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Abstract

Chlorophyll quantification in summer maize (Zea mays L.) leaves is the focus of this research,
specifically at the jointing phenological stage. Based on field experiments and the correlation between
canopy spectral characteristics and chlorophyll during typical growth stages, the spectral reflectance of corn
leaf samples was determined using an ASD FieldSpec Pro spectrometer with a wavelength range of 350-2500
nm. Variations in spectral reflectance patterns were examined across different chlorophyll concentrations. The
reflectance spectra underwent Savitzky-Golay 9-point smoothing, followed by preprocessing with MSC and
SNV. Subsequently, first-derivative, second-derivative, and reciprocal logarithmic transformations were
applied. PLSR was employed to establish optimal spectral estimation models for chlorophyll. The results
provide a theoretical foundation and technical guidance for non-destructive crop growth monitoring and
precision nitrogen management. Reflectance spectra processed with Savitzky-Golay 9-point smoothing
combined with different transformations significantly improved the signal-to-noise ratio. Derivative
transformations enhanced the correlation between spectral data and corn leaf chlorophyll content. Using
highly correlated combination bands substantially improved model stability and predictive capability. For
PLSR models, the optimal approach involved MSC processing of smoothed spectra followed by second-
derivative transformation, achieving Rc2=0.9799, RMSEC=3.3027, and SEC=3.3225. The prediction models
developed using various analytical approaches exhibited robust consistency and precise performance,
facilitating efficient chlorophyll level assessment in large-scale maize fields.

Introduction

As the principal photon-capturing biomolecule in corn, chlorophyll plays a critical role in
modulating photosynthetic quantum vyield and carbon assimilation dynamics. Its foliar
concentration provides a biophysical signature correlating with nitrogen utilization efficiency (R?
> 0.91) (Wang and Bai 2005), photosystem |l operational integrity (Croft et al. 2020), and abiotic
stress tolerance thresholds (Dong et al. 2008). Empirical evidence confirms that chlorophyll
metrics can predict more than 87% of the variation in final kernel mass through carboxylation
enzyme activation cascades (Silva et al. 2018). High chlorophyll density during reproductive
development (BBCH 60-69) increases RuBisCO turnover by 22-38%, leading to significant
improvements in canopy-level CO, fixation efficiency (Wang and Bai 2005). Hyperspectral
diagnostics exploit chlorophyll's unique absorption minima at 550 = 3 nm (chlorophyll-b peak)
and 675-685nm (P680 reaction center band) for pre-symptomatic nutrient deficiency detection.
This non-invasive monitoring capability enables dynamic precision nitrogen management (Cedric
et al. 2016), positioning chlorophyll quantification as an indispensable component in sustainable
intensification frameworks for this globally strategic cereal crop supporting 1.2 billion human
populations and livestock systems (Li et al. 2024).

While conventional chlorophyll measurement techniques, while capable of achieving
relatively accurate results, are often operationally intensive, time-consuming, and typically require
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destructive sampling (Li et al. 2023). These limitations restrict their applicability for real-time,
rapid, non-destructive, and large-scale monitoring needs. In contrast, hyperspectral remote sensing
technology offers advantages such as high efficiency, cost-effectiveness, minimal sample
requirements, non-invasiveness, and delivers comprehensive data acquisition (Berger et al. 2021).
The theoretical basis for retrieving chlorophyll content using spectral technology lies in the
distinct absorption spectral characteristics of chlorophyll molecules (Ustin et al. 2009). While
demonstrating high reflectance in the near-infrared band (700-900 nm). By establishing
quantitative relationship models between spectral parameters and chlorophyll content, non-
destructive monitoring of chlorophyll levels can be achieved (Verrelst et al. 2015). This approach
allows for the monitoring of crop growth and nutritional status without compromising plant
structural integrity, demonstrating considerable potential in predicting chlorophyll content (Yao
et al. 2021). While chlorophyll levels in individual plants reflect data at the specimen level, the
chlorophyll content within the crop canopy serves as a critical focal point in remote sensing
applications (Houborg et al. 2015). Consequently, real-time monitoring of canopy leaf chlorophyll
content holds significant value for remotely evaluating crop vigor, forecasting yield, and managing
pest and disease interventions (Berger et al. 2018). Owing to the distinct molecular configuration
of chlorophyll, electrons undergo energy level transitions upon absorbing light energy, resulting in
spectral absorption peaks that are predominantly located within the visible light band (Porcar-
Castell et al. 2014).

Employed near-infrared spectroscopy combined with standard normal variate (SNV) and
detrending preprocessing methods to analyze leaves at the seedling stage. Their results
demonstrated that within the spectral range of 3300-10000 cm™, a quantitative analysis model
established using partial least squares regression (PLSR) achieved a coefficient of determination
(R?) of 0.989 and a root mean square error (RMSE) of 0.047, confirming the feasibility of rapidly
detecting chlorophyll content in maize seedling leaves via near-infrared spectroscopy (Zhai and Li
2014). Sun et al. (2015) developed a 2-CCD multispectral imaging system capable of
simultaneously capturing visible (blue, green, red) and near-infrared band images of maize
canopies. By extracting the average grayscale values of each band and calculating eight vegetation
indices—including the Ratio Vegetation Index (RVI) and Normalized Difference Vegetation Index
(NDVI)—they constructed a multiple linear regression model for chlorophyll estimation. The
study revealed negative correlations between the average grayscale values of visible light bands
(R, G, B) and chlorophyll content (correlation coefficients ranging from -0.71 to —0.73), whereas
NDVI showed a positive correlation with chlorophyll content. The model developed using
multiple parameter combinations yielded a calibration set R? of 0.79 and a validation set R? of
0.71, providing an effective approach for non-destructive monitoring of chlorophyll in field maize
canopies. Wang et al. (2023) systematically investigated hyperspectral inversion methods for
estimating chlorophyll content and water content in maize leaves under drought stress. Using a
hyperspectral camera, they collected images of seedling maize leaves subjected to varying degrees
of drought stress, extracted average spectral data from the mesophyll region via image processing
techniques, and compared the performance of different feature wavelength selection methods
combined with machine learning regression models. Zhou and Chen (2025) explored the
feasibility of integrating multi-source UAV remote sensing imagery with multiple machine
learning methods to invert SPAD values in maize. Based on field experiments with different
fertilization treatments, they acquired UAV multispectral and RGB images during the four-leaf and
nine-leaf stages of maize growth. Using multi-scale analysis techniques, they fused the two types
of imagery to generate integrated images that exhibit both high spatial resolution and multispectral
characteristics.
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Contemporary spectral quantification has undergone a paradigm shift from broadband
detection to photon-level interactions. Third-generation hyperspectral imaging (HSI) systems now
achieve <5 nm resolution, enabling picosecond-scale capture of energy transfer pathways in
Photosystem 11 reaction centers through time-resolved fluorescence (Clark et al. 2022). Deep
learning architectures like spectral Transformers utilize self-attention mechanisms to
autonomously identify 17 chlorophyll-sensitive sub-bands within 450-750 nm, enhancing
modeling accuracy by 23.8% versus conventional indices (Chen and Li 2024). Notably, laser-
induced breakdown spectroscopy (LIBS)-Raman integration enables non-destructive in situ
chlorophyll a/b ratio analysis, validating thylakoid membrane reorganization effects on spectral
responses (<0.05 RMSE).

Spectral feature extraction is a core step in building high-precision chlorophyll retrieval
models. Its objective is to condense the full-band spectral data into information that is highly
sensitive to chlorophyll variation and resistant to interference. This technology has evolved
significantly from parameterization designs relying on a priori knowledge to intelligent, data-
driven mining, with various research teams making key contributions. Regarding "red edge"
parameters, Miller et al. (1990) were among the first to systematically elaborate the intrinsic
relationship between leaf chlorophyll content and the shift of the "Red Edge Position" within the
red to near-infrared spectral region, observing a "red shift" of the REP with increasing chlorophyll
concentration. Field studies by Filella and Pefiuelas (1994) further established quantitative
relationships between the REP displacement and the physiological stress status of crops,
establishing it as a key indicator for vegetation health monitoring. In quantifying absorption
features, Kokaly and Clark (1999) successfully introduced the continuum removal method, mature
in geological remote sensing, into the retrieval of vegetation biochemical components. Their
research approach, which involves constructing a spectral envelope and normalizing absorption
features, effectively strips background noise, thereby enabling accurate quantification of
characteristic parameters like the absorption depth and area of chlorophyll in the blue and red
bands, significantly enhancing the feature's indicativeness for chlorophyll concentration.

In supervised linear feature compression, the Partial Least Squares Regression (PLSR)
method established and promoted found widespread application in chemometrics (Wold et al.
2001). This method works by jointly projecting spectral variables and measured chlorophyll
values into a new latent variable space, automatically finding spectral combinations that co-vary
most with chlorophyll changes. Dorigo et al. (2007) noted in their review that for vegetation
parameter retrieval, the effectiveness of feature extraction and the robustness of PLSR models
were significantly superior to unsupervised methods like Principal Component Analysis. In the
field of nonlinear and intelligent feature learning, Camps-Valls et al. (2006, 2011) conducted
pioneering work by introducing kernel-based machine learning methods like Support \ector
Regression and Gaussian Process Regression into biophysical parameter retrieval. These methods
utilize kernel functions for nonlinear mapping, automatically learning complex relationships
between chlorophyll and spectra in high-dimensional feature spaces. Recently, deep learning has
enabled end-to-end feature learning. For instance, Yao et al. (2021) applied a one-dimensional
Convolutional Neural Network (1D-CNN) to process hyperspectral curves. Their model can
automatically learn hierarchical features from the original data, ranging from local absorption
troughs to global spectral shapes, outperforming traditional models reliant on manually designed
indices. The radiative transfer models developed by laid the theoretical foundation for this
direction (Jacquemoud et al. 2009). Berger et al. (2018) detailed how to use such physical models
to generate simulated spectral datasets covering various scenarios, which are then used to train
machine learning models, ensuring that the extracted features are naturally physically constrained.
Verrelst et al. (2013) further advanced this field with algorithms like "Gaussian Process Retrieval,"
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successfully incorporating the uncertainties of physical models into a Bayesian learning
framework. This achieves robust feature optimization and parameter inversion guided by physical
mechanisms, greatly enhancing model transferability across different environments and crop
species.

Multi-platform synergetic observation emerges as a key trend: Drone-mounted micro-HSI (p-
HSI) achieves cellular-scale imaging (0.2 um/pixel), while satellite hyperspectral sensors
demonstrate field-level prediction errors as low as 3.2 ug/cmz? via 3D radiative transfer models
incorporating leaf angle distribution (Kim et al. 2024). Quantum dot-enhanced spectral chips
represent a breakthrough, leveraging surface plasmon resonance to boost red-edge shift detection
sensitivity to 0.03 nm, enabling early nitrogen stress alerts 5-7 days pre-symptom. Current
research evolves toward multimodal intelligent sensing: Integrating leaf thermal fields, spectral
data, and environmental variables, dynamic coupling models in China's summer maize belt
achieve unprecedented stability (R2 = 0.93 + 0.02) across growth stages-significantly
outperforming single-source systems (<0.82). These advances establish the photonic foundation
for digital twin farmlands.

This study focuses on the chlorophyll content in leaves of summer maize during the jointing
stage. Based on field experiments, we comprehensively integrate crop spectral characteristics,
growth patterns, nutrient uptake dynamics, and biophysical parameter measurements with
statistical analysis. By establishing correlations between canopy spectral features and key
indicators (nitrogen status, biomass, and nitrogen uptake) across distinct growth stages, we
develop stage-specific diagnostic models for nitrogen and biomass quantification. These models
ultimately form the foundation for constructing spectral-based nitrogen application models.

Materials and Methods

This study selected typical farmland in Zhengzhou City, Henan Province as the research area,
specifically located at 112°42'-114°14'E and 34°16’-34°58'N. The site is located on the southern
bank of the middle-lower Yellow River, bordered by the Songshan Mountains to the west and the
Huang-Huai Plain to the southeast. The terrain slopes from higher elevations in the southwest to
lower areas in the northeast. The highest point is Shaoshi Peak in Dengfeng (1,512.4 m), while the
lowest elevation is in Hansi Township, Zhongmu County (73 m), with the urban area averaging
approximately 162 m above sea level. The warm-temperate continental monsoon climate (Kdppen
Dwa) delivers 14.4°C mean annual temperature with extreme monthly means: 0.2°C (Jan) and
27.3°C (Jul), confirming strong seasonality. Annual precipitation averages 640.9 mm,
predominantly concentrated during summer (June-August accounting for >60% of the total). The
frost-free period spans 220 days annually. Dominant soil types include Fluvo-aquic, Cinnamon,
and Shajiang Black soils. The eastern plains feature deep, fertile soil layers optimal for intensive
cultivation.

The trial was conducted annually with sowing in mid-June and harvesting in late September.
Measurements were taken at six growth stages i.e., seedling, jointing, booting, tasseling,
flowering, and milk-ripe. Seven nitrogen levels (0, 40, 80, 120, 160, 200, 240 kg N ha™) were
applied in a 4:6 split ratio at seedling and booting stages. Pre-plant soil analyses included topsoil
organic matter and total nitrogen. Manual plowing and harrowing with spades were performed
before planting. Plot dimensions were 5 x 8 m2 with three replicates per treatment.

Leaf spectral reflectance was acquired using an ASD FieldSpec Pro spectroradiometer (350-
2500 nm range). Spectral parameters included: 350-1000 nm (1.4 nm sampling interval, 3 nm
resolution) and 1001-2500 nm (2 nm sampling interval). Field spectroscopy measurements were
consistently conducted under optimal atmospheric conditions (wind-free and clear skies) during
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the August 7, 2021 field campaign, and the measurement time was between 12:00 and 16:00.
Spectral reflectance measurements were acquired from 15 randomly sampled canopy leaves
representing distinct vertical positions within each experimental plot, and the spectral data of each
plant were calibrated against a standard whiteboard. The canopy spectral reflectance for each
sample was calculated as the mean of 10 spectral measurements per leaf, following the elimination
of anomalous spectra.

Chlorophyll content in plant canopies was determined employing a portable CCM-200
meter (Opti-Sciences, USA), with 15 randomly selected leaves measured per experimental plot. To
minimize the influence of outliers introduced during sample collection, processing, and analysis
on subsequent modeling accuracy, the Mahalanobis distance method was employed to identify
outliers in both soil properties and spectral data. This method is grounded in multivariate normal
distribution theory, taking into account covariance, mean, and variance, thereby providing a
comprehensive reflection of the overall variability among samples.

The averaged spectral curves were smoothed and denoised using the Savitzky—Golay 9-point
convolution smoothing method to enhance the signal-to-noise ratio. Subsequently, first-order
derivative, second-order derivative, and inverse logarithmic transformation of reflectance were
applied to the smoothed curves to suppress background and baseline interference, thereby
strengthening the correlation between spectral reflectance and soil organic carbon content. In
addition to analyzing the original leaf spectral reflectance, three derivative transformations were
performed to identify chlorophyll-sensitive regions under different transformation forms. The first-
order derivative helps emphasize target reflectance while suppressing linear or near-linear
background effects. The second-order derivative mitigates the influence of quadratic noise and
high-frequency interference among components, facilitating the quantitative extraction of soil
factors. The logarithmic transformation not only enhances spectral differences in the visible region
but also reduces multiplicative effects caused by varying illumination conditions. Furthermore,
multiplicative scatter correction and standard normal variate transformation were applied to
effectively correct baseline shifts caused by sample scattering. By performing regression analysis
between measured spectra and a reference spectrum, slope and intercept corrections were
implemented, thereby reducing the effects of surface scattering and optical path variations.

The dataset was randomly split into a modeling set (70%) and a validation set (30%), used
respectively for constructing the chlorophyll content prediction model and evaluating model
performance. Correlation analysis was conducted using SPSS 17.0, while partial least squares
regression and principal component regression modeling were performed in TQ Analyst. The
coefficient of determination (R?) and root mean square error (RMSE) between predicted and
measured values were used to assess the predictive accuracy of the models.

Results and Discussion

Figure 1 illustrates three representative leaf spectral profiles with varying chlorophyll
concentrations, randomly selected from 120 spectral datasets. Key spectral features (denoted A-M)
exhibited a consistent reflectance pattern across all samples despite chlorophyll variations. The
reflectance was lower in the blue light range (350~500nm), mainly because of carotenoid
absorption in the leaves. The peaks D, J and N are mainly located at 910 nm, 1682 nm and 2238
nm, which are mainly caused by the three-order pan-frequency resonance of C-Hs bonds, the
frequency doubling absorption of lignin C=0 and the deformation vibration of cellulose C-H.
Valleys E, K, and M are located at 980 nm, 1788 nm, and 1916 nm, which are caused by the
combined frequency mode of starch O-H expansion vibration and vacuolar water moleculevs.



880 GAO et al.

Figure 2 details a spectral preprocessing pipeline incorporating: (1) first/second derivatives
and reciprocal logarithm transformations of reflectance data; (2) Savitzky-Golay 9-point
smoothing for noise reduction. Beyond raw spectral analysis, these transformations identified
chlorophyll-sensitive spectral regions. The first derivative enhances target reflectivity while
suppressing linear backgrounds, the second derivative mitigates quadratic noise and high-
frequency interference for improved soil factor quantification, and the logarithmic transform
amplifies visible-band discrimination while reducing illumination-related multiplicative effects.
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Fig.2. Comparative analysis of spectral features with different spectral pretreatments.
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After applying first derivative, second derivative, and inverse logarithmic transformation
to the reflectance spectral data, all processed data were smoothed using the Savitzky-Golay 9-
point smoothing method. Partial Least Squares Regression was then employed to develop
corresponding chlorophyll estimation models. The models were evaluated using the coefficient of
determination and root mean square error. Specifically, a higher coefficient of determination and a
lower root mean square error in the modeling phase indicate better model stability, while a higher
coefficient of determination and a lower root mean square error in the prediction phase reflect
stronger predictive capability. To prevent model overfitting, it is essential to minimize the
dimensionality of the independent variables.

Following different preprocessing methods applied to the spectral data, both Partial Least
Squares Regression was used to establish chlorophyll prediction models. The reliability of these
models was assessed using the coefficient of determination, root mean square error, and standard
error. Generally, a smaller root mean square error in prediction indicates better model
performance. Furthermore, to avoid overfitting, the dimensionality of the independent variables
should be kept as low as possible while maintaining model interpretability.

Fig. 3. The estimation models were established by PLSR for different spectral indexes. By
comparing the established regression models, it can be concluded that the regression model
established after preprocessing and differential transformation has better modeling accuracy and
prediction accuracy than the model based on the original data. In the PLSR model, the model
established by multiplicative scatter correction (MSC) processing of the smoothed spectrum and
the second-order differential transformation had the best effect, Rc?=0.9799, RMSEC=3.3027,
SEC=3.3225, the NOR processing of the reflectance spectrum, and the second-order differential of
the reciprocal logarithm had the best effect, Rc?=0.9753, RMSEC=3.6629, SEC=3.6849, and SNV
treatment of the reflectance spectrum. The model established by second-order differential of
reciprocal logarithm has the best effect, with Rc?=0.9720, RMSEC=3.9013, and SEC=3.9247.

Fig. 3 demonstrates PLSR-based comparative modeling of spectral preprocessing techniques,
revealing enhanced predictive performance through differential transformations. MSC-processed
smoothed spectra with second-derivative transformation achieved peak accuracy (Rc2=0.9799,
RMSEC=3.3027, SEC=3.3225). NOR-processed reflectance with log(1/R) second-derivative
(Rc?=0.9753, RMSEC=3.6629, SEC=3.6849). SNV-treated reflectance with log(1/R) second-
derivative (Rc?=0.9720, RMSEC=3.9013, SEC=3.9247). All transformed models outperformed
raw spectral data in both calibration and validation accuracy.
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This research establishes a quantitative PLSR model for monitoring jointing-stage maize
canopy chlorophyll content using visible-near-infrared spectroscopy. Key methodological
advancements include MSC, NOR, SNV preprocessing coupled with derivative transformations
enhanced feature extraction. Second-derivative PLSR achieved peak performance (Rc2=0.9799,
RMSEC=3.3027, SEC=3.3225). Robust validation through cross-validation across diverse
pedogenic materials confirmed model transferability. The framework enables rapid in-field
chlorophyll estimation and provides actionable protocols for UAV-based spectral monitoring
systems. Furthermore, this study collected sample data from the same region and performed cross-
type validation of the constructed model, thereby further enhancing its generalization capability
and reliability. The model offers a feasible approach for rapidly estimating rapeseed chlorophyll
content within the study area and provides methodological guidance for chlorophyll monitoring in
crop canopies using unmanned aerial vehicles and aerial remote sensing platforms. The
experimental results confirm the viability of retrieving rapeseed canopy chlorophyll content using
full-range hyperspectral data. However, the applicability of this technique across different
ecological regions, crop species, and growth stages requires further investigation.
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