https://www.banglajol.info/index.php/BJMM/index

Bangladesh Journal of Medical Microbiology

July 2024, Volume 18, Number 2, Page 109-113 ISSN (Print) 2070-1810 ISSN (Online) 2072-3105

Original Article Open Access

Phenotypic and Genotypic Identification of *Acinetobacter baumannii* with their Antibiotic Sensitivity Pattern Isolated from Different Specimens at a Tertiary Care Hospital in Dhaka City of Bangladesh

Rizwana Sharmin¹, SM Shamsuzzaman², Md Faruk Hossain³, Muhammed Imran Uddin⁴, Farmin Sultana⁵, Sanzida Rahman⁶

¹Virologist, Institute of Public Health, Dhaka, Bangladesh; ²Former Head & Professor of Microbiology, Dhaka Medical College, Dhaka, Bangladesh; ³Associate Professor and Head, Department of Psychiatry, Enam Medical College, Savar, Dhaka, Bangladesh; ⁴Bacteriologist, Institute of Public Health, Dhaka, Bangladesh; ⁵Clinical Pathologist, Kurmitola General Hospital, Dhaka Cantonment, Dhaka, Bangladesh; ⁶Junior Food Chemist, Institute of Public Health Nutrition, Dhaka, Bangladesh

Abstract

Background: Acinetobacter baumannii is an important opportunistic pathogen that causes serious nosocomial infections. Its ability to adhere to surfaces, forming biofilms, acquiring genetic materials from unrelated genera is making it a dangerous organism causing high morbidity and mortality. Objective: The goal of this study was to isolate and identify Acinetobacter baumannii from various samples and to identify the pattern of antibiotic resistance. Methodology: This cross-sectional study was conducted in the Department of Microbiology of Dhaka Medical College, Dhaka, Bangladesh over the course of January 2022 to December 2022. Collected samples were processed and inoculated in media, incubated aerobically at 37°C for 24 hours. Phenotypic identification of Acinetobacter species was done by observing colony morphology on media and growth at 42°C on agar was also done. Genotypic identification of Acinetobacter baumannii was done by blaOXA-51-like gene by PCR. The antimicrobial susceptibility test of all Acinetobacter baumannii isolates was determined by modified Kirby-Bauer disc diffusion technique using Mueller-Hinton agar plates. Results: Out of 275 culture positive clinical samples 14.2% isolates were Acinetobacter baumannii. Among the 39 Acinetobacter baumannii isolates 53.9% were multidrug-resistant, 33.3% were extended drug-resistant and 12.8% were pan drug-resistant. The highest (89.7%) number of Acinetobacter baumannii showed resistance to amoxiclay, ceftazidime and ciprofloxacin and least to colistin (30.8%). Conclusion: In conclusion Acinetobacter baumannii has been isolated frequently form the clinical specimens, and mostly are multi-drug resistant.

Keywords: Acinetobacter baumannii; antibiotic-resistant (ABR); multidrug resistance (MDR)

Bangladesh Journal of Medical Microbiology, July 2024;18 (2):109-113

Introduction

Acinetobacter species are non-fermentative, non-fastidious, catalase positive, oxidase negative, non-motile and strictly aerobic gram-negative coccobacilli¹. Among the Acinetobacter species, Acinetobacter baumannii is the most important member associated with hospital-acquired infections

Correspondence: Dr. Rizwana Sharmin, Virologist, Institute of Public Health (IPH), Mohakhali, Dhaka-1212, Bangladesh; Email: rsharmin43@gmail.com; Cell No.: +8801912-531727; ORCID: https://orcid.org/0009-0001-8672-9390
©Authors 2024. CC-BY-NC DOI: https://doi.org/10.3329/bjmm.v18i2.78517

worldwide². Acinetobacter baumannii causes serious infections associated with high morbidity and mortality³. Infection with Acinetobacter baumannii can lead to death if left untreated or treated ineffectively particularly if the strain antibiotic-resistant⁴. **Patients** with immune deficiencies, the elderly, premature newborns, who have undergone major surgery or trauma or who have previously been admitted to contaminated critical care units are at risk⁵.

The global rise of multidrug-resistant (MDR) *Acinetobacter baumannii* has been attributed to the

109

indiscriminate use of antibiotics over the past few decades⁶. According to the Antimicrobial Resistance Surveillance in Bangladesh (2016-2020), *Acinetobacter* species displayed less than 50.0% sensitivity to all of the used antibiotics⁷. Currently there are fewer antibiotics available for the treatment of *Acinetobacter baumannii* infections due to its numerous resistance mechanisms and ability to acquire resistance genes from other gram-negative bacteria². The goal of this study was to isolate and identify *Acinetobacter baumannii* from various samples and to identify the pattern of antibiotic resistance.

Methodology

Study Settings and Population: This cross-sectional study was conducted at the Department of Microbiology, Dhaka Medical College, Dhaka from January 2022 to December 2022 for a period of one year. The study population was all the patients admitted to different wards, burn unit, ICU unit or visiting OPD of Dhaka Medical College Hospital (DMCH).

Sample Collection Procedure: After obtaining written consent from the patient regardless of age, gender, intake of antibiotics, clinical samples like wound swab and pus, urine, sputum, blood and endotracheal aspirates were collected from patients admitted to different wards, burn unit, ICU unit or visiting OPD of DMCH for culture and sensitivity testing. Patient who did not provide consent were excluded from this study.

Isolation and Identification of Acinetobacter baumannii: Collected samples were processed and the inoculated in blood agar, MacConkey agar media, incubated aerobic at 37°C for 24 hours. Phenotypic identification of Acinetobacter species was done by observing colony morphology on blood agar, MacConkey agar and growth at 42°C on agar was also done⁸. Genotypic identification of Acinetobacter baumannii was done by blaOXA-51 like gene by PCR9. Smears were prepared from culture plates and stained with Gram stain according to standard procedures. It is then examined under a microscope to look for the presence of Gram-positive or Gram-negative bacteria. Among the isolated gram negative cocco-bacilli, Acinetobacter baumannii was identify by oxidase test, catalase tests, TSI agar, urease production, indole test, motility and citrate utilization test⁸.

Antimicrobial Susceptibility Testing: The antimicrobial susceptibility test of all *Acinetobacter*

baumannii isolates was determined by modified technique Kirby-Bauer disc diffusion Mueller-Hinton agar plates¹⁰. The inhibition zones were interpreted using the Clinical Laboratory Standard Institute's guidelines¹¹. Criteria of the United States Food and Drug Administration¹² was used for the interpretation of zone of inhibition of tigecycline as such guideline was absent in CLSI guideline. Isolates were categorized as susceptible or resistant to an antibiotic and isolates exhibiting intermediate resistance were categorized as resistant. The antibiotics used were amikacin (30 µg), amoxiclav (30 μg) (amoxicillin 20 μg and clavulanic acid 10 μg), aztreonam (30 µg), cefoxitin (30 µg), ciprofloxacin (5 μg), ceftazidime (30 μg), ceftriaxone (30 μg), colistin (10 μg), gentamicin (10 μg), fosfomycin (200 μg), Piperacillin-tazobactam (100 μg/10 μg), imipenem (10 μg), tigecycline (15 μg).

Amplification and Detection of blaOXA-51 Gene: Conventional polymerase chain reaction (PCR) was done for confirmation of Acinetobacter baumanni. Among 50 Acinetobacter species. About 39 were confirmed Acinetobacter baumannii identification of the blaOXA-51-like gene. The PCR was performed in culture isolates using specific primers for detection of blaOXA-51-like gene (Applied biosystems, Thermofisher scientific, USA). DNA was extracted from bacterial colonies by boiling method (Incublock, Denville scientific inc. USA). PCR was performed in a final reaction in a PCR tube (applied biosystems, Thermofisher scientific, USA). amplified products were subjected to electrophoresis in 1.5% agarose gel.

Statistical Analysis: Statistical analysis was done with SPSS, version 22.0 (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.). Continuous data were summarized as the mean, standard deviation, median, minimum, maximum and number of observations. Categorical or discrete data were summarized in terms of frequency and percentage. In case of missing values, the denominator was stated. Chi-square test was used to compare categorical variables. Every effort was made to collect missing data. A two-sided P value of less than 0.05 was considered statistically significant.

Ethical Approval: All procedures of the present study were carried out in accordance with the principles for human investigations (i.e., Helsinki Declaration) and also with the ethical guidelines of the Institutional research ethics. Formal ethical approval was granted by the Research Review Committee (RRC) of Dhaka

Medical College, Dhaka, Bangladesh (Reference number: ERC-DMC/ECC/2022/92). Participants in the study were informed about the procedure and purpose of the study and confidentiality of information was maintained. All participants consented willingly to participate in the study during the data collection period. All data were collected anonymously and analyzed using the coding system.

Results

Among 400 samples 275(68.7%) isolates were culture positive and of the positive 50 were *Acinetobacter* species (Table 1 and Table 2).

Table 1: Culture Positive Among Various Clinical Samples (n=400).

Specimens	Cul	Total	
	Positive	Negative	
Wound swab and pus	101(63.1%)	59(36.9%)	160(100.0%)
Urine	81(73.6%)	29(26.4%)	110(100.0%)
Endotracheal aspirate	34(85.0%)	6(15.0%)	40(100.0%)
Blood	39(70.9%)	16(29.1%)	55(100.0%)
Sputum	20(57.1%)	15(42.9%)	35(100.0%)
Total	275(68.7%)	125(31.3%)	400(100.0%)

Among them 39(78.0%) were Acinetobacter baumannii which was confirmed by the presence of blaOXA-51 like gene using the PCR and 11(22.0%) were other species of Acinetobacter. The prevalence of Acinetobacter baumannii was 14.2% among the isolates. Majority (92.9%) of Acinetobacter baumannii positive samples were taken from endotracheal aspirate followed by 78.6% from wound swab & pus, 75.0% from blood samples, 66.7% from sputum and 50% from urine (Table 2).

Table 2: Distribution of *Acinetobacter* species isolated from various samples after genotypic identification by PCR using blaOXA-51-like gene (n=50)

Samples		Acinetobacter	Other
1	Acinetobacter	baumannii	Acinetobacter
	species		species
Endotracheal aspirate	: 14	13 (92.9%)	1 (7.1%)
Wound swab and pus	14	11 (78.6%)	3 (21.4%)
Blood	12	9 (75.0%)	3 (25.0%)
Sputum	6	4 (66.7%)	2 (33.3%)
Urine	4	2 (50.0%)	2 (50.0%)
Total	50	39 (78.0%)	11 (22.0%)

Among the ETA samples 11 (28.2%) were collected from ICU (Table 3).

The antibiotic resistance patterns against amoxiclav (AMC), amikacin (AK), aztreonam (AZ), ceftriaxone

(CTR), ceftazidime (CAZ), cefoxitin (CX), ciprofloxacin (CIP), colistin (CL), gentamicin (CN), imipenem (IMP), piperacillin-tazobactam (PIT), tigecycline (TGC), fosfomycin (FOS) were recorded (Table 4).

Table 3: Distribution of *Acinetobacter baumannii* isolates from different samples from different sources (n=39)

0 1	* ****			0.00
Samples	ICU	Ward	Burn	OPD
WS & Pus	1 (2.6%)	7 (17.9%)	2 (5.1%)	1 (2.6%)
ETA	11 (28.2%)	2 (5.1%)	0 (0.0%)	0(0.0%)
Blood	3 (7.7%)	5 (12.8%)	1 (2.6%)	0(0.0%)
Sputum	0 (0.00%)	3 (7.7%)	0(0.0%)	1 (2.6%)
Urine	0 (0.00%)	1 (2.6%)	1 (2.6%)	0(0.0%)
Total	15 (38.5%)	18 (46.1%)	4 (10.3%)	2 (5.2%)

Table 4: Antibiotic resistance pattern of isolated *Acinetobacter baumannii* (n = 39) by disc diffusion method

Antimicrobial drugs	Resistance
Amoxiclav	35 (89.7%)
Piperacillin-Tazobactum	31 (79.5%)
Cefoxitin	34 (87.2%)
Ceftazidime	35 (89.7%)
Ceftriaxone	33 (84.6%)
Aztreonam	27 (69.2%)
Ciprofloxacin	35 (89.7%)
Imipenem	29 (74.3%)
*Tigecycline	17 (43.6%)
Amikacin	30 (76.9%)
Gentamicin	28 (71.8%)
*Fosfomycin	31 (79.5%)
*Colistin	12 (30.8%)

Colistin = Antimicrobial susceptibility test for colistin was determined by agar dilution method.; Fosfomycin = Antimicrobial susceptibility test for fosfomycin was determined by agar dilution method.; Tigecycline = Antimicrobial susceptibility test for tigecycline was determined by agar dilution method.

Acinetobacter baumannii isolates were more resistant to AMC, CTR, CAZ, CIP, FOX, FOS, IPM and PIT, and more sensitive to TGC and CL. Fifty-three-point nine percent of Acinetobacter baumanni were multidrug-resistant (MDR), 33.3% extensively drug-resistant (XDR) and 12.8% pan drug-resistant (PDR). All isolates (100.0%) demonstrated resistance to a minimum of three classes of antibiotics and thus met the MDR criteria (Table 5).

Table 5: Types of antibiotic resistance patterns among the isolated *Acinetobacter baumannii* (n = 39)

Types of resistance	Frequency	Percentage
MDR	21	53.9%
XDR	13	33.3%
PDR	5	12.8%
Total	39	100.0%

Discussion

Acinetobacter baumannii is one of the "ESKAPE" organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter) recognized by the Infectious Diseases Society of America as an alarming threat to global public health because of their antimicrobial resistance¹³⁻¹⁴. The World Health Organization (WHO) and Center for Disease Control and Prevention (CDC) classified Acinetobacter baumannii infection as an urgent threat as it causes over 8,500 hospitalized cases and an estimated 700 deaths each year¹⁵.

In the study out of 275 culture-positive samples 39 were confirmed as Acinetobacter baumannii through the presence of blaOXA-51-like gene (intrinsic oxacillinase), giving the prevalence of 14.2%. A study in Pakistan showed prevalence of Acinetobacter baumannii 15.2%¹⁶ & another study conducted in Nepal reported 12.7%¹⁷. In this study 92.9% of isolates were obtained from endotracheal aspirates of which 28.2% were from ICU patients. According to Antimicrobial Resistance Surveillance in Bangladesh (2016-2020) Acinetobacter was the second most common organism identified in the endotracheal aspirate (26%)⁷. The reason behind the higher isolation rate of Acinetobacter baumannii might be due to collection of majorities of the samples from ICU patients.

In this study, the resistance of Acinetobacter baumannii isolates was found as follows: 89.7% were resistant to amoxiclay, ceftazidime and ciprofloxacin, 87.2% to cefoxitin, 84.6% to ceftriaxone, 79.5% to fosfomycin and pipercillin-tazobactum, 74.3% to imipenem, 43.6% to tigecycline and 30.8% to colistin. A study done in critical care center (CCC) of Combined Military Hospital (CMH) by Mamun¹⁸ reported the following resistance rates: Ceftazidime (91.3%), ceftriaxone (91.3%), amikacin (52.2%), gentamicin (33.3%), and ciprofloxacin (65.2%). According to Uddin et al19 Acinetobacter baumannii was found resistant to imipenem (85.7%), ceftriaxone, gentamicin, amoxiclav, amikacin (92.8%), ceftazidime and ciprofloxacin (96.4%), tigecycline (14.2%) and to colistin (7.1%). Highest resistance (84.6 to 89.7) was found to extended spectrum of cephalosporins in this study. We also observed increased resistance to colistin, that is 30.8%. This study demonstrated that 53.9% of Acinetobacter baumannii were multidrugresistant, 33.3 % extensively drug-resistant and 12.8% pan drug-resistant.

Conclusion

Acinetobacter baumannii infection poses a major public health risk due to its rising prevalence, increasing rates of antibiotic resistance and lack of any effective treatment options. In the present study 14.2% of the culture positive samples were Acinetobacter baumannii and they were resistant to most of the commonly used antibiotics. Increasing resistance to the last-resort antibiotics like colistin (30.8%) was also observed in this study which is alarming.

Acknowledgements

Dr Mahbuba Chowdhury, Associate Professor, Department of Microbiology, Dhaka Medical College, Dhaka.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Financial Disclosure

This work was not funded by any agency.

Authors' contributions

The authors confirm their contribution to the paper as follows: study conception and design: Sharmin R, Shamsuzzaman SM. Data collection: Sharmin R. Analysis and interpretation of results: Sharmin R, Shamsuzzaman SM. Draft manuscript preparation: Hossain MF,Uddin MI, Sultana F, Rahman S. All authors reviewed the results and approved the final version of the manuscript.

Data Availability

Any inquiries regarding supporting data availability of this study should be directed to the corresponding author and are available from the corresponding author on reasonable request.

Ethics Approval and Consent to Participate

Ethical approval for the study was obtained from the Institutional Review Board. As this was a prospective study the written informed consent was obtained from all study participants. All methods were performed in accordance with the relevant guidelines and regulations.

Copyright: © Sharmin et al. 2024. Published by Bangladesh Journal of Medical Microbiology. This is an open access article and is licensed under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0). This license permits others to distribute, remix, adapt and reproduce or changes in any medium or format as long as it will give appropriate credit to the original author(s) with the proper citation of the original work as well as the source and this is used for noncommercial purposes only. To view a copy of this license, please See: https://creativecommons.org/licenses/by-nc/4.0/

How to cite this article: Sharmin R, Shamsuzzaman SM, Hossain MF, Uddin MI, Sultana F, Rahman S. Phenotypic and Genotypic Identification of Acinetobacter baumannii with their Antibiotic Sensitivity Pattern Isolated from Different Specimens at a Tertiary Care Hospital in Dhaka City of Bangladesh. Bangladesh J Med Microbiol, 2024;18(2):109-113

ORCII

Rizwana Sharmin: https://orcid.org/0009-0001-8672-9390 SM Shamsuzzaman: https://orcid.org/0000-0003-2886-8840 Md Faruk Hossain: https://orchid.org/0009-0002-2517-6259 Muhammed Imran Uddin: https://orcid.org/0009-0006-1177-9701 Farmin Sultana: https://orcid.org/0009-0007-2214-2711 Sanzida Rahman: https://orchid.org/0009-0000-0582-8948 Article Info

Received: 7 March 2024 Accepted: 2 April 2024 Published: 1 July 2024

References

- 1. Bergogne- Berezin E. Acinetobacter spp, saprophytic organism of increasing pathogenic importance. Zentralblatt für Bakteriologie, 1994;281(4): 389 -405.
- 2. Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases. 2014; 2(12): 787-814.
- 3. Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerging microbes & infections, 2018; 7(1): 1-5.
- 4. Sy CL, Chen P, Cheng C, Huang L, Wang C et al.Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. Journal of Microbiology, Immunology and Infection. 2022; 55(3): 359-386.
- 5. Townsend J, Park AN, Gander R, Orr K, Arocha D, Zhang S, Greenberg DE. Acinetobacter infections and outcomes at an academic medical center: a disease of long-term care. Open Forum Infect Dis. 2015 12;2(1): ofv023.
- 6. El-Shazly S, Dashti A, Vali L, Bolaris M, Ibrahim AS. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. International Journal of Infectious Diseases, 2015; 41: 42-49.
- 7. Habib ZH, Golam Rasul S, Alam MA, Bably NN, Khan IA, Rizvi SMS, et al. The findings of Antimicrobial Resistance Surveillance in Bangladesh (2016-2020). Posted 07 June, 2021, PREPRINT available at medRxiv.
- 8. Cheesbrough M. Microscopic technique used in microbiology, culturing bacterial pathogens, biochemical tests to identify bacteria. In: Cheesbrough M, ed. District Laboratory Practice in Tropical countries, Part-2,2nd edn: Cambridge university Press, 2009;35-70.
 9. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM, Multiplex PCR for gene encoding prevalent OXA carbapenemases in Acinetobacter spp.

- International journal of antimicrobial agents, 2006; 27(4): 351.
- 10. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 1966; 45(4): 493-496.
- 11. Clinical and Laboratory Standard Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 32th ed. CLSI supplement M100. Wayne, PA, USA: CLSI; 2022.
- 12. FDA. U.S. Food and Drug Administration. U.S. Department of health and Human Services, 2019. Available at https://www.fda.gov 13. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol, 2011; 2: 65
- 14. Geisinger E, Isberg RR. Interplay betwwen antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis 2017;215 (suppl 1): S9-17
- 15. Alamneh YA, Antonic V, Garry B, Pucci M, Abu-Taleb R, Shearer JP, et al. Minocycline and the SPR741 adjuvant are an efficacious antibacterial combination for Acinetobacter baumannii infections. Antibiotics (Basel), 2022; 11: 1251.
- 16. Zahra N, Zeshan B, Qadri M M A, Ishaq M, Afzal M, et al. Phenotypic and Genotypic Evaluation of Antibiotic Resistance of Acinetobacter baumannii Bacteria Isolated from Surgical Intensive Care Unit Patients in Pakistan. Jundishapur J Microbiol, 2021; 14(4):e113008
- 17. Raut S, Rijal KR, Khatiwada S, Karna S, Khanal R, Adhikari J, Adhikari B. Trend and Characteristics of Acinetobacter baumannii Infections in Patients Attending Universal College of Medical Sciences, Bhairahawa, Western Nepal: A Longitudinal Study of 2018. Infect Drug Resist, 2020;13:1631-1641
- 18. Mamun K. Z.Changing Trend of Antimicrobial Resistance in Acinetobacter baumannii. Journal of Bangladesh College of Physicians & Surgoens, 2020;38(2):56-58
- 19. Uddin BM, Akhand F, Bari S, Suchi SE, Saha R, Ahmed MU. Prevalence and Resistance Profile of Acinetobacter baumannii Isolated from Clinical Specimens at a Tertiary Care Hospital in Bangladesh. Journal of National Institute of Neurosciences Bangladesh. 2021;7(2):177-80.