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ABSTRACT: We have developed a family of quantitative desoriptin order to provide non-
invasive, reliable means of distinguishing beniganf malignant breast lesions. These include
acoustic descriptors (“echogenicity,” “heterogepéitshadowing”) and morphometric descriptors
(“area,” “aspect ratio,” “border irregularity,” “rmgin definition”). These quantitative descriptors a
designed to be independent of instrument propeatiesphysician expertise. Our analysis included
manual tracing of lesion boundaries and adjacesasaon grayscale images generated from RF data.
To derive quantitative acoustic features, we comgbigpectral-parameter maps of radio-frequency
(RF) echo signals (using a sliding-window Fouriealgsis) of the lesion and adjacent areas. We
quantified morphometric features by geometric aratthl analysis of traced lesion boundaries.
Although no single parameter can reliably discriancancerous from non-cancerous breast lesions,
multi-feature analysis provides excellent discriatian of cancerous and non-cancerous lesions. Our
analysis of data acquired during routine ultrasaamination of 130 biopsy-scheduled patients
produced a receiver-operating characteristic (R@@p under the curve (AUC) of 0.947+0.045.
Lesion-margin definition, spiculation, and borderegularity were the most useful among the
quantitative descriptors; some morphometric featueuch as border irregularity) also were
particularly effective in lesion classification. Otesults are consistent with many of the Breast
Imaging Reporting and Data System (BI-RADS) bréesinn-classification criteria in use today.

Keywords: Breast diseases, breast cancer, computer-aidedasisg(CAD), fractal analysis, morphometric
analysis, multi-feature analysis, receiver-opemtitharacteristics (ROC), sonography, spectrum aigly
texture analysis, tissue characterization, tumassification, ultrasonic imaging, ultrasound.

1. BACKGROUND AND INTRODUCTION

Breast cancer affects one of every eight womekillst one of 29 women in the United States, anthés
leading cause of death in women in developed casnft,2]. An estimated 207,090 new cases of breast
cancer, and 39,840 deaths, are expected among wom#gre US in 2010 [3]. Survival rates for
advanced-stage breast cancers have improved swmmtiff and early-stage breast cancers are now
virtually curable [4]. Consequently, early detentan play a crucial role in a patient’s survival.

Of the breast biopsies (annually around 1.7 milliancording to National Cancer Institute estimate)
performed in the US, 70-90% are benign [5]. A métlimat reliably identifies benign lesions (with
virtually zero false negatives) would prevent manpeeded biopsies, which are expensive and, ag/in a
surgical procedure, involve minor risks. Assumihg iverage cost of a biopsy procedure to be $2,500,
even a 10% reduction in biopsies (170,000 biopsias)ld result in a saving of almost a half billion
dollars a year in the US. (In fact, the more commaimgical biopsies cost $2,500-$5,000, whereasl@eed
biopsies cost $750-$1,200.) Furthermore, unneeigdibs impose needless risk of complications,rincu
additional health-care costs, and needlessly haiglpatient anxiety (e.g., while awaiting pathology
results).

Unlike some other cancer types, most breast camersisible in B-mode ultrasound images. Advances
in ultrasonic imaging technology allow detailed m&aation of breast-tumor characteristics. Althoungh
single B-mode feature has been found to be a reliabletifilr of malignancy, recent clinical studies
have shown that aombination of selected B-mode features can be effective fagadt cancer
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Fig. 1: (a) Malignant lesion (in situ and invasive ductatanoma): the lesion has irregular multilobulaah, “tall” aspect
ratio, heterogeneous internal texture, poorly defirmargin, and a prominent posterior shadow. (bhige lesion
(fibroadenoma): the lesion has the classical ngherscal shape, a smooth boundary, clearly-defmedgin, homogeneous
internal texture, and a posterior “anti-shadow&nhancement. (Note the edge shadows due to refaftects.)

identification. [5,7-9] The American College of Raldgy (ACR) developed the Breast Imaging
Reporting and Data System (BI-RADS) lexicon fortfeas describing the ultrasound appearance of
breast lesions to improve the accuracyprgast ultrasound diagnosis [10,11]. BI-RADS dedfisix
different possible findings (Category 0 to 5). @atey O indicates that assessment is incomplete,
additional imaging evaluation necessary, whereatedgoay 1 lesions are virtually certainly
benign while Category 5 lesions have featutes are highly suggestive of malignancy, i.e., the
likelihood of malignancy increases from virtuallgra in Category 1 to virtually certain in Categéry
Several studies have reported encouraging resolts &utomated quantitative analysis employing singl
[12-16] as well as multiple [17] features usingadfiom modern ultrasonic scanners. This list is not
exhaustive and many other groups reported resultautomated methods of breast-cancer identifioatio
although some studies ignored and did not comperiesathe contribution from the ultrasound scanning
system.

We implemented a quantitative multi-feature-analymiocedure that uses the BI-RADS criteria curyent!
employed subjectively by clinicians using acouacwell as morphometric features. The acoustiaifest
include measures of lesion echogenicity, heterdtye@ed central shadowing, based on spectrum sisaby
RF echoes [18]. The morphometric features includa,docation, aspect ratio, and boundary roughokss
the lesions. We employed hybrid features that asebined acoustic and border information, e.g., marg
definition. Here we provide a brief report of oindings. We previously reportguieliminary results for this
study in conference proceedings [19,20]. We alddighed a detailed report of our findings in a jair
paper [21].

2. METHODS

Diagnostically-useful lesion characteristics inigated in our study include features based on dioous
properties (acoustic features) as well as on thleaipes or boundaries (morphometric features). The
features found to be the most useful in the mehitdire studies are listed below in Table |. Thiofdhg
features are the most-important ones for distifng cancerous from non-cancerous lesions: internal
texture (heterogeneous vs. homogeneous), cenadbsh(shadow vs. enhancement), shape (irregular vs.
regular), aspect ratio (height divided by widthiwiespect to the duct axis (greater than unityless
than unity), border quality (irregular vs. regujaahd margin definition (poorly defined vs. welffided).



Bangladesh Journal of Medical Physics Vol. 4, No.1, 2011

Figure 1 presents ultrasound grayscale image exangila benign lesion and a malignant lesion with
many of the typical characteristics of each lesigme. The malignant lesion exhibits heterogeneous
internal texture, a central shadow, a poorly defimargin, an irregular shape, and a “tall” aspatior all

Table I: Features of conventional B-mode images assocvetbdnalignant and
benign lesions. A typical lesion may have only bsat of these identifying features.

Malignant lesions Benign lesions

Internal features Morphometric feature Internatdiees Morphometric features

Central shadowing Irregular shape/spiculation Edge Spherical/ovoid shape
shadowing/enhancement
Hypoechogenicity Poorly defined margin Hyperechogenicity Linear well-defined margin
Heterogeneous texture Tall aspect ratio Homogeneous texture Thin capsule
Calcifications Microlobulation Gentle bi- or trilobulations
Architectural distortion Orientation parallel to tissue
plane

these features are typical of malignant lesionsdntrast, the benign lesion exhibits a centrateyay
enhancement (sometimes referred to as “anti-shgdawiomogeneous internal texture, a clearly ddfine
margin, a smooth shape, and an aspect ratio othassunity typical of benign lesions. However, ot
lesions are hypoechoic.

Successful classification using these qualitatimage characteristics is invariably dependent arioiéin
skills. Our research addresses the developmentaoftijative descriptors to provide operator-indejesr
lesion identification. Quantitative descriptorsiveilso increase reliability of lesion identificatiand may
allow identification of smaller lesions. We firstentified features that lend themselves to quaatifin;
not all subjective features are reliably quantiéallhe procedure to quantify acoustic and morphome
features is described below.

2.1 Data Acquisition

The data for this IRB-approved study consisted Bfdgho-signal data that were digitized from breast
lesions before any non-linear processing such agrEssion or envelope detection occurred within the
scanner. These data were acquired from 130 patienitsg routine ultrasonic examinations that ocedrr
prior to a scheduled biopsy. Subsequent biopsiesxamined lesions determined that104 patients had
benign masses and 26 had malignant masses. Thessy lsind RF data were acquired at the following
three clinical sites: Thomas Jefferson Universtg, University of Cincinnati, and Yale Universifyhese
patients had undergone mammography prior to thlesdtund examinations and had mammographically
visible lesions. The following exclusion criterieeme applied: age less than 18 years (due to legslent
limitations), prior breast carcinoma, biopsy or teatomy, breast implant, simple cyst, pregnancy,
microcalcifications not associated with a mass arogmphy, and male or transsexual gender. Masses
were examined with the patient in the standard reugiosition by an experienced radiologist or
sonographer using a Philips Ultrasound (Bothell, MWM-9 HDI scanner. An L10-5 (7.5 MHz) linear
array transducer was employed at a default (cofspower level and a single transmit focal length
selected by the operator. Standard ultrasonic besasnination procedures were employed. Data were
sampled at 20 MHz at an effective dynamic rangel4fbits. Time Gain Control (TGC) data were
acquired for every scan, and RF data were corrdotelGC before processing.
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2.2 Analysis Procedures

We manually demarcated a set
analysis regions on B-mode image
generated from the RF data ar
analyzed each region to compu §
the quantitative features describe &
below. The benign and malignar #
lesions of Fig. 1 are shown again |
Fig. 2 with traces of the nine
analysis regions superimpose: E!
With respect to the tumor, thes
regions are: left-anterior, tumor

anterior, right-anterior, left-lateral ) (a) _ _ _ () .
tumor, right-lateral, left-posterior Fig. 2: B-scan images of Fig. 1 with superimposed analgjfon traces.
tumor’-posterior ! and right: (a) Malignant lesion. (b) Benign lesion.

posterior. As discussed below, we needed only uhmt trace for the majority of quantitative feature
However, we needed the tumor-posterior region dsasethe left and right-posterior regions for shad
measurements and all analysis regions except teearmregions for computing relative absorptiorogtl
lesions were scanned in multiple (but at least drtbogonal) scan planes, thereby providing redundan
data for a given lesion. We averaged each quawstégature value for multiple scans of a speddi&on

to arrive at a single number. All processing sofevaas written in MATLAB™ (The Mathworks, Inc.,
Natick, MA), except for the tumor-tracing programhich was written in Visual Basic™ (Microsoft
Corporation, Redmond, WA).

B-scanimage Power spectrum

2.3 Acoustic Features : Iy
~. Regression line

We defined guantitative \\ Power spectrum
acoustic features in terms c ~
calibrated spectrum analysi
[18] parameters. Spectrun A E—— o
analysis involves several step : "
First, a Hamming window is | A
applied to RF data, a powe i
spectrum is computed from th N
Fourier transform of the Frequency (MHz)
windowed data segment, an (a) (b)

the resultant power spectrum | Fig. 3: lllustration of the Spectrum Analysis proceduralirated power

cogver;gd to. dB. NeXt'f» systen spectrum of windowed (typically Hamming, of length RF data is

an iffraction  effects are evaluated. A linear regression line through the growpectrum is

subtracted from the compute  computed. In this exampléyl is the midband value (value of the
spectrum to derive t_he desire  regression line at center frequenigy and | is the spectral intercept
tissue spectrum. Finally, the (value of the regression line extrapolated $00).

T Measured spectra depend not only on tissue giepebut also on 1) the combined two-way tranffaction of the transducer
and the ultrasonic-system electronic modules, 8)tio-way range-dependent diffraction function ¢(hearoperties), and 3)
acoustic attenuation. Corrections for the first fnctions involve experimental data obtained ahe@ansmit focal length. The
electronic transfer function was estimated usindaaar reflection method from RF data acquired ftoen front planar surface
of an RTV silicone block in a water bath. The difftion function was estimated using a referencafoina method from data
obtained by scanning a rubber block containingfast suspension of 1j0m diameter glass spheres. Then, breast tissuaapect
parameters were estimated by subtracting the orimn from transfer function and diffraction. Filgaan empirical attenuation
coefficient was used to correct for attenuationdascribed further below. The system effects ardyaed in detail in other
theoretical papers [18,23,24].
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computed spectrum is analyzed with linear regressazhniques applied over the bandwidth of the
signal; the primary parameters of interest are dlope of the regression line (SLB), its value at
midpoint of signal bandwidth (MBRM) and its intercept at zero frequency (INJ., Images of these
parameters are created by progressively slidingtdmaming window over all RF data and repeating the
above sequence. The spectrum analysis procediltsisated in Fig. 3.

In the absence of attenuation in the interveninglimethe linear regression line through the power
spectrum can be written ag(f) =1+ , wherel is spectral interceptn is slope, and is frequency.
Thus, the midband fitM =1 +f,, f; being the center frequency. In the presence @hattion in
intervening tissue, the linear regression line uigilothe power spectrum B (f) =P(f)-2adf =1+ (S—
20d)f, wherea is the effective attenuation coefficient (dB/MHzyc andd is the depth of intervening
tissue. Hence, spectral intercépt |, midband fitM, =1 + (s— 2ad)f,, and slopes, = (s— 2ad). Thus,
the presence of attenuation affects slope and malfig but not intercept. The necessary assumpgson

(a) B-scan image (b) Image of (a) B-scanimage (b) Image oM

(c)I within lesion (d) Histogram of ()M in the ROIs 0
SONM="232: 124 g 5
0
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0
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0 %_40 . . .
-50 0 40 -20.7 -10.1 0 10 20 30

Lateral position (mm)
Fig. 4: Echogenicity for data corresponding to Fig. 3(a)Fig. 5: Shadowing for data corresponding to Fig. 3(a).
According to our definition, echogenicity is —431B. According to our definition, shadowing is —13.65.dB

that attenuation (in dB) varies linearly with freoey. Although this assumption is only approximétte,
conclusion about the invariance of intercept inghesence of tissue attenuation has proved toheate
in our experience.

In our work, the following definitions are employéal provide quantitative assays qualitative (B-node
acoustic features: window lengthly = 2.4 mm, spectral bandwidtf3 = 4 MHz (5-9 MHz), and
attenuation coefficienty = 1 dB/MHz-cm.

A) Echogenicity is defined as the mean value of spectral interqe,gt, within the lesion. Since spectral

intercept is largely independent of frequency-deleen attenuation in the intervening media, no
attenuation correction is necessary. Calculatiofesion echogenicity is illustrated in Fig. 4 usitg
example of invasive ductal carcinoma shown in HFig. Figure 4a shows the B-scan image; the
corresponding image of spectral intercepti§ shown in Fig. 4b. Figure 4c shows the interdemage
within the traced lesion boundary and Fig. 4d shdwes histogram of within the traced lesion. The
guantitative value of echogenicity is the mean @akf INT within the lesion (-43.2 dB). The
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fiboroadenoma in Fig. 1b has an echogenicity of 8-36BShadowing is defined as the difference
(normalized by lesion thickness) between mérvalues in comparable shadowed and unshadowed
regions posterior to the lesion. (Difference betwéemor and tumor-posterior is compared with the
average of differences between left-lateral anttdes$terior, and right-lateral and right-postedidrhis
difference can be used to estimate the attenuatefficient within the lesion, which we used in the
tissue area that has no lesion to estimate theageeattenuation coefficient and check whether these
estimates are consistent with the assumed valdeul@gon of central shadowing is illustrated irgFb

for the cancerous lesion in Fig. 1a, casting aceatile central shadow. Figure 5a shows the B-scan
image; the corresponding image Mfis shown in Fig. 5b. Figure 5¢ shows the MBF imagsde the
tumor as well as in the posterior regions. Meaneslof MBF in the lateral posterior regions aré-ahd
—10.1 dB (their mean being —7.05 dB). The mean BFMbosterior to the lesion is —20.7 dB, which is
13.65 dB lower. Thus, this tumor casts a 13.65-dBrmal shadow. Figure 5d separately plots the cadrti
thickness of the tumor and mean-valudvbiin the posterior regiows. lateral position. The mean-value of
M decreases with increasing lesion thickness anbleidowest at the thickest point of the tumor. The
fiboroadenoma in Fig. 1b has caused a central postthancement of +8.35 dB.

B) Relative absorption is a composite feature and is definedras (M, - M, )/d, - (M, - M,)/d, [22],

whereMj, is the mean of midband fit inside the lesibh, is the mean of midband fit posterior to lesion,
Man is the mean of midband fit in normal tissue nexthe lesionM,, is the mean of midband fit in
normal tissue lateral posterior to next to thedegi, is the spatial distance between the centroidd pf
andMa,, andd, is the spatial distance between the centroidd HfMa, My, andMg, can be averaged for
left and right lateral regions. Relative absorptiatue for the malignant lesian Fig. 1a is—0.12 dB. In
contrast, the fibroadenoma in Fig. 1b has a redabsorption of —0.47 dB.

C) We can defindeterogeneity in several ways. It can be defined as the stardiewition of midband fit
values,ay, , within the lesion [23] and we can assess thebgéaeity of the lesion by compariog, with

ou for a homogeneous region. In homogeneous tisgliens the standard deviationsMf s, andl, can

be expressed as [23], =56/VBW , 0. = 56/12/(BVBW), and g, =./d? + f.g’ , respectively, wherf is

the center frequency (MHZR is the bandwidth (MHz), an@/ is the Hamming-window length (mm). As
tissue becomes more heterogeneous, the standaedialey of these measured parameters increase from
the above theoretical values. We selggtto provide an index of tissue heterogeneity bez®usypically
provides less-noisy estimates compared to the atlver spectral parameters; this permits smaller
departures from homogeneity to be detected. Thedatd deviation of MBF inside the lesion for the
invasive ductal carcinomia situ in Fig. 1a is 5.6 dB, whereas it should be 1.77falBa homogeneous
region. (For our processing parametérs, 2.5 mmf, = 7.5 MHz, andB = 4 MHz,0y = 1.77,0: = 1.53,
andg = 4.55.) In contrastigy for the fibroadenoma in Fig. 1b is 4.4 dB.

Heterogeneity also may depend on texture @npdontains no textural information. Therefore, wérdel
heterogeneity in term of texture of midband fitidesthe lesion; texture was defined in terms obar{
neighborhood pixel algorithm [25] (FNPA) and HufSbefficient fractal dimension measure [26,27].
(The cooccurrence matrix has also been used tmastiB-mode texture [28], but the calculation afst
the co-occurrence matrix is high.) FNPA yields -30dB for the cancer in Fig. 1a and —0.04 dB for the
lesion in Fig. 1b.

2.4 Morphometric Features

Invasive ductal carcinomas generally have “fuzzgtders due to their invasive margins. Cancers that
have little desmoplastic reaction (proliferationfiiroblasts) typically have clear margins, butl stre
highly irregular in shape. Chou et al [15] demaaistl good performance (97.2% sensitivity and 94.1%
negative predictive value) using only quantitatigsion-shape features describing irregular bouedari
(or deviation from a smooth shape). We have empldpe following definitions for the quantitative
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morphometric descriptors that are related to the
shape or border of the lesion. All morphometric (a) Ovoid (b) Irregular border
features have been computed using lesion
boundaries traced on B-mode images.

A) Area is defined as the total lesion area in
square cm. Lesion area for the cancer in Fig. 1a is
0.73 cm. Lesion area has not been found to be a
reliable feature for lesion classification.

B) Aspect Ratio is defined as the maximum vertical _ _ _ . .
lesion-dimension divided by maximum horizontal (©) Spiculation (mild) (d) Spiculation
lesion-dimension. The aspect ratio (height divided
width) often exceeds 0.8 in breast carcinomas for
small lesions [29]. In larger carcinomas, thisetiitn

is less useful due to their more irregular shapeks a
growth along duct axes. The lesion aspect ratio is
0.97 for the cancer in Fig. 1a and 0.75 for thadren
lesion (smaller) in Fig. 1b. Fig. 6: lllustration of border roughness.

C) We defineborder irregularity in terms of a

fractal dimension. Fractal dimension of a closed

contour can be used to represent its border rosghi3®]. Mandelbrot [31] has investigated the frhct
dimensions of geographical boundaries. On the ottard, convexity [32] (ratio between convex
perimeter and actual lesion perimeter) also candeel to express border irregularity; this is aretent
descriptor of spiculation. We illustrate using fawontours of varying border roughness in Fig. 6e Th
smooth ovoid in Fig. 6a has a low fractal dimengib01) and convexity of unity. For the non-spitivia
rough border depicted in Fig. 6b, fractal dimenssh.05 and convexity is 0.86. For the mild spatioin

in Fig. 6¢, fractal dimension is 1.06 whereas caityes 0.84. For the moderate spiculation in Fég,
the fractal dimension is higher (1.18) and the ety is much lower (0.51). We note that further
increase in spiculation drastically reduces cortyexthus, convexity is rather adept at identifying
spiculation and also an excellent descriptor ofiboirregularity. Fractal dimension is also an drce
quantitative descriptor of border irregularity. Foe malignant lesion in Fig. 1a, the fractal disien and
convexity are 1.13 and 0.90, respectively, andHerbenign lesion in Fig. 1b, they are 1.03 (lova)l
0.99 (higher), respectively.

D) We have definednargin definition as the sum of magnitude of gradient of midbandafiita lesion
contour normalized by the sum of magnitude of thedgnt of midband fit on the lesion contour.
(Normalization is required to remove dependenceariour length as well as magnitudes of midband fit
values.) Because this feature uses both the lesiotour as well as a spectral parameter, it raally
hybrid feature. We use midband fit instead of eopelof RF echoes because MBF is statistically well-
behaved and can more easily be corrected for sysféeuts and diffraction. Gradient-based margin
definition for the lesions in Figs. 1a and

0.2 - 1

1b are 0.07 and 0.10, respectively. : E ., HEE gg HE
A5, s 7
& & 6
3. RESULTS Ew i :é“s " i
We have analyzed data for 130 patients (26 % By g T g“
malignant and 104 benign). Scatter M*] AR -
diagrams for selected quantitative acoustic o 14 :

. 02 04 06 08 1 12 14 16 -0.16-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02
features and morphometric features are Aspect Ratio FNPA (dB)
presented in Fig. 7. The scatter diagrams of (@) (b)

Fig. 7a (margin definitiorvs. aspect ratio) Fig. 7: Scatter diagrams of selected lesion features.



S K. Alamet al Ultrasonic feature analysis for breast lesion diagnosis

and 7b (fractal dimensiovs. lesion texture) exhibit fairly clear separatiogtvieeen benign and malignant
cases. With respect to non-cancers, the cances eabibit poorer margin definition, larger aspeatic,
higher texture, and higher border irregularity. Wew a straight line through each scatter diagnach hat
all the malignant lesions are on the right of #®dn. Thus, there only are benign lesions ondfi@f each
line. If we want to be even more conservative amthér reduce the possibility of a false negative,could
more the line more to the left.

We performed an independent-samples t-test to @ssksther the means of different parameters are
statistically different for benign and malignantsea. We found that FNPA, Hurst Coefficient, Margin
Definition, Aspect Ratio, Solidity, Convexity, artdausdorf Dimension are significantly different for
benign and malignant cases. Additional details tibou
the t-test are in [21]. Because these features $aioly L.¢o
clear separation between cancers and non cancers, a
linear classification approach is indicated. We duse
logistic regression (LR) for our classification bysés. 075
All statistical analysis were performed using SPSS
(SPSS Inc., Chicago, IL) using all quantitativetfiees. S
Out of 130 patients, 121 were used; the other 9dtad £ ¢
least one quantitative feature missing. (For exampl
shadowing cannot be computed if posterior regions
cannot be traced.) The classifier incorporated
heterogeneity, margin definition, fractal dimensiand P
convexity using Wilks’ Lambda Stepwise Statistics. .00 k- : : .
000 025 050 075 100

Area 0947 10,023 7

(.25

Classification performance was assessed using @& RO

analysis33] ], which plotted true-positive fractiQrPF) FPF
or sensitivity vs. false-positive fraction (FPF) or 1 Fig. 8: ROC curve for multi-feature analysis. ROC
minus specificity. TPF and FPF are defined as: Area: 0.9164 + 0.0346.

Number of correctly identified malignant Iesior{:‘?1d
Total number of malignant lesions (5)
Number of correctly identified benign lesions
Total number of benign lesions

TPF =

FPF =1-

Incorporation of all four parameters in an LR preegllian area under the ROC curve (AUC) of 0.9478).04
(Fig. 8). We do not report sensitivity or spectficbecause these depend on the chosen operatinigimpoi
the ROC curve. Best methods achieve high TPF valieshigh sensitivity values, for concurrenthym
FPF values, i.e., high specificity values.

4. CONCLUSION

Many radiologists now use breast ultrasound finglibgsed in BI-RADS criteria, to recommend periodic
follow-up without a biopsy. Whereas an expert cigm might be able to identify benign lesions aatzly,

a non-expert might misidentify ambiguous cases. s\glied the performance of classification using
guantitative features to determine whether suchpgmoach might be of value in reducing misdiagnbses
less-expert readers. Our results suggest that tamated or semi-automated procedure might be able t
assist a physician in making diagnosis. Clearlg,iethod is not foolproof (ROC Areal.0). Due to the
current legal environment in the western count(ggticularly in the US), the radiologists tend lde
conservative. Our results suggest that we can\aelisear-perfect NPV (negative-predictive valfie)d
design the procedure to be conservative by operatithe low FPF area (e.g., whereEPF< %%). This,
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however, will mean a decreased number of avoidegsi@s. The current procedure remains semi-
guantitative as analysis regions are manually tta@ur recent work on automated boundary detection
suggests that this method can be truly operat@piaddent with automated lesion boundary segmentatio
Note that manual lesion segmentation was perforoyekhowledgeable non-clinicians in our study. Thus,
the method does not depend on a radiologist’s &gpefor precise delineation of tumor borders. Wik w
investigate the role of additional factors e.g.e,agody-mass index or equivalent, etc. Furthermore,
breast composition varies from person to persoriciwbeems likely to influence RF echoes. Thus, for
acoustic features in particular, the presumablynadr opposite (contralateral) breast tissue mayigeoa
baseline to compare with the lesion-containing $irf&d]. Because tissue properties change with &nte
differ among patients, such an approach would cosgte for variations in breast density, time of the
menstrual cycle, changes occurring at menopauseQifitent, age, etc. in future analyses. Furthesnmmur
study data did not distinguish among fibrous, gldad and fatty breasts. This may be important bseea
breast composition can affect shadow values.

Because their breasts typically are radiologicdiyise, X-ray mammography tends to be relatively
ineffective for young women. The sensitivity of Xyr mammography is significantly less (60%) in
younger women (less than 50 years old) compareebtoen older than 50 (86%) [35]. However, breast
tumors tend to grow faster in younger, estrogehwomen [36]. Thus, early detection may be everemor
critical for the survival of younger women with bet cancer, where ultrasound can play an important
role.
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