BJM Vol. 36 No. 1

Answer to Medical Quiiz -1

Answers:

- 1. Leonine facies.
- 2. Low voltage ECG.
- 3. Two-dimensional echocardiography left parasternal short-axis (C) and apical 4-chmber (D) views show significant left ventricular hypertrophy, granular appearance of myocardium and mild pericardial effusion. Image 1E represents bull's eye mapping of speckle-tracking echocardiography showing cherry-on-top appearance or apical sparing pattern.
- 4. Amyloidosis with cardiac involvement.
- 5. Apple-green birefringence under polarizing microscopy with Congo red staining.

Overview of amyloidosis with cardiac involvement

Amyloidosis is a heterogenous group of disorders characterized by deposition of abnormal amyloid proteins in the body. Amyloid deposits can build up in the heart, brain, kidneys, spleen and other parts of the body. A person may have amyloidosis in one or more organ. Mainly two types of amyloidosis affect the heart: AL amyloidosis and ATTR amyloidosis.² AL amyloidosis is closely related to plasma cell dyscrasia and is characterized by deposition of either kappa or lambda light chains in tissues.² On the other hand, ATTR amyloidosis occurs when the liver-derived protein transthyretin (TTR) misfolds and builds up in the organs and tissues.2 These 2 types of cardiac amyloidosis produce similar findings in echocardiography, i.e., biventricular hypertrophy, biatrial enlargement, granular myocardium, systolic and diastolic dysfunction, and "cherry-on-top" appearance in bull's-eye mapping of strain

echocardiography.³ In fact, cherry-on-top pattern has 93% sensitivity and 82% specificity for cardiac amyloidosis.⁴ Significantly altered kappa-lambda light chain ratio in serum and monoclonal band in urine or serum in immunofixation electrophoresis are needed for the diagnosis of AL amyloidosis.³ For ATTR amyloidosis, preferential grade 2 or grade 3 radiotracer uptake by the myocardium in 99mTc-pyrophosphate scanning is suggestive.⁵ The diagnosis of amyloidosis is confirmed by histopathological examination of representative tissue showing apple-green birefringence under polarizing microscopy with Congo red staining.¹

References:

- Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016 Jun 25;387(10038):2641-2654. doi: 10.1016/S0140-6736(15)01274-X.
- Salzillo C, Franco R, Ronchi A, et al. Cardiac Amyloidosis: State-of-the-Art Review in Molecular Pathology. Curr Issues Mol Biol. 2024 Oct 16;46(10):11519-11536. doi: 10.3390/cimb46100684.
- Garcia-Pavia P, Rapezzi C, Adler Y, et al. Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2021 Apr 21;42(16):1554-1568. doi: 10.1093/eurheartj/ ehab072.
- 4. Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol. 2016 Sep 20;68(12):1323-41. doi: 10.1016/j.jacc.2016.06.053.
- Dorbala S, Cuddy S, Falk RH. How to Image Cardiac Amyloidosis: A Practical Approach. JACC Cardiovasc Imaging. 2020 Jun;13(6):1368-1383. doi: 10.1016/ j.jcmg.2019.07.015.

Answer to Medical Quiiz -2

Answers:

- A. MRI of Cervical spine magnetic resonance imaging. (A1-B2) of sagittal slices demonstrate demyelinating lesions in the cervical spinal cord <2 segments). (A1, B1) T2-weighted images. (A2, B2) T1-weighted and postcontrast images.
- B. Primary progressive Multiple sclerosis
- C. I.V methylprednisolone followed by oral prednisolone
- D. Ocrelizumab and Ublituximab-xiiy

Overview:

Multiple sclerosis (MS) causes inflammatory demyelination and neurodegeneration in the brain and spinal cord. ^{1,2} MS is a multiphasic, chronic, relapsing demyelinating disease characterized by acute or subacute neurologic impairments. This condition primarily affects young to middle-aged females. Approximately 80% of MS patients acquire spinal cord lesions ³, which are more frequently symptomatic than brain lesions and can cause severe impairment such as ambulation, coordination, bladder and bowel function.

Spinal MS is frequently accompanied with concurrent brain lesions; nevertheless, up to 20% of patients with spinal lesions lack intracranial plaques. In contrast to the brain, both white and gray matter can be impacted in the spine. There is no substantial link between the size of the plaques and the level of clinical impairment. ³Spinal cord atrophy is mainly important to progressive forms of MS (primary and secondary progressive), when it is closely associated with physical disability. ⁴

The normal MRI involvement pattern is less than two cord segments, peripheral and ovoid appearance, and paracentral placement.⁵ MS is distinguished by the development of numerous demyelinating lesions in the brain and spinal cord that progress in time and space.⁶Typical features for MS in Spinal cord in Box:1.^{1,7}

Ocrelizumab is a humanised anti-CD20 monoclonal antibody used to treat multiple sclerosis (MS). The Food and Drug Administration (FDA) approved it in March 2017 for use in adults with RRMS and PPMS. Ocrelizumab is the sole disease-modifying treatment (DMT) approved for PPMS. ⁸ The FDA authorized Ublituximab-xiiy (Briumvi) in 2022. It is used to treat the relapsing-remitting and active secondary-progressive forms of MS. Ublituximab's method of

Box:1 Typical radiological features for MS in the spinal cord

- 1) There are multiple lesions in the spinal cord.
- Typical spinal cord lesions in MS are relatively small and peripherally located.
- 3) They are most often found in the cervical cord and are usually less than 2 vertebral segments in length
- In the cord there are some well-defined lesions, but also some ill-defined foggy lesions.
- 5) The transverse image shows the dorsal location and the typical triangular shape.
- 6) Continue with the contrast-enhanced image
- 7) Proton density weighted image (PDWI) is crucial for studying the spinal cord. On PDW-images the spinal cord has a uniformly low signal intensity (like CSF), which gives the MS lesions a good contrast against the surrounding CSF and normal cord tissue.

action involves the reduction of B cells by antibody-dependent cellular cytotoxicity, as B cells play an important part in the pathogenesis of MS. Ublituximab is the first anti-CD20 medication provided twice a year as one-hour infusions after the initial doses.⁹

References:

- R ahman A. (2022). Neuroimaging in Clinical Practice 2nd ed. Daber Publishers, Bangladesh
- G.J. Nijeholt, E. Bergers, W. Kamphorst, et al.Postmortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype; Brain,2001; 124, pp. 154-166 https://doi.org/10.1093/brain/124.1.154. PMid:11133795
- J.C. Bot, F. Barkhof, C.H. Polman, et al. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination; Neurology, 2004; 62, pp. 226-233. https://doi.org/10.1212/WNL.62.2.226. PMid:14745058
- Cohan S, Chen C, Baraban E, Stuchiner T, Grote L. MRI utility in the detection of disease activity in clinically stable patients with multiple sclerosis: a retrospective analysis of a community based cohort. BMC Neurol. 2016 Sep 22. 16 (1):184. https://doi.org/10.1186/ s12883-016-0699-8. PMid:27658385 PMCid:PMC 5034445

BJM Vol. 36 No. 1

 Kim G, Khalid F, Oommen VV, Tauhid S, Chu R, Horsfield MA, et al. T1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis. BMC Neurol. 2015 Jul 31. 15:124. https://doi.org/10.1186/s12883-015-0387-0. PMid:26227960 PMCid:PMC4521382

- Lukas C, Knol DL, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, et al. Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015 Apr. 86 (4):410-8. https://doi.org/10.1136/jnnp-2014-308021 PMid:24973341
- Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli
 O, De Stefano N, Geurts JJG, Paul F, Reich DS, Toosy

- AT, Traboulsee A, Wattjes MP, Yousry TA, Gass A, Lubetzki C, Weinshenker BG, Rocca MA. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019 Jul 1;142(7):1858-1875. https://doi.org/10.1093/brain/awz144. PMid:31209474 PMCid:PMC6598631
- Lin M, Zhang J, Zhang Y, Luo J, Shi S. Ocrelizumab for multiple sclerosis. Cochrane Database Syst Rev. 2022 May 18;5(5):CD013247. https://doi.org/10.1002/ 14651858.CD013247.pub2. PMid:35583174 PMCid: PMC9115862
- Lee A. Ublituximab: First Approval. Drugs. 2023 Apr;83(5):455-459. https://doi.org/10.1007/s40265-023-01854-z. PMid:36920653.