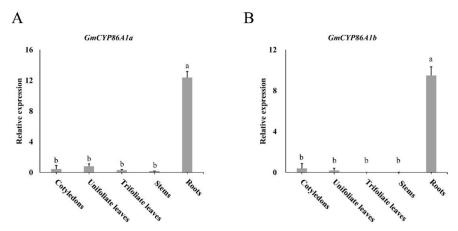


Fig. 4. Expression patterns of GmCYP86A1a and GmCYP86A1b genes in different tissues of soybean. A: The tissues expression pattern of GmCYP86A1a gene. B: The tissues expression pattern of GmCYP86A1b gene. Data are expressed as the mean \pm SEM from three biological replicates. Significant differences between means are denoted by distinct lowercase superscript letters (p < 0.05).

To further investigate the functional roles of the *GmCYP86A1s* genes in salt stress responses, soybean W82 was subjected to 200mmol/L NaCl stress, and the transcript abundance of *GmCYP86A1s* in soybean roots at different time points during the stress treatment was analyzed. The data provided evidence that salt stress induces the upregulated expression of both *GmCYP86A1a* and *GmCYP86A1b* genes. Following NaCl treatment, the relative expression levels of both genes increased significantly over time. However, *GmCYP86A1a* exhibited a steady upward trend, reaching its peak expression level at 12 hrs after NaCl stress (Fig. 5A),

GmCYP86A1b showed an initial increase followed by a decline, peaking at 6hrs post-treatment (Fig. 5B). These results indicated that *GmCYP86A1a* and *GmCYP86A1b* both respond to salt stress, but their response dynamics differ significantly.

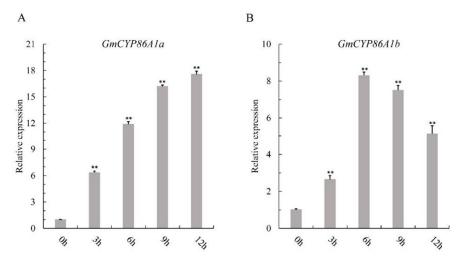


Fig. 5. Expression pattern analysis of GmCYP86A1a and GmCYP86A1b genes in root tissues under salt stress. A: Relative transcript levels of GmCYP86A1a gene. B: Relative transcript levels of GmCYP86A1b gene. Data are expressed as the mean \pm SEM from three biological replicates. ** denotes a significant difference compared with 0 h (p < 0.01).

Studies have reported that CYP450s are a class of proteins ubiquitously present in both monocotyledonous and dicotyledonous plants and these enzymes play essential roles in the biosynthesis of diverse metabolites, regulation of plant growth and development, and mediation of plant adaptation to environmental stresses (Imaishi et al. 2000, Miyoshi et al. 2004, Wang et al. 2020). The CYP86A subfamily, a pivotal member of the CYP450s enzyme, modulates plant stress responses (Piont et al. 2011). The soybean genes GmCYP86A1a and GmCYP86A1b exhibit high homology and structural similarity to the Arabidopsis AtCYP86A1 gene. Furthermore, their promoter regions harbor hormone and stress-inducible cis-acting elements, suggesting that GmCYP86A1a and GmCYP86A1b likely function as soybean CYP86A-subfamily genes associated with environmental stress resistance. The AtCYP86A1 gene exhibits root-specific expression, and the protein encoded by the AtCYP86A1 gene has been confirmed to be localized to the ER and in Arabidopsis atcyp86a1 mutants, the abundance of hydroxylated fatty acid is significantly reduced, these findings demonstrate that AtCYP86A1 functions as a key enzyme with catalytic activity for fatty acid ω-hydroxylation (Höfer et al. 2008). This study found that the soybean genes GmCYP86A1a and GmCYP86A1b are root-specific and induced by salt stress, with their encoded proteins likely localized to the endoplasmic reticulum. These observations suggest that GmCYP86A1a and GmCYP86A1b, similar to AtCYP86A1, may play critical regulatory roles in soybean salt stress adaptation and growth regulation. However, the precise molecular mechanisms and functional contributions of these genes during salt stress responses require further experimental validation.

Acknowledgements

This work was supported by the Doctoral Initiation Fund Project of Jilin Agricultural Science and Technology University ([(2022)724]).

728 LI

References

Benveniste I, Tijet N, Adas F, Philipps G, Salaün JP and Durst F 1998. *CYP86A1* from *Arabidopsis thaliana* encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem. Biophys. Res. Commun. **243**(3): 688-693.

- Chakraborty P, Biswas A, Dey S, Bhattacharjee T and Chakrabarty S 2023. Cytochrome P450 gene families: role in plant secondary metabolites production and plant defense. J. Xenobiot. **13**(3):402-423.
- Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, Zhang ZJ and Stacey MG 2019. Demonstration of highly efficient dual gRNA CRISPR/cas9 editing of the homeologous *GmFAD2-1A* and *GmFAD2-1B* genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. **19**(1): 311.
- Gupta SK, Barg R and Arazi T 2021. Tomato *agamous-like6* parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator *KLUH*. Plant Physiol. **185**(3): 969-984.
- Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA and Deisenhofer J 1995. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3(1): 41-62.
- Höfer R, Briesen I, Beck M, Piont F, Schreiber L and Franke R 2008. The *Arabidopsis* cytochrome P450 *CYP86A1* encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J. Exp. Bot. **59**(9): 2347-2360.
- Imaishi H, Matsuo S, Swai E and Ohkawa H 2000. *CYP78A1* preferentially expressed in developing inflorescences of *Zea mays* encoded a cytochrome P450-dependent lauric acid 12-monooxygenase. Biosci. Biotech. Biochem. **64**(8): 1696-1701.
- Krishnamurthy P, Vishal B, Bhal A and Kumar PP 2021. WRKY9 transcription factor regulates cytochrome P450 genes *CYP94B3* and *CYP86B1*, leading to increased root suberin and salt tolerance in *Arabidopsis*. Physiol. Plant **172**(3):1673-1687.
- Li ZB, Cheng Q, Gan ZR, Hou ZH, Zhang YH, Li YL, Li HY, Nan HY, Yang C, Chen LN, Lu SJ, Shi WQ, Chen LY, Wang YP, Fang C, Kong LP, Su T, Li SC, Kou K, Wang LS, Kong FJ, Liu BH and Dong LD 2021. Multiplex CRISPR/Cas9-mediated knockout of soybean *LNK2* advances flowering time. Crop J. **9**(4): 767-776.
- Liu XX, Chang RZ, Guan RX and Qiu LJ 2020. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron. Sin. 46(1): 1-8.
- Ma XJ, Fu JD, Tang YM, Yu TF, Yin ZG, Chen J, Zhou YB, Chen M, Xu ZS and Ma YZ 2020. *GmNFYA13* improves salt and drought tolerance in transgenic soybean plants. Front. Plant Sci. 11: 587244.
- Maeda S, Dubouzet JG, Kondou Y, Jikumaru Y, Seo S, Oda K, Matsui M, Hirochika H and Mori M 2019. The rice *CYP78A* gene *BSR2* confers resistance to *Rhizoctonia solani* and affects seed size and growth in *Arabidopsis* and rice. Sci. Rep. **9**(1): 587.
- Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh YI, Nagato Y and Kurata N 2004. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc. Natl. Acad. Sci. USA. **101**(3): 870-880
- Nelson DR 2006. Plant cytochrome P450s from moss to poplar. Phytochem. Rev. 5(2-3): 193-204.
- Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y and Bednarek P 2020. The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and *Arabidopsis* immunity. New Phytol. **225**(1): 400-412.
- Piont F and Beisson F 2011. Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J. 278(2): 195-205.
- Wang GL, Xu J, Li LC, Guo Z, Si QX, Zhu GZ, Wang XY and Guo WZ 2020. *GbCYP86A1-1* from *Gossypium barbadense* positively regulates defence against *Verticillium dahliae* by cell wall modification and activation of immune pathways. Plant Biotech. J. **18**(18): 222-238.
- Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H and Yephremov A 2001. Functional analysis of the *LACERATA* gene of *Arabidopsis* provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc. Natl. Acad. Sci. USA. **98**(17): 9694-9699.

- Wu M, Li Y, Chen DM, Liu HL, Zhu DY and Xiang Y 2016. Genome-wide identification and expression analysis of the *IQD* gene family in moso bamboo (*Phyllostachys edulis*). Sci. Rep. 6: 24520.
- Xiao FM, Goodwin SM, Xiao YM, Sun ZY, Baker D, Tang XY, Jenks MA and Zhou JM 2004. *Arabidopsis CYP86A2* represses *Pseudomonas syringae* type III genes and is required for cuticle development. EMBO J. **23**(14): 2903-2913.
- Xu CJ, Shan JM, Liu TM, Wang Q, Ji YJ, Zhang YT, Wang MY, Xia N and Zhao L 2023. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiol. **191**(4): 2427-2446.
- Yang LW, Fang JC, Wang JX, Hui SZ, Zhou L, Xu B, Chen YJ, Zhang YY, Lai CK, Jiao GA, Sheng ZH, Wei XJ, Shao GN, Xie LH, Wang L, Chen Y, Zhao FL, Hu SK, Hu PS and Tang SQ 2023. Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice (*Oryza sativa* L.) under cadmium stress. Front. Plant Sci. **14**: 1222288.
- Zhao XH, Zhao YJ, Gou MY and Liu CJ 2023. Tissue-preferential recruitment of electron transfer chains for cytochrome P450-catalyzed phenolic biosynthesis. Sci. Adv. 9(2): eade4389.
- Zheng W, Dong XM, Zhang QY, Yu XF, Li WL, Ji YB and Chen N 2020. Identification and characterization of *MYB* genes in *Dimocarpus longan* Lour. Bangladesh J. Bot. **49**(1): 97-104.

(Manuscript received on 17 March 2025; revised on 02 August 2025)