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Abstract 

Epileptic seizure is a chronic neurological disorder which affects millions of people all over the globe. It 

can be treated in a better way if the symptoms are detected at an early stage. In this study, we have 

demonstrated and evaluated the classification performances of different machine learning classifiers for 

the detection of epileptic seizures from electroencephalography (EEG) signals. For this, we have first 

applied principal component analysis (PCA) on EEG signals to obtain much reduced-length PCA vectors. 

These vectors are then applied to decision tree (DT), k-nearest neighbor (KNN), Naïve Bayes (NB), 

support vector machine (SVM) and artificial neural network (ANN) classifiers for the detection of 

epileptic seizures. The effects of length of PCA vectors on the performances of these classifiers have also 

been analyzed rigorously for 2-class, 3-class and 5-class classification of EEG signals. Besides such PCA-

based classifiers, we have also proposed and evaluated the performances of a customized convolutional 

neural network (CNN) to directly extract features from the EEG signals as well as to perform 

classification tasks. The results showed that CNN outperforms PCA-based machine learning classifiers. 

For 2-class classification cases, CNN attains classification accuracies in the range from 99.50% to 100%, 

whereas 98.48% and 96.32% accuracies are obtained with CNN for 3-class and 5-class classification 

cases. The results signify that the proposed CNN classifier can be considered as a highly-efficient scheme 

for the reliable detection of epileptic seizures from EEG signals. 

Keywords: Classification, Epileptic seizure, EEG signals, Principal component analysis, Machine 

learning classifiers, Convolutional neural network. 

Introduction 

Epileptic seizure is a chronic brain disorder caused by abrupt anomaly of brain nerve cells. It 

gives rise to abnormal electrical activity in human brain due to the improper firing of brain 

neurons [1-5]. Seizures have intricate and distinct traumatic symptoms including imbalance body 

movement, jerking of body parts, loss of consciousness, stroke and disruption of cognitive 

functions [2, 4]. Severe occurrence of epileptic seizure may even cause death if the patient 

during seizure attack is unattended [3, 5]. Around the globe, approximately 50 million people 

suffer from epileptic seizure; among them nearly 80% patients live in developing countries [2, 

3]. As stated by the World Health Organization (WHO), there are nearly 2 million patients with 

epilepsy in Bangladesh [3]. The detection process of epileptic seizures can often be expensive, 
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inappropriate and time-consuming due to the lack of adequately trained medical staff. In 

managing epilepsy, the erroneous diagnosis of epileptic seizure often creates a treatment gap, 

particularly in least developed nations like Bangladesh [5].  

Electroencephalography (EEG) is a useful technique for the recognition of epileptic seizures. In 

recording EEG signals, small sensors are affixed to the scalp for collecting the electrical signals 

generated due the activities in brain. In practical applications, the collected EEG signals are 

analyzed visually by the physicians to detect the state of epileptic seizure [6, 7]. Such visual 

inspection is time-consuming and may introduce diverse opinions on the diagnostic results when 

inspected by different physicians having different levels of diagnostic experiences [7, 8]. 

Consequently, it is crucial to develop a reliable, robust and computerized system for the effective 

detection of epileptic seizures from EEG signals.  

To detect epileptic seizures, raw EEG signals can be applied directly to suitable classifiers [9]. 

However, the robust, time-efficient and automated detection process requires the extraction of 

suitable features from the EEG signals. These extracted features are then applied to classifiers for 

the accurate detection of epileptic seizures [6-9]. In the literature, various seizure detection 

techniques have been proposed and numerous studies have been carried out to improve the 

performance of epileptic seizure detection from EEG signals. In cases of 2-class classification 

problems, the maximum classification accuracies for using DT classifiers have been reported to 

be 90.19% with non-leaf node labeling of decision tree based feature extraction [10], 91.97% 

with variance threshold feature selection [11], 100% with tertiary wavelet transform based 

features extraction [12] and 99.44% with wavelet transform based feature extraction [13]. For 

such 2-class classification problems, KNN can provide accuracies in the range from 93.93% to 

100% as reported in the research works [10-16] in which 99.81% and 100% accuracies have 

been reported in the research works [13,14], respectively with wavelet transform based feature 

extraction. The classification accuracies of 94.3% [10], 95.73% [11] and 100% [14] have been 

reported for 2-classing classification using NB classifiers. The classification accuracy using 

multiscale entropy based SVM [6], non-leaf node labeling of decision tree based feature 

extraction based SVM [10], wavelet analysis based SVM [12, 15], principal component analysis 

based SVM [17], weighted permutation entropy based SVM [18], have been maximized to be 

92.5%, 94.48%, 100%, 100% and 93.38%, respectively. The use of ANN with wavelet transform 

[13], weighted permutation entropy [18], PCA [19], Stockwell transform [20] and time-

frequency domain features [21] can also offer classification accuracies of 99.07%, 91.875%, 

97.55%, 90% and 96.60%, respectively for 2-class classification cases. 

Recently, deep learning algorithms based CNN have found widespread applications in the 

classification and detection of various signals [22-24]. The utmost advantage of using CNN is 

that it offers the enormous capability to extract features from the signals. In such scheme, raw 

EEG signals can directly be applied to the CNN for highly-accurate detection of epileptic 

seizures [22-24]. For instances, the 2-class classification of EEG signals can be accomplished 

with accuracies of 99.86% [22], 100% [23] and 97.03% using deep learning algorithm based 
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CNN. For 3-class classification of EEG signals, CNN classifiers can provide accuracies of 

94.46% [22] and 97.07% [23], which are much better than 91.70% accuracy obtained with 

multiscale entropy based SVM [6]. For 5-class classification, the accuracy for using CNN have 

been reported to be 95.84% in the research work [23], which is also comparable to the 

classification accuracy of 96% obtained with octal pattern and wavelet transform based KNN 

[25]. 

Within this framework, the main objective of this study is to develop optimal model for highly-

accurate detection of epileptic seizure from EEG signals. For this, we have first used PCA to 

obtain reduced-length PCA vectors from EEG signals. Then, these PCA vectors have been fed to 

different machine learning classifiers such as, DT, NB, KNN, SVM and ANN for the detection 

of epileptic seizure. The optimal length of PCA vectors to be effectively used by a particular 

machine learning classifier has been explored systematically. In addition, we have also proposed 

the use of a customized CNN classifier for the accurate detection of epileptic seizure from EEG 

signals. The performances of these classifiers have been analyzed rigorously and the optimal 

classifier for epileptic seizure detection has been identified by evaluating the performances of 

different classifiers in terms of accuracy, sensitivity, specificity and precision. 

 

Materials and Methods 

EEG Dataset 

The EEG dataset utilized in this study were recorded by Andrzejak et al. at the University of 

Bonn, Germany [26]. This publicly available dataset [27] comprises five groups of EEG signals 

(i.e., A, B, C, D and E). Each group consists of 100 single-channel EEG segments. A brief 

description of EEG signals in Bonn dataset is listed in Table 1. 

Table 1. Outlines of EEG signals in Bonn dataset 

Class Recorded Position Subject State Recoded period           

A Cortex Normal Awake and calm condition with eye open 

B Cortex Normal Awake and calm condition with eye closed 

C Hippocampal formation Epilepsy Without seizure intervals 

D Epileptogenic Zone Epilepsy Without seizure intervals 

E Epileptogenic Zone Epilepsy With Seizure activity 

 

The EEG signals in the Bonn dataset was gathered by using a 128-channel amplifier and 

electrode placement following the popular 10-20 scheme [26]. The recordings of these signals 

were accomplished at the sampling rate of 173.61 Hz with 12-bit resolution employing a band-

pass filter setting of 0.53 Hz to 40 Hz. Each segment of EEG signal lasts for 23.6 seconds having 

a total of 4097 samples. No preprocessing is performed on the EEG signals included in the Bonn 
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dataset. For instances, one sample EEG signal from each of the five groups in the Bonn dataset 

are shown in Figure 1. 

 

Figure 1. Sample EEG signals from each of the five groups in the Bonn dataset. 

In this study, we have explored the performances of a number of machine learning classifiers for 

2-class, 3-class and 5-class classification of EEG signals for the reliable detection of epileptic 

seizures. The summary of the classification cases and classifiers used in this study is listed in 

Table 2.  

Table 2. Classification cases and classifiers used in this study 

Classification Class Classifiers 

2-class 

A-E  

(1) PCA-based DT 

(2) PCA-based KNN 

(3) PCA-based NB 

(4) PCA-based SVM 

(5) PCA-based ANN 

(6) CNN 

B-E 

C-E 

D-E 

ABCD-E 

3-class AB-CD-E 

5-class A-B-C-D-E 

 

The classifiers in Table 2 have been realized by MATLAB R2021a on a computer with Intel® 

Core™ i7-117000 @ 2.50 GHz, 250 GB NVMe SSD, 6GB Graphics card and 16GB DDR4 

RAM. 

PCA based Machine Learning Classifiers 

The Karhunen-Loève transform, commonly known as PCA, is a highly-effective statistical 

process for reducing the dimensionality of data [9,11,28]. The transformation of data using PCA 
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generates a set of uncorrelated variables, called principal components (PCs). In this study, the 

PCs of an EEG signal are collectively termed as PCA vector. Each EEG signal in Bonn dataset 

contains a large number of samples of length P = 4097. For such large P, the computational 

complexity for using machine learning classifiers will be fairly high. The goal of applying PCA 

is to attain the reduced-length PCA vectors of EEG signals without significant loss of 

information so as to minimize the computational complexity of the classifiers.  

In the proposed technique of using PCA, the EEG signals to be utilized in the training and testing 

phases of each of the classifiers form two groups Gtrain and Gtest comprising EEG signals of 

length P. Let the numbers of EEG signals in Gtrain and Gtest groups are Q and R, respectively. If 

the EEG signals in Gtrain are represented as vectors aq, where q = 1, 2, 3, …, Q, all the EEG 

signals in Gtrain can be represented together as a matrix Gtrain = [a1, a2, a3, …, aQ] of size P×Q in 

which, each column of Gtrain consists of a single EEG signal of length P. In a similar fashion, a 

matrix comprising all EEG signals in Gtest can be obtained as Gtest = [b1, b2, b3, …, bR] of size 

P×R, where br (r = 1, 2, 3,…, R) represent the vector representation of each EEG signal used in 

the testing phase of classifiers. Now the mean vector ā for Gtrain is computed as 

1

1 Q

q

q

a a
Q 

      (1)  

Next, the zero-mean matrix M = [m1, m2, …, mQ] are obtained, where mq= aq – ā. The covariance 

matrix V of M can be obtained by 

1

1 Q
T T

q q

q

V m m MM
Q 

 
  

(2)  

In Eq. (2), the matrix V consists of P eigenvectors in total, also known as PCs and corresponding 

eigenvalues that are determined by 

for 1,2,3,...,p p pVk u k p P 
  

(3)  

Where, kp and up are the pth eigenvector and eigenvalue of V, respectively. Afterwards, the 

eigenvectors are ranked in accordance with their eigenvalues. At the end of such process, only L 

(L<<P) eigenvectors are selected according to the L largest eigenvalues by neglecting all others. 

The eigenvectors of length L are picked out such that the selection parameter H fulfils the 

condition given by 

1 1

L P

p p

p p

H u u t
 

      (4)  

where, the parameter t is typically selected to be slightly lower than 1 in most practical 

applications. Now, the vector m in matrix M for a given EEG signal in Gtrain can be estimated as 

a weighted sum of L selected eigenvectors as given by 
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1

where m for 1,2,3,..., .
L

T

s s s s

s

c k m c k s L


  
   

(5)  

A vector x comprising the weights cs, i.e.,  

 1 2 ...
T

Lx c c c
      

(6)  

can be considered as the PCA vector of a given EEG signal in Gtrain. Consequently, the PCA 

vectors xq, for q = 1, 2, 3, …, Q, for all the Q EEG signals in Gtrain can be obtained by using Eq. 

(6). Thus, each EEG signal of length P in Gtrain can now effectively be replaced by its resultant 

PCA vector x of much small length L. Similarly, by utilizing the L eigenvectors obtained for 

Gtrain, PCA vectors yr (also of length L) for r = 1, 2, …, R can be obtained for all of the R EEG 

signals in Gtest. 

Next, we have applied machine learning classifiers on the reduced-length PCA vectors 

corresponding to the EEG signals obtained for Gtrain and Gtest for the time-efficient detection of 

epileptic seizure. The PCA vectors for Gtrain along with their associated class labels have been 

used to train the classifiers in the training phase. In contrast, the feature vectors for Gtest have 

been applied to the trained classifiers to estimate the associated class labels of EEG signals in the 

testing phase. The purpose of using such reduced-length PCA vectors obtained via PCA is to 

reduce the computational complexity of machine learning classifiers both in training and testing 

phases [9]. The process of the detection of epileptic seizures using such PCA-based classifiers is 

depicted in Figure 2. 

 

Figure 2. Functional diagram depicting the operating principle of PCA-based classifiers.  

As depicted in Figure 2(a), the dimension of EEG signals used in the training phase of machine 

learning classifiers is first reduced via PCA to obtain reduced-length PCA vectors. These PCA 

vectors and the associated class labels of corresponding EEG signals are then applied to a 

particular machine learning classifier to train it. The dimension of EEG signals used in the 

testing phase is also reduced first via PCA as shown in Figure 2(b). These reduced-length PCA 
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vectors are finally applied to the trained classifier to find the class labels of corresponding EEG 

signals. In this study, we have adopted a number of widely used machine learning classifiers 

[9,14], such as DT, KNN, NB, SVM and ANN in the stage of classification for the fast and 

accurate detection of epileptic seizure.  

Convolutional Neural Network (CNN) Classifier 

The CNN is a powerful tool that utilizes deep learning algorithm to extract features from signals 

[22-24]. It also offers the attribute of signal classification. In this study, we propose and 

demonstrate the use of a customized CNN to directly extract features from the EEG signals as 

well as to detect epileptic seizures. The layered architecture of the proposed CNN classifier is 

depicted in Figure 3. 

 

Figure 3. The layered architecture of the CNN classifier. 

As shown in Figure 3, the EEG signals are applied to the input layer of the CNN. The input layer 

is then succeeded by six sets of repetitive and subsequent array of four layers comprising 

convolutional layer, batch normalization layer, rectified linear unit (ReLU) and Max pooling 

layer. All of the six convolutional layers used in each set consist of 3×3 filters. The number of 

filters in the first convolutional layer is fixed to be 16 while that in the second, third, fourth, fifth 

and sixth convolutional layers are selected to be 32, 64, 128, 256 and 512, respectively. Padding 

is added in each convolutional layers to make the output size to be equal to the input size. 

Afterwards, the output of each convolutional layer is normalized by introducing a batch 

normalization layer. Next, a rectified linear unit (ReLU) is used in each set of layered 

arrangement to perform the action of nonlinear activation. The use of ReLU also assists to 

minimize the sensitivity of CNN to the parameter initialization. Finally, a max pooling layer is 

utilized in each set of layers for the exclusion of redundant information and reduction of size of 

the extracted features. The feature vectors of the input EEG signals are furnished by the fully 

connected layer in CNN architecture as shown in Figure 3. The output of the fully connected 

layer is then normalized by applying the softmax layer. The positive values produced at the 

output of softmax layer sum to 1. These normalized values are finally used as classification 

probabilities. Based on these probabilities, the classification layer performs the classification of 

EEG signals. 
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Performance Evaluation 

In this study, we have adopted 5-fold cross validation to generalize the performances of 

classifiers. To do so, we have distributed all groups of EEG signals involved in a particular 

classification case in accordance with Tables 1 and 2. The 5-fold distributions of such EEG 

signals are depicted in Figure 4.  

 

Figure 4. The distribution of EEG signals and performance evaluation of classifiers in 5-fold cross 

validation. 

As depicted in Figure 4, each of the five folds contains different combinations of 80 EEG signals 

from each class for the training and remaining 20 EEG signals from each class is used to test the 

classifier. For a particular classification case, a particular classifier has been used separately for 

each of these five folds. Then, we have computed four parameters, e.g., TP (true positive), TN 

(true negative), FP (false positive) and FN (false negative) for each class from the confusion 

matrix obtained for a particular fold. These four parameters are used to compute per-class 

classification performance in that fold by using Equations (7) - (10). 

Accuracy
TP TN

TP FP FN TN




  
  … (7)  

Sensitivity
TP

TP FN



    … (8)  

Specificity
TN

TN FP



    … (9)  

Precision
TP

TP FP



   … (10)  

The classification performance for a particular fold is then calculated to be the average of the 

per-class classification performances. Such performances of all of the five folds are eventually 

averaged to evaluate the performances of the used classifier. 
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Results and Discussion 

In our demonstration, we have analyzed the performances of PCA-based machine learning 

classifiers as well as that of CNN. For PCA-based machine learning classifiers, we have explored 

the effect of length (L) of PCA vectors obtained for EEG signals. To estimate fixed-length PCA 

vectors for a particular classifier irrespective of 2-class, 3-class or 5-class classification cases, we 

have determined the classification accuracies of that classifier by varying the length of PCA 

vectors from L = 1 to L = 100 at a step of 1. The accuracies provided by the classifier involving 

all classification cases of A-E, B-E, C-E, D-E, ABCD-E, AB-CD-E and A-B-C-D-E are then 

averaged to find the overall accuracy of that classifier corresponding to L. Such overall 

accuracies for using DT, KNN, NB, SVM and ANN with PCA vectors having different lengths 

are shown in Figure 5.  

 

Figure 5. The variation of overall classification accuracy with the length of PCA vectors. 

The results in Figure 5 signify that the overall accuracy offered by different classifiers varies 

significantly in accordance with the length (L) of the PCA vectors. It is seen in Figure 5 that the 

accuracies offered by DT, KNN, NB, SVM and ANN becomes highest for PCA vectors having L 

= 16, 7, 95, 25 and 94, respectively. Consequently, PCA vectors having these L values are finally 

used to evaluate the performances of corresponding PCA-based classifiers. It is worth to mention 

that the CNN classifier does not employ PCA and use the raw EEG signals directly for detecting 

the epileptic seizures. 

In this study with 5-fold cross validation, EEG signals involved in each case has been divided in 

to five folds, i.e., Fold-01, Fold-02, Fold-03, Fold-04 and Fold-05. The classification results of 

each classifier for each fold have been determined as confusion matrix. For instance, the 
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confusion matrices for each of the five folds for using CNN in 5-class (A-B-C-D-E) 

classification of EEG signals are shown in Figure 6. 

 

Figure 6. Confusion matrices for using CNN in 5-class classification.  

It is observed in each of the confusion matrices in Figure 6 that the proposed CNN classifier can 

successfully classify EEG signals and can detect epileptic seizures with very few errors. These 

confusion matrices are then used to compute the classification performances (i.e., accuracy, 

sensitivity, specificity and precision) of CNN classifier for each class of EEG signals by 

applying eqns. (7) - (10). For instances, the per-class performances for Fold-01 are presented in 

Table 3(a). The average performances of CNN classifier for Fold-01 are also included at the 

bottom of Table 3(a). In a similar fashion, the per-fold performances for each of the five folds 

are computed which has been shown in Table 3(b). The 5-fold average shown at the bottom of 

Table 3(b) is ultimately used to evaluate the performances of CNN classifier for 5-class 

classification in the detection of epileptic seizures. 

The results at the bottom of Table 3(b) show that the accuracy, sensitivity, specificity and 

precision for using CNN classifier in 5-class classification case are 96.32%, 90.80%, 97.70% and 

91.60%, respectively. Similarly, we have evaluated the performances of all 2-class, 3-class and 

5-class classifiers according to the arrangement of EEG signals listed in Table 1 and Table 2. 

The classification performances provided by different classifiers for different arrangement of 

EEG signals are plotted in Figure 7. 
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Table 3. Classification performances (a) for Fold-01 and (b) per-fold in 5-class classification 

using CNN classifier. 
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A 94.00 95.00 93.75 79.17 
 Fold-01-

Average 
96.00 90.00 97.50 90.61 

B 95.00 80.00 98.75 94.12 
 Fold-02-

Average 
96.80 92.00 98.00 92.16 

C 96.00 90.00 97.50 90.00 
 Fold-03-

Average 
93.60 84.00 96.00 86.52 

D 97.00 90.00 98.75 94.74 
 Fold-04-

Average 
98.00 95.00 98.75 95.49 

E 98.00 95.00 98.75 95.00 
 Fold-05-

Average 
97.20 93.00 98.25 93.23 

Fold-01 

average 
96.00 90.00 97.50 90.61 

 All-Fold-

Average 
96.32 90.80 97.70 91.60 

 

The performances of six different classifiers for all classification cases plotted in Figure 7 reveal 

that the performances of NB, SVM and CNN classifiers are much better than that of other three 

classifiers (i.e., DT, KNN and ANN). It is observed in Figure 7 that the use of NB, SVM and 

CNN can provide perfect classification with 100% accuracy, sensitivity, specificity and precision 

for A-E classification case. For 2-class classification of B-E and C-E cases, the accuracies 

offered by SVM are 99.50% and 98.50%, respectively. However, the use of both NB and CNN 

can attain perfect classification performance (i.e., 100%) for these two cases. The classification 

accuracy achieved by CNN for D-E case is 99.50%, which is significantly better than that 

achieved by both for using NB (93.00%) and SVM (91.00%). For 2-class classification of 

ABCD-E case, CNN with 99.80% accuracy also outperforms NB (97.80% accuracy) and SVM 

(96.80% accuracy). Besides 2-class classification of EEG signals, NB, SVM and CNN also 

perform better among six different classifiers adopted in this study. The classification accuracies 

provided NB, SVM and CNN adopted in this study for 2-class classification of EEG signals are 

comparable to that reported in the research works [12,14,17,23]. For 3-class classification of AB-

CD-E case, the accuracies accomplished by NB and SVM are 77.84% and 84.36%, respectively. 

For such 3-class classification case, CNN can manage to achieve much improved classification 

accuracy of 98.48%. This classification accuracy is better than 94.46% and 97.07% as reported 

in the research works [22,23], respectively. For 5-class classification of A-B-C-D-E case, CNN 

can outperform NB (82.64% accuracy) and SVM (82.08% accuracy) in this study with 96.32% 

accuracy as shown in Figure 7(a). This 5-class classification accuracy achieved in this study 



Bangladesh Journal of Medical Physics    Vol. 15, No.1, 2022 

39 

 

using CNN is also slightly better than 95.84% and 96% accuracies as reported in the research 

works [23,25]. The performances for all the classification cases presented in Figure 7 confirm 

that NB, SVM and CNN provides high-performance classification among six different machine 

learning classifiers adopted in this study. Among these six classifiers, CNN provides maximum 

classification performances for all cases of 2-class, 3-class and 5-class classification. The highest 

classification performances achieved in this study are listed in Table 4. 

 

 
Figure 7. (a) Accuracy, (b) sensitivity, (c) specificity and (d) precision for using different classifiers. 
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Table 4. Highest classification performances (%) achieved in this study. 

Classification Class Classifier Accuracy Sensitivity Specificity Precision 

2 - Class 

A-E NB, SVM, 

CNN 

100 100 100 100 

B-E NB, CNN 100 100 100 100 

C-E NB, CNN 100 100 100 100 

D-E CNN 99.50 99.50 99.50 99.52 

ABCD-E CNN 99.80 99.80 99.20 98.80 

3 - Class AB-CD-E CNN 98.48 98.00 98.67 98.08 

5 - Class A-B-C-D-

E 

CNN 96.32 90.80 97.70 91.60 
 

The classification performances presented in Table 4 manifest that the customized CNN 

classifier proposed in this study can attain perfect or near-perfect performances for the 

classification of EEG signals. This is due to the fact that CNN classifier exploits deep learning 

algorithm which is enormously capable to extract features from EEG signals. Considering all 

cases of 2-class, 3-class and 5-class classification of EEG signals, the classification performances 

achieved in this study have exhibited a reliable and efficient detection of epileptic seizures from 

EEG signals. 

Conclusions 

This paper presents a systematic study on the detection of epileptic seizures from EEG signals 

using machine learning classifiers. The reduced-length PCA vectors have been extracted 

successfully for the reduction of dimensionality of EEG signals. Then, a total of five machine 

learning classifiers (i.e., DT, KNN, NB, SVM and ANN) have been used to classify EEG signals 

by utilizing such PCA vectors. The proper length of PCA vectors to be effectively used by a 

particular classifier for all 2-class, 3-class and 5-class classification cases is determined 

systematically. We have also proposed the use of a customized CNN to classify raw EEG signals 

without applying PCA. The performances of these six classifiers have been analyzed and 

evaluated in terms of accuracy, sensitivity, specificity and precision. The results show that the 

use of NB and SVM with PCA can only offer perfect or near-perfect classification performances 

for some 2-class classification cases, but the classification performances of other PCA-based 

classifiers are not up to the mark. In addition, the classification performances of all of these 

PCA-based machine learning classifiers are not satisfactory for 3-class and 5-class classification 

cases. The results also exhibit that the customized CNN classifier proposed in this study 

performs best among a total of six different classifiers. The use of such CNN can attain 

classification performances in the range from 99.50% to 100% for 2-class classification cases. 

For 3-class case, the proposed CNN can achieve 98.48% accuracy, 98.00% sensitivity, 98.67% 

specificity and 98.08% precision. Such CNN can also offer much improved classification 

performances with 96.32% accuracy, 90.80% sensitivity, 97.70% specificity and 91.60% 

precision for 5-class case. The overall results signify that the proposed CNN classifier can 

achieve better accuracies irrespective of 2-class, 3-class and 5-class classification cases. Thus, 

CNN classifier can be an effective tool for the accurate detection of epileptic seizures from EEG 
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signals. We strongly believe that the approach adopted in this study will be a complementary tool 

to the medical staff for the accurate detection of epileptic seizures from EEG signals. 
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