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Original article
Gene co-expression analysis and Network biology studies in Indian population reveals functional 

similarities between Gastric cancer and other metabolic disorders
Blessantoli Mohandas1, J. Jannet Vennila2, Nikhil Ruban3

Abstract:
Objective: Gastric cancer (GC) is a multifactorial disease and known to have been associated 
with metabolic disorders.  Gene expression profiling among various GC populations will help to 
strategize diagnosis and treatment. The current study employed microarray data analysis (MDA) 
and network biology methods to understand the significant genes in a GC Indian population and 
its association with other metabolic disorders. Materials and Methods: The microarray datasets 
of GC Indian population (Bangalore) was retrieved from Gene Expression Omnibus (GEO), 
normalized and analyzed using GeneSpring. With the fold change of ± 1.5, the differentially 
expressed genes (DEG) were identified. An interactome was built to study interactions and 
generate gene clusters. Statistical (centrality) parameters were applied to identify highly connected 
clusters followed by functional enrichment to identify significant pathways associated with the 
GC genes. Results and Discussion: MDA identified 7181 DEGs (3984 up regulated genes and 
3197 down regulated) and the interactome yielded 16552 interactions and two sub clusters.  
Cluster 1 was found to be statistically fit. The functional characteristics of the significant genes 
in this cluster revealed their association with adrenal cortex hormone insufficiency, thyroid 
disorders and deficiencies in kidney water resorption. Conclusion: It is inferred from our study 
that, deficiency in Thyroid, Adrenal hormones and Antidiuretic hormone (ADH) functions has 
fair share in the prognosis and pathogenesis of GC Indian population.  Henceforth, GC should 
not be viewed as separate entity in the series of cancers and gene expression profiling will help 
in improvising personalized medicine.
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Introduction 

Gastric cancer (GC) or Stomach cancer is the fifth 
most predominant cancer in the world, accounting 
with 7,23,000 cancer death rate per year and the third 
most prevalent cause of cancer-related mortality1. 
Approximately 50% of GC people live in East Asia, 
Southern Asia and China, primarily may be due 

to poor dietary patterns and Helicobacter pylori 
infection2. In the early phase, GC is asymptomatic 
and therefore 80 to 90% of GC patients are diagnosed 
only in advanced stage. Defining new molecular 
genetic markers through gene expression profiling 
would help in better understanding of the GC 
prognosis. The GC gene expression pattern varies 
among populations depending on genetic makeup, 
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dietary pattern and environmental influence.   The 
genes involved in other metabolic pathways can also 
be deemed to be significant in GC pathogenesis and 
progression.  Although records have shown 57,394 
increasing new cases in India1, there are only very 
few data available on gene expression profiling in GC 
Indian population. This study focused on systematic 
evaluation of expression and network analysis of 
significant genes in GC and maps their relevance to 
important molecular/ metabolic mechanism. This 
will help to strategize diagnosis, development and 
treatment process in GC Indian population. 
Method
Data selection: Microarray dataset of GC, Bangalore, 
India was retrieved (GSE 22804) from Gene 
Expression Omnibus (GEO). The dataset comprised 
of surgically resected GC samples and their paired 
disease-free peripheral nonmalignant tissue. Figure 1 
gives the flowchart of the methodology adopted out 
in this study.  

Figure 1: Schema charted in the study

Microarray data analysis (MDA): The Microarray 
Data Analysis (MDA) was carried out using 
GeneSpring GX 12.6.1, an Agilent microarray data 
analysis software9. Normalization of the dataset 
was performed using Percentile shift algorithm for 
Agilent platform array10.  The differentially expressed 
genes (DEGs) were identified (Fold change of ± 1.5) 
and were categorized into ‘up’ and ‘down’ regulated 
based on fold change.  
Network studies: The gene-gene correlation of all the 
DEGs was studied using Cladist12. The Interactome 
of the DEGs was built using Cytoscape 3.2.0 (http://
cytoscape.org)13. With the help of GC marker genes 
reported in earlier studies (TP5326, IL1B27, IL1RN28, 
VEGFA29, TNF30, CDH131,  CLDN132,   CLRN333,  
INHBA34, and SULF135), their first neighboring genes 
were selected in the network and a subnetwork was 
built. The interactions were further enriched using 
Bisogenet (Cytoscape plugin).  Molecular Complex 
Detection (MCODE) was implemented to identify 
densely connected regions in GC networks (sub-
clusters). K-core algorithm was used to identify the 
highly interconnected nodes (genes) in the network 
using MCODE. Centrality measures were used to 
predict the hub genes (highly connected genes) and 
to identify the node’s functional gene. Using the 
Cytoscape plugin Network Analyzer, the topological 
and statistical understandings of each sub-clusters 
were calculated. Centrality parameters - betweeness 
centrality (BC), closeness centrality (CC), Cluster 
Coefficient (CLC), degree and topological centrality 
(TC) were considered to validate the prominence 
of biological network16 to predict highly connected 
genes which are denoted as “significant genes”. 
WebGestalt and ToppGene were used to examine the 
functional characteristics of the significant genes23,24. 
The pathways which represent many of the significant 
genes were studied to establish their correlation with 
other metabolic functions.
Ethical clearance: Not applicable
Results 
Microarray Data Analysis: GC dataset of Indian 
Population (GSE22804) contained 28 samples (14 
GC patients and 14 normal of the same patient). 
Grouping of the dataset was done as ‘normal’ and 
‘diseased’. Based on the fold change cut off (±1.5) 
and p-value (0.05) the differentially expressed genes 
(DEGs) were selected. 3984 up regulated genes and 
3197 down regulated genes were identified.
Network construction and analysis: The above 
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DEGs were analyzed for gene-gene correlation 
which revealed additional 15,586,704 co-expressed 
genes for up regulated and 10,220,809 for down 
regulated genes respectively. Among these genes, 
5611 upregulated and 1,92,156 downregulated 
genes were observed to be statistically correlated (r 
value ≥ 0.9).  These genes were merged together to 
build the interactome. The network was extended 
with enrichment of additional interactions using 
Bisogenet. And the network enriched with 16552 
edges (interactions).

Identification of highly connected sub-clusters in 
interactome: K-core algorithm (MCODE) was used 
to identify the highly interconnected nodes (genes) in 
the network and two highly interconnected clusters 
were extracted from the interactome. 

Topological and Centrality measures: Based on the 
topological and centrality measures, the cluster 1 was 
found to be statistically fit with R2 value ≥ 0.9 and 
predicted to possess more number of functional and 
significantly relevant genes. 

Functional enrichment for the significant cluster: 
The functional enrichment of the cluster 1 genes 
was performed further for identifying the significant 
pathways associated with the GC genes (Table 1). 

Table 1: Significant pathways associated with GC 
genes

Pathways Total 
genes 

Genes 
common 

to GC
P value

Thyroid hormone synthesisb 72 5 0.0016

Autoimmune thyroid diseaseb 47 3 0.0018

Proximal tubule bicarbonate 
reclamationc 23 3 0.0025

Toll-like receptor signaling 
pathway 99 4 0.0031

Adrenal cortex hormone 
insufficiency pathwaya 147 5 0.0031

Fatty acid biosynthesis 12 2 0.0087

Bile secretion 68 4 0.0088

Vasopressin-regulated water 
reabsorptionc 42 3 0.0137

Endocrine and other factor-
regulated calcium reabsorption 46 3 0.0175

Cytosolic DNA-sensing pathway 57 3 0.0307

 aAdrenal cortex hormone insufficiency disorders; 
bthyroid disorders; cdeficiency in kidney water 
reabsorption. Statistical significance of P≤0.05

It can be inferred from Table 1, that genes associated 
with GC are also significant in pathways associated 
with Adrenal cortex hormone insufficiency (5 genes), 
thyroid disorders (8 genes) and deficiencies in kidney 
water reabsorption (6 genes). The possible role of 
these GC genes in interconnecting with the above 
metabolic disorders is diagrammatically explained in 
Figure 2. 
APC-Adenomatous polyposis coli, SOD -Superoxide 
dismutase, ADH-Antidiuretic hormone, ATP1B4- 
ATPase Na+/K+ Transporting Family Member Beta 
4, TSHR - Thyroid Stimulating Hormone Receptor, 
IFNA8- Interferon Alpha 8, SLC26A4- Solute Carrier 
Family 26 Member 4, GNAS- Guanine Nucleotide 
Binding Protein (G Protein) Alpha Stimulating 
Activity Polypeptide, PDE11A- Phosphodiesterase 
11A, KMT2A- Lysine Methyltransferase 2A, 
WNT8B- Wnt Family Member 8B, AIPL1- Aryl 
Hydrocarbon Receptor Interacting Protein Like 1, 
DYNC2H1-Dynein Cytoplasmic 2 Heavy Chain 
1.  Red arrows represent up-regulation and Green 
arrows represent down-regulation
Discussion
Gastric cancer and metabolic disorders: Functional 
Similarities
Gastric cancer and thyroid disorders: The risk 
factors in GC are associated with thyroid disease and 
vice versa7. A study by Carvalho and Fighera37 has 
shown that the prevalence of gastrointestinal diseases 
increased in patients with autoimmune thyroid 
dysfunction. Similarly, in autoimmune thyroid 
disorder celiac disease the atrophic gastritis are highly 
prevalent38. It is assumed that the development of 
certain gastric cancers involves dietary iodine which 
is also related to thyroid dysfunction39. The reason 
could be morphological and functional similarities of 
stomach and thyroid tissue which use the membrane 
active transport movement mechanism to concentrate 
iodides. And thyroid hormone is also a potent cofactor 
for tumor-suppressing genes40. 
Gastric cancer and deficiency in Kidney water 
reabsorption: Inadequate antidiuretic hormone 
(ADH) leads to hyponatremia and excessive water 
reabsorption. Prolonged nausea and vomiting in 
hyponatremia may disturb the digestive system and 
induce GC42. 
Gastric cancer and Adrenal cortex hormone 
insufficiency: Chabre and his research team have 
observed that the abnormal expression of gastric 
inhibitory polypeptide (GIP) receptor enables 
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Figure 2: Possible interconnectivity of GC genes with other metabolic disorders

adrenocortical cells to react to food intake, with a 
cAMP increase in which both cortisol secretion and 
tumor proliferation can be stimulated43. GIP and 
Glucagon can regulate the gastric acid secretion 
in humans. GIP is also a potent releaser of gastric 
somatostatin, a secretion acid inhibitor in vivo and 
in vitro44.  GIP receptor may also play a role in the 
development of tumor cells. The GIP effects were 
similar to the effects of ACTH on tumor cells. 
Conclusions
Gastric cancer (GC) is a heterogeneous disease 
known to associate with environmental and genetic 
predisposing factors45. And from our network 
biology study in Indian population and reports on 
previous literatures, it was evident that, GC has 
close association with other metabolic disorders. 
Deficiency in Thyroid, Adrenal hormones and 
Antidiuretic hormone (ADH) functions has been 
found to have distinguished share in the prognosis 
and pathogenesis of GC. It is suggested that GC 
should not be viewed as separate entity in the series 
of cancers. GC may arise due to defective functions 
of the above said metabolic disorders. Therefore, a, 
multilevel screening of metabolic functions and gene 
expression profiling is suggested before the treatment 

of GC, could pave a better solution in treatment 
strategy. In addition, as genetic predisposition 
is an important feature in GC, the markers may 
not be universal for all the patients worldwide. 
Populations wise gene expression profiling can be 
more appropriate. It is recommended that GC gene 
expression profiling of different populations within 
India could still validate the above findings.
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