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ABSTRACT: We have developed a family of quantitative descriptors in order to provide non-
invasive, reliable means of distinguishing benign from malignant breast lesions. These include 
acoustic descriptors (“echogenicity,” “heterogeneity,” “shadowing”) and morphometric descriptors 
(“area,” “aspect ratio,” “border irregularity,” “margin definition”). These quantitative descriptors are 
designed to be independent of instrument properties and physician expertise. Our analysis included 
manual tracing of lesion boundaries and adjacent areas on grayscale images generated from RF data. 
To derive quantitative acoustic features, we computed spectral-parameter maps of radio-frequency 
(RF) echo signals (using a sliding-window Fourier analysis) of the lesion and adjacent areas. We 
quantified morphometric features by geometric and fractal analysis of traced lesion boundaries. 
Although no single parameter can reliably discriminate cancerous from non-cancerous breast lesions, 
multi-feature analysis provides excellent discrimination of cancerous and non-cancerous lesions. Our 
analysis of data acquired during routine ultrasonic examination of 130 biopsy-scheduled patients 
produced a receiver-operating characteristic (ROC) area under the curve (AUC) of 0.947±0.045. 
Lesion-margin definition, spiculation, and border irregularity were the most useful among the 
quantitative descriptors; some morphometric features (such as border irregularity) also were 
particularly effective in lesion classification. Our results are consistent with many of the Breast 
Imaging Reporting and Data System (BI-RADS) breast-lesion-classification criteria in use today.  

Keywords: Breast diseases, breast cancer, computer-aided diagnosis (CAD), fractal analysis, morphometric 
analysis, multi-feature analysis, receiver-operating characteristics (ROC), sonography, spectrum analysis, 
texture analysis, tissue characterization, tumor classification, ultrasonic imaging, ultrasound. 

1. BACKGROUND AND INTRODUCTION 

Breast cancer affects one of every eight women, it kills one of 29 women in the United States, and is the 
leading cause of death in women in developed countries [1,2]. An estimated 207,090 new cases of breast 
cancer, and 39,840 deaths, are expected among women in the US in 2010 [3]. Survival rates for 
advanced-stage breast cancers have improved significantly and early-stage breast cancers are now 
virtually curable [4]. Consequently, early detection can play a crucial role in a patient’s survival.  

Of the breast biopsies (annually around 1.7 million, according to National Cancer Institute estimate) 
performed in the US, 70–90% are benign [5]. A method that reliably identifies benign lesions (with 
virtually zero false negatives) would prevent many unneeded biopsies, which are expensive and, as in any 
surgical procedure, involve minor risks. Assuming the average cost of a biopsy procedure to be $2,500, 
even a 10% reduction in biopsies (170,000 biopsies) would result in a saving of almost a half billion 
dollars a year in the US. (In fact, the more common surgical biopsies cost $2,500–$5,000, whereas needle 
biopsies cost $750–$1,200.) Furthermore, unneeded biopsies impose needless risk of complications, incur 
additional health-care costs, and needlessly heighten patient anxiety (e.g., while awaiting pathology 
results).  

Unlike some other cancer types, most breast cancers are visible in B-mode ultrasound images. Advances 
in ultrasonic imaging technology allow detailed examination of breast-tumor characteristics. Although no 
single B-mode feature has been found to be a reliable identifier of malignancy, recent clinical studies 
have shown that a combination of selected B-mode features can be effective for breast cancer 
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identification. [5,7–9] The American College of Radiology (ACR) developed the Breast Imaging 
Reporting and Data System (BI-RADS) lexicon for features describing the ultrasound appearance of 
breast lesions to improve the accuracy of breast ultrasound diagnosis [10,11]. BI-RADS defines six 
different possible findings (Category 0 to 5). Category 0 indicates that assessment is incomplete, 
additional imaging evaluation necessary, whereas Category 1 lesions are virtually certainly 
benign while Category 5 lesions have features that are highly suggestive of malignancy, i.e., the 
likelihood of malignancy increases from virtually zero in Category 1 to virtually certain in Category 5.  
Several studies have reported encouraging results from automated quantitative analysis employing single 
[12−16] as well as multiple [17] features using data from modern ultrasonic scanners. This list is not 
exhaustive and many other groups reported results for automated methods of breast-cancer identification, 
although some studies ignored and did not compensate for the contribution from the ultrasound scanning 
system.  

We implemented a quantitative multi-feature-analysis procedure that uses the BI-RADS criteria currently 
employed subjectively by clinicians using acoustic as well as morphometric features. The acoustic features 
include measures of lesion echogenicity, heterogeneity, and central shadowing, based on spectrum analysis of 
RF echoes [18]. The morphometric features include area, location, aspect ratio, and boundary roughness of 
the lesions. We employed hybrid features that use combined acoustic and border information, e.g., margin 
definition. Here we provide a brief report of our findings. We previously reported preliminary results for this 
study in conference proceedings [19,20]. We also published a detailed report of our findings in a journal 
paper [21]. 

2. METHODS 

Diagnostically-useful lesion characteristics investigated in our study include features based on acoustic 
properties (acoustic features) as well as on their shapes or boundaries (morphometric features). The 
features found to be the most useful in the multi-feature studies are listed below in Table I. The following 
features are the most-important ones for distinguishing cancerous from non-cancerous lesions: internal 
texture (heterogeneous vs. homogeneous), central shadow (shadow vs. enhancement), shape (irregular vs. 
regular), aspect ratio (height divided by width) with respect to the duct axis (greater than unity vs. less 
than unity), border quality (irregular vs. regular), and margin definition (poorly defined vs. well defined). 

(a) (b)
 

Fig. 1: (a) Malignant lesion (in situ and invasive ductal carcinoma): the lesion has irregular multilobular shape, “tall” aspect 
ratio, heterogeneous internal texture, poorly defined margin, and a prominent posterior shadow. (b) Benign lesion 
(fibroadenoma): the lesion has the classical near-spherical shape, a smooth boundary, clearly-defined margin, homogeneous 
internal texture, and a posterior “anti-shadow” or enhancement. (Note the edge shadows due to refractive effects.) 
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Figure 1 presents ultrasound grayscale image examples of a benign lesion and a malignant lesion with 
many of the typical characteristics of each lesion type. The malignant lesion exhibits heterogeneous 
internal texture, a central shadow, a poorly defined margin, an irregular shape, and a “tall” aspect ratio; all 

these features are typical of malignant lesions. In contrast, the benign lesion exhibits a central posterior 
enhancement (sometimes referred to as “anti-shadow”), a homogeneous internal texture, a clearly defined 
margin, a smooth shape, and an aspect ratio of less than unity typical of benign lesions. However, both 
lesions are hypoechoic.  

Successful classification using these qualitative image characteristics is invariably dependent on clinician 
skills. Our research addresses the development of quantitative descriptors to provide operator-independent 
lesion identification. Quantitative descriptors will also increase reliability of lesion identification and may 
allow identification of smaller lesions. We first identified features that lend themselves to quantification; 
not all subjective features are reliably quantifiable. The procedure to quantify acoustic and morphometric 
features is described below.  

2.1 Data Acquisition 

The data for this IRB-approved study consisted of RF echo-signal data that were digitized from breast 
lesions before any non-linear processing such as compression or envelope detection occurred within the 
scanner. These data were acquired from 130 patients during routine ultrasonic examinations that occurred 
prior to a scheduled biopsy. Subsequent biopsies of examined lesions determined that104 patients had 
benign masses and 26 had malignant masses. These biopsy and RF data were acquired at the following 
three clinical sites: Thomas Jefferson University, the University of Cincinnati, and Yale University. These 
patients had undergone mammography prior to the ultrasound examinations and had mammographically 
visible lesions. The following exclusion criteria were applied: age less than 18 years (due to legal consent 
limitations), prior breast carcinoma, biopsy or mastectomy, breast implant, simple cyst, pregnancy, 
microcalcifications not associated with a mass on sonography, and male or transsexual gender. Masses 
were examined with the patient in the standard supine position by an experienced radiologist or 
sonographer using a Philips Ultrasound (Bothell, WA) UM-9 HDI scanner. An L10-5 (7.5 MHz) linear 
array transducer was employed at a default (constant) power level and a single transmit focal length 
selected by the operator. Standard ultrasonic breast-examination procedures were employed. Data were 
sampled at 20 MHz at an effective dynamic range of 14 bits. Time Gain Control (TGC) data were 
acquired for every scan, and RF data were corrected for TGC before processing.  

Table I:  Features of conventional B-mode images associated with malignant and  
benign lesions. A typical lesion may have only a subset of these identifying features. 

Malignant lesions Benign lesions 

Internal features Morphometric features Internal features Morphometric features 

Central shadowing Irregular shape/spiculation Edge 
shadowing/enhancement 

Spherical/ovoid shape 

Hypoechogenicity Poorly defined margin Hyperechogenicity Linear well-defined margin 

Heterogeneous texture Tall aspect ratio Homogeneous texture Thin capsule 

Calcifications Microlobulation  Gentle bi- or trilobulations 

 Architectural distortion  Orientation parallel to tissue 
plane 
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2.2 Analysis Procedures 

We manually demarcated a set of 
analysis regions on B-mode images 
generated from the RF data and 
analyzed each region to compute 
the quantitative features described 
below. The benign and malignant 
lesions of Fig. 1 are shown again in 
Fig. 2 with traces of the nine 
analysis regions superimposed. 
With respect to the tumor, these 
regions are: left-anterior, tumor-
anterior, right-anterior, left-lateral, 
tumor, right-lateral, left-posterior, 
tumor-posterior, and right-
posterior. As discussed below, we needed only the tumor trace for the majority of quantitative features. 
However, we needed the tumor-posterior region as well as the left and right-posterior regions for shadow 
measurements and all analysis regions except the anterior regions for computing relative absorption. Most 
lesions were scanned in multiple (but at least two orthogonal) scan planes, thereby providing redundant 
data for a given lesion. We averaged each quantitative feature value for multiple scans of a specific lesion 
to arrive at a single number. All processing software was written in MATLAB™ (The Mathworks, Inc., 
Natick, MA), except for the tumor-tracing program, which was written in Visual Basic™ (Microsoft 
Corporation, Redmond, WA). 

2.3 Acoustic Features 

We defined quantitative 
acoustic features in terms of 
calibrated spectrum analysis 
[18] parameters. Spectrum 
analysis involves several steps. 
First, a Hamming window is 
applied to RF data, a power 
spectrum is computed from the 
Fourier transform of the 
windowed data segment, and 
the resultant power spectrum is 
converted to dB. Next, system 
and diffraction effects† are 
subtracted from the computed 
spectrum to derive the desired 
tissue spectrum. Finally, the 

                                                           
† Measured spectra depend not only on tissue properties, but also on 1) the combined two-way transfer function of the transducer 
and the ultrasonic-system electronic modules, 2) the two-way range-dependent diffraction function (beam properties), and 3) 
acoustic attenuation. Corrections for the first two functions involve experimental data obtained at each transmit focal length. The 
electronic transfer function was estimated using a planar reflection method from RF data acquired from the front planar surface 
of an RTV silicone block in a water bath. The diffraction function was estimated using a reference phantom method from data 
obtained by scanning a rubber block containing a diffuse suspension of 10-µm diameter glass spheres. Then, breast tissue spectral 
parameters were estimated by subtracting the contribution from transfer function and diffraction. Finally, an empirical attenuation 
coefficient was used to correct for attenuation as described further below. The system effects are analyzed in detail in other 
theoretical papers [18,23,24]. 

(a) (b)
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Fig. 3: Illustration of the Spectrum Analysis procedure. Calibrated power 

spectrum of windowed (typically Hamming, of length L) RF data is 
evaluated. A linear regression line through the power spectrum is 
computed. In this example, M is the midband value (value of the 
regression line at center frequency f0) and I is the spectral intercept 
(value of the regression line extrapolated to f = 0). 

(a) (b)
 

Fig. 2: B-scan images of Fig. 1 with superimposed analysis-region traces.  
(a) Malignant lesion. (b) Benign lesion. 
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computed spectrum is analyzed with linear regression techniques applied over the bandwidth of the 
signal; the primary parameters of interest are the slope of the regression line (SLP, s), its value at 
midpoint of signal bandwidth (MBF, M) and its intercept at zero frequency (INT, I). Images of these 
parameters are created by progressively sliding the Hamming window over all RF data and repeating the 
above sequence. The spectrum analysis procedure is illustrated in Fig. 3. 

In the absence of attenuation in the intervening media, the linear regression line through the power 
spectrum can be written as, sfIfP +=)( , where I is spectral intercept, m is slope, and f is frequency. 
Thus, the midband fit, M = I + sf0, f0 being the center frequency. In the presence of attenuation in 
intervening tissue, the linear regression line through the power spectrum is dffPfP αα 2)()( −=  = I + (s – 

2αd)f, where α is the effective attenuation coefficient (dB/MHz-cm) and d is the depth of intervening 
tissue. Hence, spectral intercept Iα = I, midband fit Mα = I + (s – 2αd)f0, and slope sα = (s – 2αd). Thus, 
the presence of attenuation affects slope and midband fit, but not intercept. The necessary assumption is 

that attenuation (in dB) varies linearly with frequency. Although this assumption is only approximate, the 
conclusion about the invariance of intercept in the presence of tissue attenuation has proved to be accurate 
in our experience.  

In our work, the following definitions are employed to provide quantitative assays qualitative (B-mode) 
acoustic features: window length, W = 2.4 mm, spectral bandwidth, B = 4 MHz (5–9 MHz), and 
attenuation coefficient, α = 1 dB/MHz-cm.  

A) Echogenicity is defined as the mean value of spectral intercept, 
LIµ , within the lesion. Since spectral 

intercept is largely independent of frequency-dependent attenuation in the intervening media, no 
attenuation correction is necessary. Calculation of lesion echogenicity is illustrated in Fig. 4 using the 
example of invasive ductal carcinoma shown in Fig. 1a. Figure 4a shows the B-scan image; the 
corresponding image of spectral intercept (I) is shown in Fig. 4b. Figure 4c shows the intercept image 
within the traced lesion boundary and Fig. 4d shows the histogram of I within the traced lesion. The 
quantitative value of echogenicity is the mean value of INT within the lesion (–43.2 dB). The 
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Fig. 4: Echogenicity for data corresponding to Fig. 3(a). 
According to our definition, echogenicity is –43.2 dB. 

Fig. 5: Shadowing for data corresponding to Fig. 3(a). 
According to our definition, shadowing is –13.65 dB. 
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fibroadenoma in Fig. 1b has an echogenicity of –36.0 dB.Shadowing is defined as the difference 
(normalized by lesion thickness) between mean M values in comparable shadowed and unshadowed 
regions posterior to the lesion. (Difference between tumor and tumor-posterior is compared with the 
average of differences between left-lateral and left-posterior, and right-lateral and right-posterior.) This 
difference can be used to estimate the attenuation coefficient within the lesion, which we used in the 
tissue area that has no lesion to estimate the average attenuation coefficient and check whether these 
estimates are consistent with the assumed value. Calculation of central shadowing is illustrated in Fig. 5 
for the cancerous lesion in Fig. 1a, casting a noticeable central shadow. Figure 5a shows the B-scan 
image; the corresponding image of M is shown in Fig. 5b. Figure 5c shows the MBF image inside the 
tumor as well as in the posterior regions. Mean values of MBF in the lateral posterior regions are –4.0 and 
–10.1 dB (their mean being –7.05 dB). The mean of MBF posterior to the lesion is –20.7 dB, which is 
13.65 dB lower. Thus, this tumor casts a 13.65-dB central shadow. Figure 5d separately plots the vertical 
thickness of the tumor and mean-value of M in the posterior region vs. lateral position. The mean-value of 
M decreases with increasing lesion thickness and is the lowest at the thickest point of the tumor. The 
fibroadenoma in Fig. 1b has caused a central posterior enhancement of +8.35 dB. 

B) Relative absorption is a composite feature and is defined as ( ) ( ) 21 d - MM  d - MMra alplanpn −=  [22], 

where Mal is the mean of midband fit inside the lesion, Mpl is the mean of midband fit posterior to lesion, 
Man is the mean of midband fit in normal tissue next to the lesion, Mpn is the mean of midband fit in 
normal tissue lateral posterior to next to the lesion, d1 is the spatial distance between the centroids of Mpn 
and Man, and d2 is the spatial distance between the centroids of Mpl; Mal, Mpn, and Man can be averaged for 
left and right lateral regions. Relative absorption value for the malignant lesion in Fig. 1a is −0.12 dB. In 
contrast, the fibroadenoma in Fig. 1b has a relative absorption of –0.47 dB. 

C) We can define heterogeneity in several ways. It can be defined as the standard deviation of midband fit 
values, σML

, within the lesion [23] and we can assess the heterogeneity of the lesion by comparing σML
 with 

σM for a homogeneous region. In homogeneous tissue regions, the standard deviations of M, s, and I, can 

be expressed as [23] BWM 6.5=σ , )(126.5 BWBs =σ , and 2
0

2
sMI f σσσ += , respectively, where f0 is 

the center frequency (MHz), B is the bandwidth (MHz), and W is the Hamming-window length (mm). As 
tissue becomes more heterogeneous, the standard deviations of these measured parameters increase from 
the above theoretical values. We select σM to provide an index of tissue heterogeneity because M typically 
provides less-noisy estimates compared to the other two spectral parameters; this permits smaller 
departures from homogeneity to be detected. The standard deviation of MBF inside the lesion for the 
invasive ductal carcinoma in situ in Fig. 1a is 5.6 dB, whereas it should be 1.77 dB for a homogeneous 
region. (For our processing parameters, L = 2.5 mm, f0 = 7.5 MHz, and B = 4 MHz, σM = 1.77, σs = 1.53, 
and σI = 4.55.) In contrast, σM for the fibroadenoma in Fig. 1b is 4.4 dB.  

Heterogeneity also may depend on texture and σM contains no textural information. Therefore, we defined 
heterogeneity in term of texture of midband fit inside the lesion; texture was defined in terms of a four-
neighborhood pixel algorithm [25] (FNPA) and Hurst Coefficient fractal dimension measure [26,27]. 
(The cooccurrence matrix has also been used to estimate B-mode texture [28], but the calculation cost of 
the co-occurrence matrix is high.) FNPA yields –0.03 dB for the cancer in Fig. 1a and –0.04 dB for the 
lesion in Fig. 1b. 

2.4 Morphometric Features 

Invasive ductal carcinomas generally have “fuzzy” borders due to their invasive margins. Cancers that 
have little desmoplastic reaction (proliferation of fibroblasts) typically have clear margins, but still are 
highly irregular in shape. Chou et al [15] demonstrated good performance (97.2% sensitivity and 94.1% 
negative predictive value) using only quantitative lesion-shape features describing irregular boundaries 
(or deviation from a smooth shape). We have employed the following definitions for the quantitative 
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morphometric descriptors that are related to the 
shape or border of the lesion. All morphometric 
features have been computed using lesion 
boundaries traced on B-mode images.  

A) Area is defined as the total lesion area in 
square cm. Lesion area for the cancer in Fig. 1a is 
0.73 cm2. Lesion area has not been found to be a 
reliable feature for lesion classification.  

B) Aspect Ratio is defined as the maximum vertical 
lesion-dimension divided by maximum horizontal 
lesion-dimension. The aspect ratio (height divided by 
width) often exceeds 0.8 in breast carcinomas for 
small lesions [29]. In larger carcinomas, this criterion 
is less useful due to their more irregular shapes and 
growth along duct axes. The lesion aspect ratio is 
0.97 for the cancer in Fig. 1a and 0.75 for the benign 
lesion (smaller) in Fig. 1b. 

C) We define border irregularity in terms of a 
fractal dimension. Fractal dimension of a closed 
contour can be used to represent its border roughness [30]. Mandelbrot [31] has investigated the fractal 
dimensions of geographical boundaries. On the other hand, convexity [32] (ratio between convex 
perimeter and actual lesion perimeter) also can be used to express border irregularity; this is an excellent 
descriptor of spiculation. We illustrate using four contours of varying border roughness in Fig. 6. The 
smooth ovoid in Fig. 6a has a low fractal dimension (1.01) and convexity of unity. For the non-spiculative 
rough border depicted in Fig. 6b, fractal dimension is 1.05 and convexity is 0.86. For the mild spiculation 
in Fig. 6c, fractal dimension is 1.06 whereas convexity is 0.84. For the moderate spiculation in Fig. 6d, 
the fractal dimension is higher (1.18) and the convexity is much lower (0.51). We note that further 
increase in spiculation drastically reduces convexity; thus, convexity is rather adept at identifying 
spiculation and also an excellent descriptor of border irregularity. Fractal dimension is also an excellent 
quantitative descriptor of border irregularity. For the malignant lesion in Fig. 1a, the fractal dimension and 
convexity are 1.13 and 0.90, respectively, and for the benign lesion in Fig. 1b, they are 1.03 (lower) and 
0.99 (higher), respectively.  

D) We have defined margin definition as the sum of magnitude of gradient of midband fit on a lesion 
contour normalized by the sum of magnitude of the gradient of midband fit on the lesion contour. 
(Normalization is required to remove dependence on contour length as well as magnitudes of midband fit 
values.) Because this feature uses both the lesion contour as well as a spectral parameter, it really is a 
hybrid feature. We use midband fit instead of envelope of RF echoes because MBF is statistically well-
behaved and can more easily be corrected for system effects and diffraction. Gradient-based margin 
definition for the lesions in Figs. 1a and 
1b are 0.07 and 0.10, respectively. 

3. RESULTS 

We have analyzed data for 130 patients (26 
malignant and 104 benign). Scatter 
diagrams for selected quantitative acoustic 
features and morphometric features are 
presented in Fig. 7. The scatter diagrams of 
Fig. 7a (margin definition vs. aspect ratio) 

(a) Ovoid

HD = 1.01
C = 1.00

(d) Spiculation

HD = 1.18
C = 0.51

(c) Spiculation (mild)

HD = 1.06
C = 0.84

(b) Irregular border

HD = 1.05
C = 0.86

 
Fig. 6: Illustration of border roughness. 
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Fig. 7: Scatter diagrams of selected lesion features. 
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and 7b (fractal dimension vs. lesion texture) exhibit fairly clear separation between benign and malignant 
cases. With respect to non-cancers, the cancer cases exhibit poorer margin definition, larger aspect ratio, 
higher texture, and higher border irregularity. We drew a straight line through each scatter diagram such that 
all the malignant lesions are on the right of the lesion. Thus, there only are benign lesions on the left of each 
line. If we want to be even more conservative and further reduce the possibility of a false negative, we could 
more the line more to the left. 

We performed an independent-samples t-test to assess whether the means of different parameters are 
statistically different for benign and malignant cases. We found that FNPA, Hurst Coefficient, Margin 
Definition, Aspect Ratio, Solidity, Convexity, and Hausdorf Dimension are significantly different for 
benign and malignant cases. Additional details about 
the t-test are in [21]. Because these features show fairly 
clear separation between cancers and non cancers, a 
linear classification approach is indicated. We used 
logistic regression (LR) for our classification analysis. 
All statistical analysis were performed using SPSS® 
(SPSS Inc., Chicago, IL) using all quantitative features. 
Out of 130 patients, 121 were used; the other 9 had at 
least one quantitative feature missing. (For example, 
shadowing cannot be computed if posterior regions 
cannot be traced.) The classifier incorporated 
heterogeneity, margin definition, fractal dimension, and 
convexity using Wilks’ Lambda Stepwise Statistics.  

Classification performance was assessed using an ROC 
analysis  ]33 ], which plotted true-positive fraction (TPF) 
or sensitivity vs. false-positive fraction (FPF) or 1 
minus specificity. TPF and FPF are defined as: 

 
Number of correctly identified malignant lesions

 and
Total number of malignant lesions

Number of correctly identified benign lesions
1

Total number of benign lesions

TPF

FPF

=

= −

  (5) 

Incorporation of all four parameters in an LR produced an area under the ROC curve (AUC) of 0.947±0.045 
(Fig. 8). We do not report sensitivity or specificity because these depend on the chosen operating point in 
the ROC curve. Best methods achieve high TPF values, i.e., high sensitivity values, for concurrently low 
FPF values, i.e., high specificity values. 

4. CONCLUSION 

Many radiologists now use breast ultrasound findings based in BI-RADS criteria, to recommend periodic 
follow-up without a biopsy. Whereas an expert clinician might be able to identify benign lesions accurately, 
a non-expert might misidentify ambiguous cases. We studied the performance of classification using 
quantitative features to determine whether such an approach might be of value in reducing misdiagnoses by 
less-expert readers. Our results suggest that an automated or semi-automated procedure might be able to 
assist a physician in making diagnosis. Clearly, the method is not foolproof (ROC Area ≠ 1.0). Due to the 
current legal environment in the western countries (particularly in the US), the radiologists tend to be 
conservative. Our results suggest that we can achieve a near-perfect NPV (negative-predictive value) if we 
design the procedure to be conservative by operating in the low FPF area (e.g., where ¼ ≤ TPF ≤ ½). This, 

 
Fig. 8: ROC curve for multi-feature analysis. ROC 

Area: 0.9164 ± 0.0346. 
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however, will mean a decreased number of avoided biopsies. The current procedure remains semi-
quantitative as analysis regions are manually traced. Our recent work on automated boundary detection 
suggests that this method can be truly operator independent with automated lesion boundary segmentation. 
Note that manual lesion segmentation was performed by knowledgeable non-clinicians in our study. Thus, 
the method does not depend on a radiologist’s expertise for precise delineation of tumor borders. We will 
investigate the role of additional factors e.g., age, body-mass index or equivalent, etc. Furthermore, 
breast composition varies from person to person, which seems likely to influence RF echoes. Thus, for 
acoustic features in particular, the presumably normal, opposite (contralateral) breast tissue may provide a 
baseline to compare with the lesion-containing breast [34]. Because tissue properties change with time and 
differ among patients, such an approach would compensate for variations in breast density, time of the 
menstrual cycle, changes occurring at menopause, fat content, age, etc. in future analyses. Furthermore, our 
study data did not distinguish among fibrous, glandular, and fatty breasts. This may be important because 
breast composition can affect shadow values.  

Because their breasts typically are radiologically-dense, X-ray mammography tends to be relatively 
ineffective for young women. The sensitivity of X-ray mammography is significantly less (60%) in 
younger women (less than 50 years old) compared to women older than 50 (86%) [35]. However, breast 
tumors tend to grow faster in younger, estrogen-rich women [36]. Thus, early detection may be even more 
critical for the survival of younger women with breast cancer, where ultrasound can play an important 
role.  
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