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Containment
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Bird flu, synonym of avian influenza (AI) caused by influenza A virus, become concern across the world for
the possible incidence of the next human influenza pandemic. The latent danger of AI pandemic remains
very real, though, the precise timing of occurrence and severity is uncertain. Each avian influenza type A
(AIA) contains one of the 16 subtypes of haemagglutinin (HA) and 9 neuraminidases (NA) implicating
theoretically 144 subtypes of AIA are possible in circulation, but only HIN1, H2N2 and H3N2 subtypes are
documented for past pandemics in humans. In recent years HSN1, H7N3, H7N2, H7N7 and HIN2 are isolated
from human samples, though HIN1 and H3N2 are still in circulation. Avian influenza viruses preferentially
recognize receptor containing sialosugar chains terminating in sialic acid -2,3-galactose in bird, whereas,
human preferentially contain -2,6-galactose subtype-receptor. To initiate a pandemic outbreak in human,
the AIA viruses need alteration of receptor recognition specificity; and perfect match between HA and NA
along with optimal cellular tropism. Cyclic nature of bird-flu emergence, and moreover, sporadic human
incident reported around Asia and Europe in recent years anticipating a pandemic appearance of bird-flu in
time to come. As we are on the edge of this alarming situation, AI prevention and containment can be
considered under categories of surveillance, intervention, antiviral drugs, vaccination together with

environment management issues.
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Introduction

“Avian influenza” or “fowl plague” was first recognized in
chickens in 1878!. Influenza, an RNA virus can be designated as
A, B or C? based on their antigenic differences. Influenza A
viruses being the most dangerous one mutate and spread rapidly,
and can infect different birds to mammalians including human b
and subtype on the basis of surface protein named as {

v

A

haemagglutinin (HA) and neuraminidase (NA)>”7. There are 16
known HA and 9 known NA subtypes’. Many different
combinations of HA and NA proteins are possible3-’

-p( ﬂ

™
o~

Theoretically, 144 subtypes are likely. So far about 100 subtypes
have been notified?. Generally, influenza viruses are highly

species-specific3©. All known subtypes of influenza A viruses

can be found in birds>. Intestinal cells of wild birds, especially
shorebirds, ducks, and geese display receptors for Al viruses
and regarded as the natural reservoir of all Al viruses®-. Genetic
mutation and re-assortment help viruses capable to jump over
the species barrier making them capable to infect human’-!0

(Figure 1 and Table 1).

Figure 1. Transmission of avian influenza viruses among hosts.
Wild aquatic birds are the primary reservoir for influenza A
viruses from which viruses can be transmitted to other hosts
such as horses, pigs, poultry, whales, seals, and humans. Pigs
and poultry can also infect humans. (Adapted from Trampuz
et al.').
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Table 1. Instances of various subtypes of avian influenza A virus
infections of human2-13

Subtype Region Year
H7N78 USA 1959
H7N7 UK 1995
H7N7 UK 1996
H5N12  Hong Kong 1997
HIN2  Chinaand Hong Kong 1999
H7N2  USA(Virginia) 2002
H5N12  Chinaand Hong Kong 2003
H7N728  Netherlands 2003
HIN?2 Hong Kong 2003
H7N2 USA (New York) 2003
H7N32  Canada 2004
H5N128  Thailand and Vietnam 2004
H5N12  Thailand, Vietham, Cambodia, China and Indonesia 2005
H5N12  Thailand, Vietnam, Cambodia, China, 2006

Indonesia, Azerbaijan, Djibouti, Egypt,

Iraq and Turkey
H5N12  Bangladesh, Vietham, Cambodia, China, 2007

Indonesia, Laos, Nigeria and Egypt
H7N2 UK 2007
HIN2  Chinaand Bangladesh 2007
H5N1P  Bangladesh 2008

aHigh pathogenic; PPathogenicity is not clear, because the infected
16-month-old boy did not show any avian influenza (Al) symptom.

The epidemic nature and the clinical features of this deadly
influenza first recorded at the beginning of 19 century. Several
epidemics recorded during the nineteenth century but the first
pandemic outbreak of Bird flu not recorded precisely1-14, In 1918-
1919, a pandemic known as ‘Spanish flu’ recorded about 50 million
deaths, principally the young adults!® suggesting unusual
virulence nature of the strain. On the other hand, the large numbers
of deaths may be due to the enfeebling conditions as an after
effect of the First World Warl®-17, Pandemics continued to occur
regularly after the Spanish influenza, in 1932-1933, 1947-1948, 1957
and 1968. The next pandemic is thought to be overdue. These
latter pandemics resembled the pandemic of 1890, affecting millions
of people with a mild upper respiratory tract infection (URTI) and
a small number of deaths. The HIN1 (swine) viruses probably
appeared in 1918 and continued in circulation until supplanted
by the H2N2 (Asian) viruses in 195718-26, The H2N2 viruses
predominantly circulated until H3N2 (Hong Kong) strains appeared
in 1968. The H1N1 virus reappeared in 1977 and did not replace
the H3N2 subtype and both subtypes continued to co-circulate19
(Figure 2).

Figure 2. Possible origins of pandemic influenza viruses.
Phylogenetic studies suggest that an avian influenza virus was
transmitted to humans, caused the 1918 pandemic. A
reassortment virus possessing its PB1, HA, and NA genes from a
Eurasian avian virus, with the remainder coming from an H1N1
human virus, caused the Asian pandemic of 1957. In 1968, a
reassortment possessing its PB1 and HA genes from a Eurasian
avian virus and the remainder from an H2N2 human virus
emerged, followed by the disappearance of the H2N2 virus. In
1977, a virus genetically almost identical to those circulating
in humans in 1950 appeared and spread among children and
young adults. The HIN1 and H3N2 viruses are now
co-circulating in humans (Adapted from Taisuke et al.2").

Depending on the severity all subtypes can be categorized into
two kinds. One is high pathogenic avian influenza virus (HPAIV)
and the other is low pathogenic avian influenza virus (LPAIV).
When LPALIV strains are transmitted from avian reservoir hosts
to highly susceptible poultry species such as chickens and
turkeys, they undergo a series of mutations resulting adaptation
to their new hosts2”-28. Influenza A virus not only runs through a
host adaptation phase in this way, HPAIVs may arise unpredictably
de novo in poultry infected with LPAI progenitors?4. Over the
last 30 years, highly virulent avian influenza viruses have caused
outbreaks in poultry in Australia (1976 [H7]%°, 1985 [H7]31-32,
1992 [H7]33, 1995 [H7] and 1997 [H7]), England (1979 [H7]3*and
1991 [H5]39), the United States (1983 to 1984 [H5]%), Ireland (1983
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to 1984 [H5]37), Germany (1979 [H7]%8), Mexico (1994 to
1995 [H5]3%-40), Pakistan (1995 [H7]*Y), ltaly (1997 [H5]) and Hong
Kong (1997 [H5]*2). Recently, H5 and H9 have been demonstrated
to be involved with poultry flu in Bangladesh. Among the two,
H5N1 (93%) is predominant according to the National Reference
Laboratory, Bangladesh Livestock Research Institute (BLRI),
Savar, Dhaka. The available information implicating with minor
exception that all of the recent pathogenic avian influenza A
viruses are of H5 or H7 containing subtypes (Table 1).

Molecular Perspective of Pandemic Risk
For a pandemic an agent should have three properties*3.

1 Anew type of flu virus has to be introduced into the human
population.

2. The new type must have a serious impact on the health of
humans.

3. The new type must have the capability to spread easily from
one person to the next (human specific variant).

Currently circulating H5 and H7 subtypes attained the first two
properties and the third one is yet to acquire®°. Host specification
primarily depends on HA, the surface glycoprotein33-34, In
addition, there is increasing evidence that NA can promote virus
entry into host cells during the initial stage of infection*. The
pandemic risk lies within the molecular composition of these two
structural proteins. Influenza infection requires binding of the
HA protein to sialic acid-containing receptors on the host cell
surface where the precise linkage of HA to host receptors
determines species preference®8. For example, a switch in receptor
specificity from receptors containing sialic acids connected to
galactose in a alpha 2-3 linkage (avian receptors) to a alpha 2-6
linkage (human receptors) is required for influenza A virus to
cross the species barrier to adapt in human host*>-48, Antigenic
properties also change with it#°. Pandemic strains of H1, H2, and
H3 subtypes recognize alpha 2-6 linked sialic acid, the prevalent
form found on cells of the human respiratory tract>. But
researchers found that human airway epithelium harbours alpha
2-3 linked sialic acids on ciliated cells. These findings suggest
that although avian influenza viruses can infect human ciliated
airway epithelium, their replication may be limited by a non-optimal
cellular tropism®L. Bangladesh health authorities confirmed on
the 22" May 2008 that a 16-month-old boy infected with H5N1
without showing any symptom of bird flu, had recovered and
released from hospital. Thus, the present data and experimental
evidence implicating that to be a HPAIV strain - the strain must
have a-2,6 receptor specificity and capable to evade cellular control
that limit it’s replication or pathogenesis.

Genetic alteration is likely high for avian influenza A virus®2. For
the lack of proofreading activity of RNA polymerases, there is
much more inherent variation at the nucleotide sequence level in
a replicating population of an RNA virus than for an otherwise
similar DNA viruses®3-%4, The effects of natural selection can

produce evolutionary change in viruses over a shorter time scale.
For influenza, according to natural selection, superior evader
variants of body’s immune response have better replicative
success in human populations®®.

Influenza virus genome is spliced into 8 pieces’. And various strains
of influenza A virus can productively infect multiple mammalian
and avian species. This co-hosting phenomenon is a good reason
for genetic reassortment to evolve viruses with new-fangled
characteristics. Mixed infections occur frequently in nature and
thus lead to genetic reassortment®6-58, Furthermore, major antibody-
interacting domains of HA lack specific conserved structure and
distinct from the main functional domains®®. Per year a given strain
of influenza virus may change by a percent at the nucleotide
sequence level®®, HA contains about 566 amino acid residues
(1.75 kb)®0. Over a decade, a given “strain” of influenza virus can
change quite significantly resulting flu from the same strain, even
if, the host is vaccinated. One important phenomenon for the
potency of pandemic is the crosstalk and match between two surface
proteins residing on the viral particle. High pathogenic HA is
accompanied better with low-functional NASL,

Classification of Pandemic Phases and Recent Pandemic Layout

According to WHO experts’ investigation, Al virus did not spread
within the community. No healthcare worker was infected either.
It showed that infection is only possible with very close contact
with H5N1 infected patients®*. Therefore, the world remains at
phase 3 of the WHO alert scale (Table 2). One key point to focus,
besides H5N1 (the recently isolated pathogenic form of AIA from
the human patient of different countries) other potential pandemic
viruses H7N7, HIN2, and H2N2 are also the threat and candidate
for pandemic, because they are still in circulation and showed
high virulence potential in laboratory samples2-13.65,

Table 2. WHO classification of pandemic phases62-63

Warning status  Phase Human risk situation

Inter-pandemic Phase 1  Low risk of human cases
Phase 2

Phase 3

High risk of human cases

No or very limited human-to-human
transmission

Evidence of increased human-to-human
transmission

Pandemicalert Phase 4

Phase 5 Evidence of significant human-to-human

transmission

Phase 6 Efficient and sustained human-to-human

transmission

Pandemic

Major Strategies to Fight Bird Flu Pandemic

WHO had included surveillance for pandemic preparedness,
public health interventions, the use and availability of antiviral,
and access to vaccines produce against the infectious AIA as
four major topics for discussion in “WHO consultation on priority
public health interventions before and during an influenza
pandemic” held in March 20046,
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Strategy | — Surveillance and early detection

The important function of surveillance is to detect unusual cluster
of cases at an early stage or to discover abnormal clinical
manifestations in cases and then to understand virus
characteristics through analysis. This will help us block the virus
in time, once its transmission ability enhances and will facilitate
the execution of epidemic control measures to prevent the
epidemic situation from worsening.

Strategy Il — Interruption of transmission

Besides medical interventions of bird flu using antiviral agents
and vaccines, non-medical public health interventions such as
personal hygiene practices, isolation, an reduction of social
contact have been demonstrated extremely effective in preventing
and minimizing the spread of the pathogen. WHO Global Influenza
Preparedness Plan®” categorized non-pharmaceutical public health
interventions into 4 types:

1. Measures that limit the international transmission of virus,
such as screening of fever at border and travel restriction,

2. Measures that reduce virus transmission, such as isolated
treatment of patient, health self-management of contact,
quarantine, cancellation of rallies and class suspension, etc.,

3. Decrease personal risks, such as frequent practice of hand-
washing and

4. Communication of risks to the public.

A recent research found that border restrictions and/or internal
travel restrictions are unlikely to delay spread by more than 2-3
weeks, school closure during the peak of a pandemic can reduce
peak attack rates by up to 40%, and treatment of clinical cases
can reduce transmission, but only if antiviral is given within a day
of symptoms starting®. Given enough drugs for 50% of the
population, household-based prophylaxis coupled with reactive
school closure could reduce clinical attack rates by 40-50%6%8-69,
More widespread prophylaxis would be even more logistically
challenging and might reduce attack rates by over 75%7°

Strategy 111 — Antiviral drugs

At present, the cure and preventive function of neuraminidase
inhibitor anti-viral drugs have been confirmed in seasonal
influenza’. As a consequence, it is expected to be effective in
treatment and after exposure prophylaxis for avian influenza and
pandemic influenza.

There are 2 classes of anti-viral drugs specific for influenza: M2
inhibitors and neuraminidase inhibitors. M2 inhibitors launched
earlier and are cheaper. A major concern is that HSN1 virus has
been found to be resistant to M2 inhibitors’2. Neuraminidase
inhibitors, such as Oseltamivir and Zanamivir, are newly
developed. Neuraminidase inhibitors are effective in the treatment
of avian influenza especially when given early, in the first 48 hours
of infection’® but evidence shows higher incidence of resistance
(Al H5N1 strains resistant to Oseltamivir have been collected in
0.4-4.0% of patients)’*. Factors, which might contribute to this

apparently limited efficacy, include suboptimal dosing or routes
of administration, suboptimal timing of treatment, the inability of
antiviral drugs to interfere with immunopathology and the
development of drug resistance’®. The promising news is that
last year, Neugene, a new antiviral drug still in the testing phase,
is showing promise as an effective treatment for avian flu. The
new drug is manufactured by BioPharma, Inc’S.

Strategy 1V — Vaccination

Present vaccines have had mixed results. In the field of influenza
vaccination, neither commercially available nor experimentally
tested vaccines have been shown promising enough to fight this
diseases perfectly’”. A variety of vaccine types are employed,
including inactivated (whole virion, split virus and surface
antigen), live attenuated and virosome. The majority of projects
target specific strains of influenza virus (H2N2, wild type H5N1,
H5N1, H5N3, H7N1, H7N7, HIN2)"8 (Table 3).

Table 3. Current development in avian influenza vaccine (2006
to 2007)

Vaccine type and formulation Dose and year

Split H5N1, no adjuvant 2x 90 pg 2006)"”

Split H5N1, with alum " 2x 3045 pg 2006)™

79-80

®Whole virus HSN1 (egg grown), with alum 2 x 10-15 pg 2006)

1x 6 pg (2007)
Subunit H5N3, with MF59 2x7.5 pg* Qoo™

°Subunit H5N1, with MF59 2x 7.5 ug (2007)%

Vero cell whole virus HSN1 (wild type),
no adjuvant

2x 7.5 pg* (2007)%

Split H5N1 vaccine, with novel adjwant 2x 1.9%-3.75 ug (2007)%

3 jcensed in the USA; PLicensed in the Europe; *Not evaluated.
Note: Food and Drug Administration of China issued license for a vaccine
against H5N1, April, 2008.

Researchers believe that universal influenza vaccine is possible,
using an M-2 peptide conjugate protein8®- Recently A Novel
Intranasal Virus-Like Particle (VLP) Vaccine have prepared bearing
the surface glycoproteins HA and NA of the 1918 influenza A
virus by infecting Sf9 cells with a quadruple recombinant
baculovirus that expresses the four influenza proteins (HA, NA,
M1 and M2)87 . Vaccines are primarily geared towards ducks and
chickens to save economic lose, though, it may cause host
immunopressure resulting generation of antigenic diversity or
more pathogenic variants®. Experimental result shows that when
HA protein comes under selective immunopressure, it mutates to
evade the host’s immune system8°.

Vaccination vary broadly in regard to several local factors (e.g.,
type of production, local pattern of disease, costs and potential
losses) but vaccination should also be applied in the framework
of poultry disease eradication program at national or regional
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levels under the official supervision of public veterinary
services®. Recent data of N1 sequences in the NCBI database
shows that N1 from H5N1 is distantly related to the HIN1 from
1918 and its descendants. N2 of different strains also feature the
same type of relatedness!3. So, new vaccine targeting both the
N1 and N2 (combination vaccine) is however speculative to
provide with partial protection because of cross-immunity. This
might be enough to prevent death with a rapid pace.

Factory Farming and Environmental Degradation Boosting
Pandemic Threat

Wild birds are the main reservoir of avian influenza virus!®. They
have been blamed for the spread of present influenza threat. In
Canada, Quebec outlawed the outdoor raising of poultry (12t
November 2005)L. If wild birds had been spreading the disease
across continents there would have been trails of dead birds
following migration routes, which is not the case. Certain countries
on flight paths of birds from Asia remain flu-free, whilst their
neighbours suffer repeated infections®2. Another interesting thing,
in a low-density and dispersed population such as, flocks of wild
birds a virus can only survive as a low pathogenic agent because
if a virus mutates into a highly pathogenic form in these
circumstances, it quickly dies out as it kills all available hosts®3,

The necessity for efficiency to produce the animal protein the
agribusiness has been especially moved to poultry sector, where
it is now a reality, as many as 10 million birds are raised within a
few square kilometers®*-9 In a factory farm situation, perfect
conditions exist for a virus to mutate from a low pathogenic to a
high pathogenic form. Thousands of hosts (chickens) with near
identical genetic makeup, all the same age and size, crowded in
close conditions allow a virus to Kill its host and move onto the
next victim with great speed and ease%. The poultry industry
should change and humanity must move toward raising poultry
in smaller scale, under less stressful, less crowded and more
hygienic conditions with outdoor access. Some useful practice
can be introduced rearing animals (e.g., straw bedding is linked to
decrease risk of infection with the influenza virus®?).

Nutrition, sanitation and medication have improved in the last
century but we have disrupted planetary ecological processes.
Human activities like deforestation destroy birds natural habitat
thus they are getting contract with our domesticated animals and
giving the virus to widen its host range. Some of our strange
farming strategies like fish-chicken integrated farm (where
economic benefit is questionable®®) prompts pandemic risk. Direct
contamination of chicken excreta in fish rearing water bodies®
introduces a huge dose of pathogenic agent to a new environment
(an infected chicken can contain enough virus to infect 1 million
of individuals'9). Pathogens that enter the food chain of farm
animal have good potency to flourish largely because of stress-
related factors (overcrowding, competition, same age etc.19%). This
sort of desperate farming trend should be stopped under proper
law and legislations.

Conclusion

Rapid spread rate in a dense population occurs in breeding ground
of infectious diseases. The more the infectious agent circulates
in human host, the more they get adapted with that. Most of the
people in developing countries suffer from malnutrition.
Respiratory diseases have good link with malnutrition. The
condition is worse in sub-Saharan countries particularly in
militaries. These people are veritably vulnerable to avian influenza.
On the other hand, poultry is the fastest growing segment of
global agriculture. Being in this dilemma, the Governments of
over populated developing countries mainly in Asia and Africa
should put in place an effective strategy for the prevention and
control of bird flu in collaboration of FAO, WHO and other
International Agencies to prevent the looming catastrophic
potential of bird flu with great agency and implementation surety.
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