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Review article

Oxidative Stress and Aging
Neki NS

Abstract:
Ageing is an inevitable life process characterized by a gradual functional decline of all organ 
systems occurring at the cellular, tissue, organ and whole body levels further leading to the 
development of diseases and finally death. Although aging is a normal physiological process, 
it can be accelerated during oxidative stress or during chronic inflammatory conditions. An 
appropriate theory must explain four main characteristics of ageing: it is endogenous, 
progressive, irreversible and deleterious for the individual. Oxidative stress is caused by 
imbalance between oxidants and antioxidants. Reactive Oxygen Species (ROS) not only cause 
cell damage, but are also involved in intracellular signaling. ROS include superoxide (O2-), 
hydrogen peroxide (H2O2), hydroxyl radical (OH-) and peroxynitrite. Various enzyme systems 
produce ROS including the mitochondrial electron transport chain, cytochrome P450, 
lipoxygenase, cyclooxygenase, the NADPH oxidase complex, xanthine oxidase and 
peroxisomes. More research is needed to explain the exact mechanisms related to ageing and 
oxidative stress.
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Introduction
People	all	over	the	world	are	now	living	longer	than	
before,	mainly	due	to	the	improvement	in	the	health	
sector,	treatment	of	infectious	diseases	and	possibly	
better nutrition 1.			Ageing	is	a	complex	and	adaptive	
process	 characterized	 by	 diminished	 homeostatic	
response	 resulting	 from	 accumulated	 physiologic,	
biochemical,	 psychological	 and	 social	 wear	 on	 the	
organism overtime 2 that leads to morbidity and 
mortality 3. According to Strechler and Mildvan, 
ageing	is	defined	as	universal,	progressive,	intrinsic	
and	degenerative	process.4 

The	 term	 oxidative	 stress	was	 first	 used	 in	
1950	by	researchers	who	described	the	toxic	effects	
of ionizing radiation, free radicals and oxygen 5 and 
the	 cumalative	 adverse	 effects	 of	 such	 processes	
responsible	for	the	phenomenon	of	ageing	6. Oxidative 
stress has been correlated to ageing and many other 
conditions such as Alzheimer disease, cardiovascular 
disease,	 diabetes,	 Parkinson’s	 disease,	 Huntington’	
s disease, cataract and cancers 7-11.	There	are	many	
theories	of	the	aging	process,	but	they	can	be	classified	
into	 evolutionary	 	 and	 physiologic.	 Physiological	
processes	that	may	explain	ageing	include	oxidative	
stress, immunologic, neuroendocrinologic, metabolic 
, insulin signalling and caloric restriction. According 
to the theory of evolution, natural selection declines 

with	 age.12	 This	 theory	 suggests	 that	 ageing	 will	
result	 from	 accumulation	 of	 multiple	 unrepaired	
faults	.	The	Disposable	soma	theory	13 also resembles 
antagonistic	pleiotropy,	but	differs	from	the	latter	in	
terms	 of	 resource	 allocation	 between	 reproduction	
and	somatic	maintenance.	The	free	radical	theory	of	
ageing	is	the	most	updated	theory	and	the	concept	of	
free	radicals	playing	a	role	was	described	by	Harman	
1956	7.	Elevations	in	the	levels	of	oxidizing	species	
generation	 from	 phagocytes	without	 a	 concomitant	
rise	in	the	reducing	power	was	shown	starting	at	age	40	
in	spite	of	marked	fall	in	the	reducing	power	starting	
at only year 50 14. Oxidative stress has been associated 
with	 atherosclerosis	 and	 cardiovascular	 disease	 15, 
schizophrenia	 or	 atlentran	 deficit	 hypersensitivty	
disease 16.	Although	 the	oxidative	 stress	hypothesis	
of	aging	continues	to	be	related	to	pathophysiological	
alterations	,	yet	it	is	also	a	subject	of	ongoing	debate	
17. Much controversy regarding the role of reedox
homeostasis in ageing is based on the fact that most 
research	 on	 ROS	 dependent	 mechanisms	 has	 been	
done	 on	 species	 which	 are	 relatively	 short	 lived	 .	
But researchers in favour of this oxidative stress 
theory 18	 focus	 on	 phylogenetically	 diverse	 species	
with	extreme	longevity	and	identifying	the	causative	
mechanisms			making	them	differentiated	from	short	
lived	related	species	19.	Although	the	ageing	process	
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seems	to	be	similar	among	mammalian	species,	yet	
the	 state	 of	 ageing	 differs	 remarkably	 from	 short	
lived	species	such	as	mice	(which	live	upto	4	yrs	of	
age)	to	humans	(who	may	live	more	than	100		yrs)	
or	 certain	 whale	 species,	 which	 may	 live	 multiple	
centuries 20.	Previous	studies	proved	to	be	markedly	
useful	 in	comparing	 the	oxidative	stress	hypothesis	
of	ageing	in	mammalian	and	avien	species	21,	22.
Many	ROS	species	are	involved	in	oxidative	damage	
in	 cells	 causing	 	 modification	 of	 the	 free	 radical	
theory of ageing 23.	Long	lived	species	have		shown	
reduced oxidative damage 24, reduced mitochondrial 
ROS	production	25,26, increased antioxidant defenses 
27-29 and increased resistance to oxidative stress  both 
in vivo and in vitro 30-32.	 However,	 some	 studies	
have	 shown	 that	 there	 is	 no	 correlation	 between	
oxidation	with	life	span	or	even	longer	life	span	has	
been	 correlated	with	 increase	 in	 oxidative	 stress	 33-

35. The	results	of	life	span	studies	from	invertebrate
models have been confusing so that some models 
show	 significant	 alterations	 in	 life	 span,	 but	 others	
may	 not	 show	 .complex	 alteration.36,37.	 However,	
over	 expression	of	 these	 antioxidants	might	 extend	
the	 life	 span	 of	 this	 model	 organism	 38. On the 
other	hand,	superoxide	dismutase	 in	roundworm	C.	
elegans	may	not	show	any	change	in	lifespan	or	may	
show	 increased	 life	 span,	 although	 the	 sensitivity	
of	 worms	 to	 oxidative	 stress	 is	 increased	 and	 the	
accumulation	of	oxidized	proteins	 is	enhanced	 39-41. 
In	Drosophilia,	over	expression	of	these	enzymes	and	
various antioxidants such as catalase, thioredoxin and 
methionine sulfoxide reductase has either enhanced 
the	life	span	or	had	no	effect	42-45.
The	life	span	in	females	and	males	is	also	different.	
Jose Vina et al 46have	shown	that	females	live	longer	
than males. Borras C in their study47 in mice and 
rats	have	shown	that	mitochondria	from	female	rats	
produce	about	half	the	amount	of	H2O2	as	compared	
to male rats. Moreover, ovarian hormones such 
as	 estrogens	 have	 correlation	 with	 mitochondrial	
H2O2	 production.	 	 However,	 with	 the	 estrogen	
replacement	 therapy,	 the	observed	 increase	 in	H2O2 
production	 as	 a	 result	 of	 ovariectomy	 was	 totally	
abolished.	Estradiol	upregulates	GPX	and	Mn-SOD	
expression	 mediated	 by	 NFĸB	 48.	 Various	 workers	
have	shown	that	the	expression	of	NADPH	oxidase	
is higher among males than females and this leads 
to	increased	NADPH	oxidase	dependent	superoxide	
anion	formation	in	males	as	compared	to	females	in	
the aorta 49,50 and in the cerebral vasculature 51. Pinto 
et al 52	reported	that	glutathione	peroxidase	activity	
was	higher	in	females	than	males.	But	these	authors	

did not relate this fact to the different longevity 
between	 males	 and	 females.	 Molecular	 expression	
of	 glutathione	 peroxidase	 gene	 is	markedly	 low	 in	
males	as	compared	to	females	53.
Regarding	 survival	 (repair)	 responses	 to	 oxidative	
stress	 and	 ageing,	 several	 DNA	 repair	 systems	
have	been	developed	depending	upon	various	DNA	
lesions. 54. In humans and mice, mutations in certain 
DNA	repair	genes	cause	phenotypes	of	ageing	 55-57. 
The	 capacity	 of	 base	 excision	 repair	 declines	with	
aging,	 accompanied	 by	 decrease	 in	 the	 activity	 of	
8-oxoguanine-DNA	glycosylase	(Ogg1).	As	a	result,	
8-oxoguanine	lesions	accumulate	with	ageing.	58
In	 mammalian	 cells,	 heat	 shock	 proteins	 (HSP)	 is	
synthesized	on	exposure	to	oxidative	stress	after	the	
heat	scock	response	is	activated	and	translocated	to	
the	nucleus	of	one	or	more	heat	shock	transcription	
factors.	These	factors	control	the	expression	of	a	set	
of	 genes	 encoding	 cytoprotective	HSP	 59.	The	HSP	
expression	increases	with	ageing	in	rats	in	response	
to	age	associated	accumulation	of	protein	damage	by	
oxidation.60. 
Regarding methylglyoxal, high levels can increase 
ROS	 production	 and	 cause	 oxidative	 stress.	
Methylglyoxal,	is	a	highly	recative	electrophilic	and	
β-dicarbonyl	 aldehyde	 compound	 formed	 mainly	
during glycolysis 61,62. Plasma methylglyoxal are 
increased in diabetes 63. Increased methylglyoxal 
and	 other	 reactive	 aldehydes	 like	 glyoxal	 and	
3-deoxyglucosome (3-DG) leads to carbonyl overload 
and stress 64	in	many	candidates	like	hypertension	65, 
atherosclirosis 66, diabetes 67, and neurodegenetive 
disease 68. But studies 69	 in	 hypertensives	 	 have	
shown	the	increased	MG	formation	could	be	due	to	
increased	production	rather	than	reduced	degredatio	
.	 Activity	 of	 the	 glyoxalase	 system	 depends	 	 on		
adequate	levels	of	GSH	70.	However	MG	makes	cells	
more	sensitive	to	oxidative	stress	by	depleting	GSH	
71	&	oxidative	stress	also	depletes	GSH	72. MG leads 
to	increased	production	of	superoxide	and	oxidative	
stress 73	through	its	actions	on	mitochondria,	provide	
ATP	 for	 body	 use	 and	 also	 generate	 about	 85%	of	
toatal	intracellular	superoxide	during	the	process	of	
energy	production	 74. A study by KM Desai et al 75 
has	shown	that	MG	causes	mitochondrial	oxidative	
stress by increasing the generation of mitochondrial 
superoxide,	nitric	acid	and	peroxynitrite	and	also	the	
activities	of	Mn-Sod	and	complex	III	are	significantly	
reduced by MG. MG can also cause oxidative stress 
indirectly through generation of most intracellular 
and extracellular AGES 76. Advanced glycation end 
produces	 (AGES)	 are	 also	 correlated	 to	 ageing,	
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diabetes,	 inflammation	 and	 neurodegeneration	 77 
AGES also contribute to many other chronic diseases 
like	 nephropathy,	 vascular	 disease,	 amilodosis	 and	
cancer	 via	 binding	 to	 cellular	 surface	 receptors	
(RAGE) 78 ROS are involved in AGE signalling 
through RAGE 79.
Genotoxicity of AGES involves oxidative stress and 
angiotensin	 2,	 type	 1	 receptors	 80. AGES regulate 
expression	of	vascular	endothelial	growth	factors	81  
and	induce	apoptosis	in	fibroblasts	through	activation	
of ROS 82.	The	 function	 of	 retinal	microglia	 in	 rat	
may	be	altered	by	AGES	by	up	regulating	TNF-alpha	
expression	and	formation	of	ROS,	which	can	further	
activate	 other	 signalling	 pathways	 83. RAGE is 
involved	in	the	pathogenesis	of	ischemia	reperfusion	
injury	 84	 and	 inflammatory	 reactions	 during	 tumor	
development	 85. AGES also increase endothelio 
permeability	 86.	 Recently	 developed	 compound	
called alagebrium  may be useful in reducing MG 
and ultimately AGES induced oxidative stress, thus 
slowing	the	ageing	process	87. Alagebrium in addition 
to	other	beneficial	 effects,	 also	 increased	SOD	and	
glutathione	peroxidase	activities	in	ageing	hearts	and	
cultured cardio myocytes 88.
Caloric	 restriction	 is	 known	 to	 reduce	 oxidative	
stress	and	prevent	or	slow	the	process	of	ageing	by	
reducing	the	metabolism	of	ROS	production.	This	will	
further	 prevent	 oxidative	 damage	 to	 biomolecules,	
prolonging	the	lifespan.	Roux	et	al	89	has	shown	the	
beneficial	effect	of	caloric	restriction	in	fission	yeast	
schizosaccharomyces	peombe.	A	study	by	Hippkiss	

90,91	has	shown	that	intermittent	feeding	can	produce	
metabolic	effects	similar	to	those	produced	by	caloric	
restriction such as reduced formation of MG and 
help	 in	delaying	of	 ageing	process	 thus	prolonging	
the	life	span.	This	is	an	adaptive	response	known	as	
hormesis,	which	increases	life	span.
Sirtuin	 SIRT	 1	 expression	 and	 activation	 can	 be	
affected	 by	 many	 cellular	 conditions	 like	 caloric	
restriction, exercise and oxidative stress. Sirtuins 
are	mammalian	homologues	of	Sir2	and	are	class	III	
histone deacetylases.
There	 is	 need	 for	 more	 research	 to	 determine	 the	
exact mechanisms related to ageing and oxidative 
stress	with	further	aim	to	postpone	senescence	or	age	
with	 utmost	 health.	 New	 antioxidant	 strategies	 are	
needed	 to	 clarify	 the	 role	of	 antioxidant	 therapy	 in	
cardiovascular diseases.
Conclusion
Ageing	is	a	multifactorial	process	involving	changes	
at	the	level	of	cell,	tissue,	organ	and	the	whole	body	
resulting	 in	 decreased	 functioning,	 development	 of	
diseases and ultimately death. So oxidative stress is 
the	consequence	of	 an	excess	of	metabolic	oxidant	
species	 at	 the	 level	 of	 biomolecules	 and	 is	 related	
to ageing and age related diseases. So oxidative 
stress	 is	 caused	 by	 imbalance	 between	 oxidants	
and antioxidants. Among all the theories of ageing, 
the	most	updated	one	describes	 the	 role	of	ROS	 in	
the	 ageing	 process.	 Further	 research	 is	 needed	 to	
establish the exact mechanisms related to ageing and 
oxidative stress.
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