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Calcium Homeostasis in Escherichia coli: Characterization of Mutants and
Genome Expression of MG1655

Muhammad Arif, Josh Howard and Louis S Tisa*

Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA

While the role of calcium ions as secondary messengers has been well described in eukaryotic cells, little is
known about calcium homeostasis in bacteria at the physiological and molecular levels. Genetic and
genomic approaches were used to address calcium regulation and to identify genes (cal) involved in calcium
homeostasis. Transposon mutagenesis of Escherichia coli generated several calcium-sensitive mutants that
fell into three categories: (i) Ca?*-sensitive chemotaxis mutants, (ii) Ca2*-sensitive cell division mutants,
and (iii) Ca?*-sensitive mutants that showed no defects in cell division or chemotaxis. The physiological
properties of these Ca2*-sensitive mutants were determined. Besides calcium-sensitivity to 75 mM calcium,
all of the mutants exhibited increased sensitivities to several divalent cations including Ni%*, Mg?*, Mn?%*,
Co%*, Zn%*, Cu?*, and Cd?*. To identify the cal gene sequence in the Ca2*-sensitive mutants, the region of the
genes fused to the reporter gene (phoA) on the transposon TnphoA was amplified by PCR and sequenced. The
sites of the gene fusion for three cal mutants were at the fdoG, gpt and pqi5 genes. The pleiotropic nature for
the cal mutations suggested that many genes may be globally regulated by calcium. We then investigated
global gene expression patterns of wild-type E. coli under calcium-depleted (addition of 10 mM EGTA) and
calcium-elevated (addition of 75 mM Ca?*) conditions as compared to cultures grown under unstressed
conditions. A comprehensive transcriptome analysis using macroarrys exhibited a global regulation of
diverse genes within the E. coli genome during calcium homeostasis.
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Ca®*-stimulated kinase activities have been found in E. coli-10
and other bacteriall"12, Ca2*-binding proteins and calmodulin-
like proteins have been reported to be present in a wide variety of
bacterial3.Immunological evidence indicates the presence of three
calmodulin-like proteins in E. coli, which were suggested to be
involved in calcium ion regulation??,

Introduction

Escherichia coli tightly regulate cytosolic free calcium at
approximately 100 nM, a level similar to that of eukaryotic cells!.
Calcium ions serve as secondary chemical messengers in
eukaryotic cells and tissues including muscle, neural, and
cardiovascular tissue. However, the specific role of calcium ions

in prokaryotic cells is not as well defined. The mechanism of calcium entry is unknown. Four genes (calA,

calC, calD, and chaA) have been identified in E. coli that are involved
in calcium homeostasis. All three of these loci, A, C, and D, are
associated with Ca2*/PO 2~ symporter activity'®. The chaA gene is
involved in Ca2*/H* antiporter activityl6. Recently, ATP has been
proposed to regulate calcium efflux in E. coli through an ATPasel’.

The role of calcium ion participation in bacterial behaviour and
signal transduction has been established by several lines of
evidence?’. Previous studies demonstrate the following
observations: (1) Changing cytoplasmic free Ca%* levels in cells
of E. coli alters their behavior2. Tumbling ensues following the
release of free CaZ* that is produced from caged Ca2* compounds
such as nitr-5 upon irradiation. (2) Changes in bacterial behaviour
are correlated with changes in cytoplasmic free CaZ* level?.
Fluorescent Ca?* indicator dye fura-2 was used to show that
repellents caused a temporary rise in cytoplasmic free Ca2* levels,
while attractants caused a temporary fall, and the receptor proteins
were required for these effects. (3) Some mutants defective in

To explore the regulatory role of calcium, we decided to generate
calcium homeostasis mutant strains and physiologically
characterize the mutant strains. In addition, our efforts included
a comprehensive assessment of the genome-wide regulation of
calcium homeostasis in E. coli MG1655 wild-type strain to identify
candidate calcium homeostasis genes.

Materials and Methods

calcium transport have elevated levels of cytoplasmic free Ca2*,
tumble continuously, and are defective in chemotaxis®. (4) Calcium
ion channel blockers inhibit E. coli chemotaxis®-.

Strains, plasmids and phages

All strains of E. coli used in this study are derivatives of K12 and
are listed in Table 1.
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Table 1. List of bacterial strains

Strain Phenotype Reference or Source

CC118 araD139 A(ara,leu)7697 AlacX74 phoA Colinand Beckwith, 19858
20 galEOgalKthirpsErpoBargEamrecAl

Cal102 CC118::TnphoA This study

Cal117 CC118::TnphoA This study

Call34 CC118::TnphoA This study

Cal512 CC118::TnphoA This study

Cal504 CC118::TnphoA This study

Cal719 CC118::TnphoA This study

Cal526 CC118::TnphoA This study

Pho43 CC118::TnphoA This study

PhoA4 CC118::TnphoA This study

PhoC23 CC118::TnphoA This study

MG1655 Wildtype K12 strain, sequenced first. Blattneret al., 199719

€TnphoA Tn5 IS50L::phoA (KmR) Gulttierrez et al., 198720

Growth conditions resuspended in E medium containing glycerol (glycerol-E

E. coli K12 strain CC118 (AphoA, spectinomycin resistant) was
the parental strain that was used for mutagenesis and subsequent
generation of calcium-sensitive mutants. Cells were grown and
maintained in LB medium (1.0% bactopeptone, 0.5% NaCl, 0.5%
yeast extract) containing the appropriate antibiotics. The calcium-
sensitive mutants were designated: Cal117, Cal512, Pho43, Cal102,
Cal134, PhoA4, PhoC23, Cal504, Cal719, and Cal526. For cation
sensitivity assays, cells were grown in E medium (0.5%
bactopeptone with 120 mM Tris, 70 mM NaCl, 20 mM KCI, 20 mM
NH,CI,3mMNa,SO,, 1 mM MgCl,, 2iM ZnCl, and 0.4% glycerol)
at a pH of 7.8%L. For motility and chemotaxis assays, cells were
grown in tryptone broth consisting of 1% Bacto-tryptone and
0.5% NaCl and incubated at 35°C. In some cases, cells were grown
in Vogel-Bonner medium?22 containing the required amino acids
at 1 mM and 50 mM glycerol (minimal glycerol medium) or 50 mii
DL -lactate (minimal lactate medium).

Transposon TnphoA and mutagenesis of CC118

The transposon TnphoA was introduced into strain CC118, the
parental wild type E. coli strain, by phage é infection (€ TnphoA)
according to the method of Manoil and Beckwith® at a
multiplicity of infection (MOI) of 0.05. Cells of strain CC118 were
incubated at 37°C in LB medium containing 10 mM MgSO, and
0.4% maltose. Overnight grown cells were harvested by
centrifugation and resuspended in 10 mM MgSO,. The washed
cells were infected with & TnphoA lysate as described in the next
section.

Selection of calcium-sensitive mutants

For one series, each 100 il sample of cells was infected with 10,
100, 200, or 500 il of lysate. The mixture was incubated at 30°C for
20 min. Following the addition of 1 ml of LB medium, the cells
were allowed to outgrow for 30 min at 30°C. The cells were
harvested by centrifugation at 6,000 x g for 10 min and
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medium). This procedure was repeated twice and the cells were
finally resuspended in 1 ml of glycerol-E medium containing 50
mM CacCl, and 60 ig/ml kanamycin. Following an incubation at
35°C for 1 h, penicillin G (15,000 U) was added and the cells were
allowed to incubate for 3 h. Penicillin G was removed by
centrifugation at 6,000 x g for 10 min and resuspending the cell
pellet in glycerol-E medium. This washing step was repeated
twice. The cells were finally resuspended in 1 ml of glycerol-E
medium and 100-il samples were plated on glycerol-E medium
plates containing 5 mM CaCl,, 60 ig/ml kanamycin and 40 ig/ml 5-
bromo-4-chloro-3-indolyl phosphate (XP) to screen for TnphoA
insertions exhibiting PhoA activity. The plates were incubated at
37°C for 2 days before colonies were picked.

For the second series, a 100-il sample of cells was infected with
100-i1 of phage lysate for 20 min at 37°C and directly plated on
either (1) glycerol-E medium containing 50 mM CaCl,, 30 ig/ml
kanamycin and 40 ig/ml XP or (2) glycerol-E medium containing 5
mM CacCl,, 180 ig/ml kanamycin and 40 ig/ml XP. These plates
were also incubated at 37°C for 2 days before colonies were
picked.

Atypically small colonies on the plates were judged to be potential
calcium-sensitive mutants. Those colonies that grew on glycerol-
E medium but not on glycerol-E medium containing 50 mM CacCl,
(thus indicating sensitivity to calcium) were purified and retained.

Calcium-sensitivity assay

Calcium-sensitivity was later defined as the inability to grow in
the presence of 75 mM CaCl,,. Calcium-sensitivity was measured
by two different growth inhibition assays. Initially, calcium-
sensitivity was measured by growth inhibition assay of Brey and
Rosen23, Cells were screened for their ability to grow on E medium
plates supplemented with 0 mM, 25 mM, 50 mM, 75 mM, or 100
mM CaCl,. The plates were incubated at 37°C and the growth
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results were monitored at 24 h and 48 h. After 48 h, calcium-
sensitive cells are unable to grow on E medium plates
supplemented with 75 mM CaCl,. Growth inhibition was also
determined from turbidity measurements in broth cultures. During
this assay, cells were inoculated in E medium broth supplemented
with glycerol and different concentrations (0 mM, 25 mM, 50 mM,
75 mM, or 100 mM) of CaCl,, and were incubated at 37°C for 8 h.
The optical density at a wavelength of 600 nm was measured at 0
and 8 h.

Cation sensitivity assay

The sensitivity to various other cations was monitored by growth
inhibition assay of the calcium-sensitive cells as described by
Brey and Rosen?3. The minimum inhibitory concentration (MIC)
values were determined for each cation tested. MIC is the lowest
concentration of cation at which all bacterial growth is stopped.

Chemotaxis assay

Chemotactic ability was measured by swim-ring migration
assay?*. Tryptone swarm plates containing 1% bacto-tryptone,
0.5% NaCl, and 0.25% bactoagar (Difco Laboratories, Franklin
Lakes, New Jersey) were inoculated with a stab of approximately
106 cells at the centre of the plates and incubated at 30°C for 8 to
14 h. The ring diameters were measured at the end of the
experiment.

Analysis of free-swimming behaviour

Bacterial swimming behaviour was observed at 30°C by phase-
contrast microscopy at a magnification of 400x. The cells in these
behavioural assays were suspended in chemotaxis medium (10
mM potassium phosphate pH 7.0, 0.1 mM potassium EDTA, and
1 mM L-methionine) or in filtered spent/used growth medium to
an optical density at 590 nm of 0.1. The microscopic behaviour
was videotaped and analyzed by computer>,

Alkaline phosphatase assay

Alkaline phosphatase activity was measured using both solid
(for all mutants) and liquid media (only for calcium-sensitive
transposon mutant Pho43). Cells were grown at 37°C in LB medium
containing appropriate antibiotics. Overnight cultures were then
streaked for isolation on E medium plates containing the
chromogenic alkaline phosphatase substrate 5-bromo-4-chloro-
3-indolyl phosphate (XP). The parental strain CC118 lacks

functional alkaline phosphatase. Only colonies that produced
alkaline phosphatase fusion on the outside of the cell or in the
periplasmic space would turn blue. Following overnight growth
at 37°C, successful calcium-sensitive mutants with functional
alkaline phosphatase were monitored for blue color production.

DAPI experiments

Prior to staining the cells were first fixed with toluene and treated
with chloramphenicol to condense their genomes. The fixed cells
were incubated with the fluorescent DNA binding dye DAPI
(4',6'-diamidino-2-phenylindole 2 HCI), and observed by the use
of phase contrast microscopy and fluorescence microscopy at a
total magnification of 1,000x.

Arbitrarily primed PCR

To identify the cal gene sequence, the region of the genes fused
to the reporter gene (phoA) were amplified by PCR and sequenced.
To amplify partial regions of cal genes fused to the transposon,
we used the arbitrarily-primed PCR method26-27, This method
involved two rounds of PCR amplification using arbitrary primers
to prime from the chromosome and primers specific to TnphoA.
During the first round of PCR, the primer (Tn-R) with sequence
homology to the right end of the transposon TnphoA and arbitrary
primer ARB1 were used. The PCR parameters for first round were
as follows: (1) 95°C 5 min, (2) 6 cycles of 95°C for 30's, 30°C for 30
s, 72°C for 1.5 min, (3) 30 cycles of 95°C for 30 s, 45°C for 30 s, and
72°C for 2 min. During the second round of PCR, a 5 il aliquot of
first round PCR product was used as template and the primers
ARB2 and Tn-1 were used for amplification.The PCR parameters
for second round were as follows: 30 cycles of 95°C for 30 s, 45°C
for 30's, 72°C for 2 min. The final PCR products were purified from
an agarose gel with the aid of &-agarase.The primers (ARB1,
ARB2, Tn-l and Tn-R) used in this experiment are listed in Table
2. These PCR amplified products were sequenced using primers
(TnphoA-intand Tn-R) located close to the fusion site on TnphoA.
DNA sequence data were analyzed by sequence analysis software
DNAStar for Mac.The resultant edited sequences, ORFs present
in the edited sequences, as well as translated sequences were
used to query the E. coli genomicdatabase?8.

Bacterial growth conditions for DNA macroarray experiments

To provide a comprehensive insight into calcium homeostasis, the
global expression profiles of wild type E. coli MG 1655 were

Table 2. Primers used in arbitrarily-primed PCR and sequencing reaction

Primer Primer sequence (5°—3’) Reference
ARB1 GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT This study
ARB2 GGCCACGCGTCGACTAGTAC This study
Tn-I CCTTCGGCATAATTACGTGC This study
Tn-R GCAGTCTGATCACCCGTTAAA This study
TnphoA-int TTTCCAGAACAGGGCAAAAC This study
TnphoA-F TGCAAGTTGAAGGTGCGTCAATCG This study
TnphoA-R ATGAGATGCCCTGCAAGCAATTCG This study
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determined under three different conditions: (1) growth medium
containing elevated levels of calcium (the addition 75 mM CaCl2),
(2) growth medium containing depleted levels of calcium (the
addition of 10 mM EGTA), and (3) growth medium control
(untreated). Overnight cultures of E. coli MG 1655 were used to
inoculate fresh E media and the cultures were incubated at 37°C
with rotary oration. For the array experiments cultures were grown
to an ODg, of 0.4 to 0.5 and then either 75 mM calcium or 10 mM
EDTA was added. After 30 min of rotary aeration at 37°C, total
RNA was quickly extracted by using QiagenRNeasy kit (Qiagen,
Inc., Valencia, CA). Proper precautions were taken to avoid
contamination with RNases and a non-denaturing electrophoresis
gel was run with the extracted RNA to check the integrity of RNA.

Synthesis of **P-labeled cDNA probe

Sigma-Genosys Biotechnologies, Inc. had developed
commercially available cDNA primers that are specifically designed
to preferentially label cDNA from mRNA. These C-terminal primer
sets (4,290 ORF-specific C-terminal primers) were used to generate
the hybridization probe according to the manufacturers
recommendations. As recommended by the manufacturer, 33P-4-
dCTP was used to label the cDNA. The 33P-labeled cDNA was
purified and unincorporated-labeled nucleotides were removed
by the use of Sephadex G-25 gel-filtration spin columns. An
estimation of percentage incorporation of 33P-dCTP into the cDNA
was determined by using a hand-held Geiger counter or by
scintillation counts of samples before and after column
purification. The labeled cDNA probe was then ready to be used
in a hybridization reaction with the Panorama E. coli Gene Arrays
(Sigma-Genosys Biotechnologies, Inc.).

Hybridization with panorama E. coli gene array

Following its preparation and purification, the 33P-labeled cDNA
was hybridized to the Panorama gene array by the use of roller
bottles ina hybridization oven. The hybridization and washing steps
were performed according to the protocol specified in Panorama E.
coli cDNA Labeling and Hybridization Kit. The DNA array blots
were rinsed in 2X SSPE (1X SSPE: 0.18 M NaCl, 10 mM NaH2PO4, 1
mM EDTA, pH 7.7) and pre-hybridized in pre-warmed hybridization
solution (5X SSPE, 2% SDS, 1X Denhardt’s reagent, 100 ig/ml sheared
salmon sperm DNA\) at 65°C for 1 hr at 6 rpm. The entire 33P-labeled
cDNA was first denatured at 95°C for 10 min and then added to 3 ml
of hybridization buffer and the blot were hybridized in this solution
for 15 h at 65°C. After overnight incubation, the blots were washed
with buffer (0.5X SSPE, 0.2% SDS) three times at room temperature.
The blots were then washed three more times with pre-warmed (65°C)
buffer in the hybridization oven at 65°C for 20 min at 6 rpm. Washed
blots were finally air-dried briefly for 5 min and wrapped in clear
plastic food wrap and exposed to a phosphorimager screen (Bio-
Rad Laboratories) for 24 h.

Data acquisition by phosphorimaging and analysis of the arrays

The gene expression signals were measured by the use of a Bio-
Rad PhosphorIimager with a Kodak Low Energy Storage Phosphor
Screen. Typically, the arrays were exposed overnight to yield
quantifiable results. For quantification, imaging screens were
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scanned at a 50im pixel size and analyzed by Quantity One software
(Bio-Rad Laboratories, Hercules, CA) based on the spot
coordinates. Each gene has two corresponding spots and the
pixel density (intensity) of each spot representing each gene in
the array was measured and corrected for the background. The
average signal of the pair of duplicate spots were subsequently
determined and normalized for comparative studies. To
standardize the data from experiments the average intensity for
each spot was expressed as a percentage of the total of intensities
for all of the spots on the DNA array.

Results and Discussion

Isolation of calcium-sensitive mutants of E. coli by TnphoA
mutagenesis

The 7.7 kb transposon TnphoA contains Kan' gene as a selective
marker and the reporter gene for alkaline phosphatase phoA
(Figure 1). The transposon, TnphoA, used as a mutagenic agent
for generation and isolation of new calcium-sensitive mutants.
The reporter gene for alkaline phosphatase phoA has no promoter
or Shine Dalgarno sequences, and is only expressed when the
fusion is in-frame. When inserted in frame and in proper
orientation, TnphoA will randomly mutagenize bacterial
chromosome by disrupting the gene the transposon will insert
itself in. In addition, TnphoA will fuse alkaline phosphatase to
the amino terminal of the protein product of the disrupted gene.
Alkaline phosphatase is functional when it is fused to a signal
that promotes the export of the protein to the envelope of the cell
(such as periplasmic, outer membrane or cytoplasmic membrane
proteins). Our search for calcium sensitive E. coli mutants was
targeted to membrane protein genes by essentially isolating phoA
gene fusions. Infection of a phoA deletion strain CC118 with
&TnphoA, followed by penicillin enrichment and subsequent
screening of blueness of colonies on XP resulted in mutants with
TnphoA insertions exhibiting PhoA activity.

Tn5 central
region

IS50L with phoA insert IS50R

phoA

Figure 1. The transposon TnphoA (Manoil and Beckwith!8).
The 7.7 Kbp transposon is derived from Tn5 with the selective
marker Kan and the reporter gene phoA. Successful (in frame)
gene-transposon fusion allows for identification of secreted and
transmembrane proteins.

kan transposase

Following transposon mutagenesis, penicillin enrichment was
used to aid in the isolation of calcium-sensitive mutants. Several
new calcium-sensitive mutants were identified by this transposon
mutagenesis procedure. The calcium-sensitive mutants
generated are described in Table 1 and photomicrographs of some
mutants are included in Figure 2. The mutants fell into three
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Figure 2. Photomicrograph of wild type Escherichia coli and calcium-sensitive mutants. (A) CC118 with wild type morphology, (B)
Cal102 cells with a snake-like morphology consist of up to 10 times the length of the wild type CC118, (C) Cal134 cells were more
elongated at about 10 to 20 times the length of CC118, (D) and (E) Cal 117 and Pho43, respectively, had wild type morphology, and

(F) Pho43 are long like Cal 102.

general classes: (i) Ca2*-sensitive chemotaxis mutants, (ii) Ca2*-
sensitive cell division mutants, and (iii) Ca2*-sensitive mutants
that showed no defects in cell division or chemotaxis (Table 3).
While some of the mutants were sensitive to 50 mM CaCl,,
sensitivity measured by growth inhibition assay revealed the
inability of most mutants to grow in the presence of 75 mM CaCl,
on plates or in broth cultures.

Physiological and Biochemical Properties of Calcium-Sensitive
Mutants

The cell division mutants (e.g., Cal134) were easily identified
microscopically as long “snake-like” cells (Figure 2). One of the
Ca®*-sensitive cell division mutants (Cal134) grew as a long
filamentous cell that was over 20 cell-body-length in size.

Multiple chromosomes within these snake-like cells were observed
following DAPI staining of this mutant (Figure 3). These results

Table 3. Properties of calcium-sensitive mutants

imply that this mutant was defective in cell division, but not DNA
replication.

The generation of these Ca?*-sensitive cell division mutants was
not unexpected. Holland and co-workers?®-30 isolated mutants
that were resistant to different calcium antagonists and are
defective in cell division. They proposed a model suggesting
that calcium plays a role in the control of bacterial growth and its
cell cycle31-32, The sensitivity of these calcium-sensitive mutants
to other cations was tested and their minimal inhibitory
concentration (MIC) values for these cations are shown in Figure
4. Besides calcium-sensitivity, all of the mutants exhibited
increased sensitivities to several divalent cations (Ni%*, Mg?*,
Mn2*, Co%*, Zn?*, Cu?*, and Cd2*). Mutant Cal117 was sensitive
to all of the cations tested. Mutants Cal134 and Pho43 exhibited
sensitivity to Co?* and Zn2*, while Cal134 was also sensitive to
Cu?*. Cal102 was sensitive to all of the cations except Ni?*, and

Strain Morphology Motility Swim rate mm per 8 hours Alkaline phosphatase (plate assay)
CC118(WT) Short rods Smooth-tumbly 49 -
Cal117 Medium snakes Smooth 0 ++
Cal512 Medium snakes Smooth 2 +
Cal102 Medium snakes Tumbly 14 ++
Pho43 Sausage snakes Non-motile 0 ++
Call34 Long snakes Smooth 4 ++
PhoA4 Short rods Smooth-tumbly 37 +++
PhoC23 Short rods Tumbly 23 -
Cal719 Medium snakes Smooth-tumbly 3 ND
Cal526 ND ND 1 ND
Cal504 ND ND 12 ND

Medium = 5-8 cell lengths; Long = 10-20 cell lengths; — = No color; + = Light blue; ++ = Medium blue; +++ = Dark blue; ND = Not determined.
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Figure 3. The Cal134 mutant is defective in cell division, but
not DNA replication. DAPI stained phase contrast (A) and
fluorescent (B) pictures of Call34 long snake cell division
mutants.

Cal512 exhibited a similar pattern of sensitivity as Cal117 though
it was not sensitive to Mn?*. It is noteworthy to mention that all
calcium-sensitive mutants were resistant to Mg2* as shown in
Figure 4A.

(A) MIC values for cations (mM)

w
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-
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(WT)  Cal117 Cal512 Pho43 Cal102 Cal134
@ Mn(mM) o Co(mM) = Cu(mM) @ NimM) = Mg(mM)
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€ 70.0
= 60.0
€ 50.0
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Figure 4. Ca-sensitive mutants were sensitive to other divalent
cations. MIC values for cations tested were determined as
described in the Methods. Mutants Cal117 and Cal512 exhibit
a similar pattern of cation sensitivity (except for Mg), while
Cal102 and Cal134 exhibit similar profiles. The wild type CC118
and mutant Pho43 have identical MICs for Mn?* and Cu2*.
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In other ion transport systems, mutants defective in ion transport
show increased sensitivity to diverse additional ions. Na*
transport mutants are resistant to Li* 33, while Mg2* transport
(corA) mutants are resistant to Co%* and sensitive to Ca2*34, We
expected that the cal mutants isolated above would show
sensitivities to other cations or that they would show an increased
resistance to some cations.

Table 3 summarizes the physiological and biochemical
characterization data for a comprehensive representation of
observations made on the transposon mutants.

Molecular characterization of calcium-sensitive mutants

The sites of the gene fusions for three mutants were identified by
arbitrarily-primed PCR (arbPCR). Since the PCR products of arbPCR
contained part of the upstream regions of the transposon TnphoA
fused to the disrupted gene, the start of cal gene was easily
recognized. The resulting partial gene sequence was used to search
the compiled DNA sequence databank of E. coli genome by the
use of the BLAST program at NCBI. The sites of the gene fusion
for three cal mutants were at the fdoG, gpt and pqi genes (Table 4).
The fdoGgene codes for the &-subunit of formate dehydrogenase®,
while the gpt gene codes for guanine-xanthine phosphoribosyl
transferase phosphotransferase3® and pqi gene is induced by
paraquat and regulated by SoxRS%”. The arbitrarily-primed PCR
fragment of Cal134 exhibited 96% sequence homology with fdoG
gene and also a significant match as evidenced by the e value of
5e-12. Similarly, the cal genes of PhoC23 and PhoA4 showed
significant matches to genes gpt and pqiB (e value of 2e-44 and le-
25, respectively) with 98% sequence identity for both.

The site of the TnphoA insertion was detected by hybridization
of a DIG-labeled TnphoA derived probe to membrane blotted
nucleic acids. Hybridization experiments using this TnphoA
derived probe confirmed that each mutation was distinct and the
result of the single insertion of TnphoA (data not shown). The
site of insertion was also confirmed by PCR (data not shown).

The sites of the gene fusion for three cal mutants were the
following: gene (Cal134), gpt gene (PhoC23), pgi gene (PhoA4).
Our initial observations with the TnphoA-generated cal mutants
suggest that their calcium-sensitivity was the result of a number
of diverse genes being disrupted by the insertion of the
transposon. These results suggest a pleiotropic nature for the
cal mutations and indicate that many genes may be regulated by
calcium. Because of the results from these experiments, we wanted
to investigate global gene expression under growth conditions
with and without calcium with a broader goal of identifying all of
the calcium-regulated genes in E. coli.

Panorama E. coli gene array

Panorama E. coli DNA macroarrays (Sigma_Genosys) representing
all 4,290 protein-coding genes were used to identify those genes
that were globally regulated by calcium and to observe the effects
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Table 4. cal gene mutations identified by ARB-PCR

Mutant calgene Gene function e-value % identity

Call34 fdoG Formate dehydrogenase 5e-12 %
(Allows the use of formate as major electron donor
during aerobic respiration)

PhoC23 gpt Guanine-hypoxanthine phosphoribosyltransferase 2e-44 3]
(Involved in salvage of nucleosides and nucleotides)

PhoA4 pgiB Paraquat-inducible protein 1e-25 %

(Inducible by superoxide generating radical paraquat

and regulated by SoxRS)

of elevated (75 mM Ca) and depleted calcium (10 mM EGTA) levels
on the global transcription profile (Figure 5).

The 23S and 16S ribosomal RNA bands were clearly visible at
about 2:1 ratio (23S:16S) of staining intensity. The processed
RNA samples were devoid of any genomic DNA contamination
as evidenced by agarose gel electrophoresis.

The corresponding spots from samples on arrays were compared
to identify the fold-induction (up-regulation) or fold-reduction

Control

Calcium added

(down-regulation) in expression between the samples (Figure 5).
By this method of array analysis a 2-fold difference in expression
was considered as important. Changes in expression (fold change)
of genes during elevated and depleted calcium conditions are
shown in Table 5.

The findings from our study of calcium homeostasis represent a
dynamic state with hitherto unknown regulatory activity
throughout E. coli genome. It is very likely that diverse genes
are under calcium regulation as evidenced by changes in gene

EGTAadded

Figure 5. Panorama E. coli gene array exhibiting global gene expression profiles of E. coli MG1655 following growth on E medium
(control), E medium supplemented with 75 mM calcium, and E medium supplemented with 10 mM EGTA.
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expression in elevated or depleted calcium. The next logical
extension of our study will include an investigation into
quantitative analysis of gene expression of subsets of genes in
wild-type and mutant strains with addition of calcium and
chelation of calcium.
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