
688

Bangladesh Journal of Medical Science Vol. 21 No. 03 July’22

Original article
Gene co-expression analysis and Network biology studies in Indian population reveals functional 

similarities between Gastric cancer and other metabolic disorders
Blessantoli Mohandas1, J. Jannet Vennila2, Nikhil Ruban3

Abstract:
Objective: Gastric	cancer	(GC)	is	a	multifactorial	disease	and	known	to	have	been	associated	
with	metabolic	disorders.		Gene	expression	profiling	among	various	GC	populations	will	help	to	
strategize diagnosis and treatment. The current study employed microarray data analysis (MDA) 
and	network	biology	methods	to	understand	the	significant	genes	in	a	GC	Indian	population	and	
its association with other metabolic disorders. Materials and Methods: The microarray datasets 
of	GC	Indian	population	 (Bangalore)	was	 retrieved	from	Gene	Expression	Omnibus	 (GEO),	
normalized	and	analyzed	using	GeneSpring.	With	the	fold	change	of	±	1.5,	 the	differentially	
expressed	 genes	 (DEG)	were	 identified.	An	 interactome	was	 built	 to	 study	 interactions	 and	
generate gene clusters. Statistical (centrality) parameters were applied to identify highly connected 
clusters	followed	by	functional	enrichment	to	identify	significant	pathways	associated	with	the	
GC genes. Results and Discussion:	MDA	identified	7181	DEGs	(3984	up	regulated	genes	and	
3197	down	 regulated)	 and	 the	 interactome	yielded	 16552	 interactions	 and	 two	 sub	 clusters.		
Cluster	1	was	found	to	be	statistically	fit.	The	functional	characteristics	of	the	significant	genes	
in	 this	 cluster	 revealed	 their	 association	with	 adrenal	 cortex	 hormone	 insufficiency,	 thyroid	
disorders	and	deficiencies	in	kidney	water	resorption.	Conclusion:	It	is	inferred	from	our	study	
that,	deficiency	in	Thyroid,	Adrenal	hormones	and	Antidiuretic	hormone	(ADH)	functions	has	
fair	share	in	the	prognosis	and	pathogenesis	of	GC	Indian	population.		Henceforth,	GC	should	
not	be	viewed	as	separate	entity	in	the	series	of	cancers	and	gene	expression	profiling	will	help	
in improvising personalized medicine.
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Introduction 

Gastric	 cancer	 (GC)	or	Stomach	 cancer	 is	 the	fifth	
most predominant cancer in the world, accounting 
with	7,23,000	cancer	death	rate	per	year	and	the	third	
most prevalent cause of cancer-related mortality1. 
Approximately	50%	of	GC	people	live	in	East	Asia,	
Southern Asia and China, primarily may be due 

to poor dietary patterns and Helicobacter pylori 
infection2. In the early phase, GC is asymptomatic 
and	therefore	80	to	90%	of	GC	patients	are	diagnosed	
only	 in	 advanced	 stage.	 Defining	 new	 molecular	
genetic	 markers	 through	 gene	 expression	 profiling	
would help in better understanding of the GC 
prognosis.	 The	 GC	 gene	 expression	 pattern	 varies	
among	 populations	 depending	 on	 genetic	 makeup,	
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dietary	 pattern	 and	 environmental	 influence.	 	 The	
genes involved in other metabolic pathways can also 
be	deemed	to	be	significant	in	GC	pathogenesis	and	
progression.	 	Although	 records	have	 shown	57,394	
increasing new cases in India1, there are only very 
few	data	available	on	gene	expression	profiling	in	GC	
Indian population. This study focused on systematic 
evaluation	 of	 expression	 and	 network	 analysis	 of	
significant	genes	in	GC	and	maps	their	relevance	to	
important molecular/ metabolic mechanism. This 
will help to strategize diagnosis, development and 
treatment process in GC Indian population. 
Method
Data selection: Microarray dataset of GC, Bangalore, 
India	 was	 retrieved	 (GSE	 22804)	 from	 Gene	
Expression	Omnibus	(GEO).	The	dataset	comprised	
of surgically resected GC samples and their paired 
disease-free peripheral nonmalignant tissue. Figure 1 
gives	the	flowchart	of	the	methodology	adopted	out	
in this study.  

Figure 1: Schema charted in the study

Microarray data analysis (MDA):	The	Microarray	
Data Analysis (MDA) was carried out using 
GeneSpring	GX	12.6.1,	an	Agilent	microarray	data	
analysis software9. Normalization of the dataset 
was performed using Percentile shift algorithm for 
Agilent platform array10.		The	differentially	expressed	
genes	(DEGs)	were	identified	(Fold	change	of	±	1.5)	
and were categorized into ‘up’ and ‘down’ regulated 
based on fold change.  
Network studies: The gene-gene correlation of all the 
DEGs	was	studied	using	Cladist12. The Interactome 
of	the	DEGs	was	built	using	Cytoscape	3.2.0	(http://
cytoscape.org)13.	With	the	help	of	GC	marker	genes	
reported	in	earlier	studies	(TP5326, IL1B27, IL1RN28, 
VEGFA29, TNF30,	 CDH131,  CLDN132,	 	 CLRN333,  
INHBA34, and SULF135),	their	first	neighboring	genes	
were	selected	in	the	network	and	a	subnetwork	was	
built. The interactions were further enriched using 
Bisogenet	(Cytoscape	plugin).		Molecular	Complex	
Detection	 (MCODE)	 was	 implemented	 to	 identify	
densely	 connected	 regions	 in	 GC	 networks	 (sub-
clusters). K-core algorithm was used to identify the 
highly	interconnected	nodes	(genes)	 in	the	network	
using	 MCODE.	 Centrality	 measures	 were	 used	 to	
predict the hub genes (highly connected genes) and 
to identify the node’s functional gene. Using the 
Cytoscape	plugin	Network	Analyzer,	the	topological	
and statistical understandings of each sub-clusters 
were calculated. Centrality parameters - betweeness 
centrality (BC), closeness centrality (CC), Cluster 
Coefficient	(CLC),	degree	and	topological	centrality	
(TC) were considered to validate the prominence 
of	biological	network16 to predict highly connected 
genes	 which	 are	 denoted	 as	 “significant	 genes”.	
WebGestalt	and	ToppGene	were	used	to	examine	the	
functional	characteristics	of	the	significant	genes23,24. 
The	pathways	which	represent	many	of	the	significant	
genes were studied to establish their correlation with 
other metabolic functions.
Ethical clearance: Not applicable
Results 
Microarray Data Analysis: GC dataset of Indian 
Population	 (GSE22804)	 contained	 28	 samples	 (14	
GC patients and 14 normal of the same patient). 
Grouping of the dataset was done as ‘normal’ and 
‘diseased’.	Based	on	 the	 fold	change	cut	off	(±1.5)	
and	p-value	(0.05)	the	differentially	expressed	genes	
(DEGs)	were	selected.	3984	up	regulated	genes	and	
3197	down	regulated	genes	were	identified.
Network construction and analysis: The above 
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DEGs	 were	 analyzed	 for	 gene-gene	 correlation	
which	 revealed	 additional	 15,586,704	 co-expressed	
genes for up regulated and 10,220,809 for down 
regulated genes respectively. Among these genes, 
5611	 upregulated	 and	 1,92,156	 downregulated	
genes were observed to be statistically correlated (r 
value	≥	0.9).		These	genes	were	merged	together	to	
build	 the	 interactome.	 The	 network	 was	 extended	
with enrichment of additional interactions using 
Bisogenet.	 And	 the	 network	 enriched	 with	 16552	
edges (interactions).

Identification of highly connected sub-clusters in 
interactome: K-core	algorithm	(MCODE)	was	used	
to identify the highly interconnected nodes (genes) in 
the	network	and	 two	highly	 interconnected	clusters	
were	extracted	from	the	interactome.	

Topological and Centrality measures: Based on the 
topological and centrality measures, the cluster 1 was 
found	 to	be	 statistically	fit	with	R2 value	≥	0.9	and	
predicted to possess more number of functional and 
significantly	relevant	genes.	

Functional enrichment for the significant cluster: 
The functional enrichment of the cluster 1 genes 
was	performed	further	for	identifying	the	significant	
pathways associated with the GC genes (Table 1). 

Table 1: Significant pathways associated with GC 
genes

Pathways Total 
genes 

Genes 
common 

to GC
P value

Thyroid hormone synthesisb 72 5 0.0016

Autoimmune thyroid diseaseb 47 3 0.0018

Proximal	tubule	bicarbonate	
reclamationc 23 3 0.0025

Toll-like	receptor	signaling	
pathway 99 4 0.0031

Adrenal	cortex	hormone	
insufficiency	pathwaya 147 5 0.0031

Fatty acid biosynthesis 12 2 0.0087

Bile secretion 68 4 0.0088

Vasopressin-regulated water 
reabsorptionc 42 3 0.0137

Endocrine	and	other	factor-
regulated calcium reabsorption 46 3 0.0175

Cytosolic DNA-sensing pathway 57 3 0.0307

 aAdrenal	cortex	hormone	insufficiency	disorders;	
bthyroid	disorders;	cdeficiency	in	kidney	water	
reabsorption.	Statistical	significance	of	P≤0.05

It can be inferred from Table 1, that genes associated 
with	GC	are	also	significant	in	pathways	associated	
with	Adrenal	cortex	hormone	insufficiency	(5	genes),	
thyroid	disorders	(8	genes)	and	deficiencies	in	kidney	
water	 reabsorption	 (6	 genes).	 The	 possible	 role	 of	
these GC genes in interconnecting with the above 
metabolic	disorders	is	diagrammatically	explained	in	
Figure 2. 
APC-Adenomatous	polyposis	coli,	SOD	-Superoxide	
dismutase,	 ADH-Antidiuretic	 hormone,	 ATP1B4-	
ATPase	Na+/K+	Transporting	Family	Member	Beta	
4,	TSHR	-	Thyroid	Stimulating	Hormone	Receptor,	
IFNA8-	Interferon	Alpha	8,	SLC26A4-	Solute	Carrier	
Family	26	Member	4,	GNAS-	Guanine	Nucleotide	
Binding Protein (G Protein) Alpha Stimulating 
Activity	 Polypeptide,	 PDE11A-	 Phosphodiesterase	
11A, KMT2A- Lysine Methyltransferase 2A, 
WNT8B- Wnt Family Member 8B, AIPL1- Aryl 
Hydrocarbon	 Receptor	 Interacting	 Protein	 Like	 1,	
DYNC2H1-Dynein	 Cytoplasmic	 2	 Heavy	 Chain	
1.  Red arrows represent up-regulation and Green 
arrows represent down-regulation
Discussion
Gastric cancer and metabolic disorders: Functional 
Similarities
Gastric cancer and thyroid disorders: The	 risk	
factors in GC are associated with thyroid disease and 
vice versa7. A study by Carvalho and Fighera37	has 
shown that the prevalence of gastrointestinal diseases 
increased in patients with autoimmune thyroid 
dysfunction. Similarly, in autoimmune thyroid 
disorder celiac disease the atrophic gastritis are highly 
prevalent38. It is assumed that the development of 
certain gastric cancers involves dietary iodine which 
is also related to thyroid dysfunction39. The reason 
could be morphological and functional similarities of 
stomach and thyroid tissue which use the membrane 
active transport movement mechanism to concentrate 
iodides. And thyroid hormone is also a potent cofactor 
for tumor-suppressing genes40. 
Gastric cancer and deficiency in Kidney water 
reabsorption: Inadequate	 antidiuretic	 hormone	
(ADH)	 leads	 to	 hyponatremia	 and	 excessive	water	
reabsorption. Prolonged nausea and vomiting in 
hyponatremia may disturb the digestive system and 
induce GC42. 
Gastric cancer and Adrenal cortex hormone 
insufficiency: Chabre and his research team have 
observed	 that	 the	 abnormal	 expression	 of	 gastric	
inhibitory polypeptide (GIP) receptor enables 
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Figure 2: Possible interconnectivity of GC genes with other metabolic disorders

adrenocortical	 cells	 to	 react	 to	 food	 intake,	 with	 a	
cAMP increase in which both cortisol secretion and 
tumor proliferation can be stimulated43. GIP and 
Glucagon can regulate the gastric acid secretion 
in humans. GIP is also a potent releaser of gastric 
somatostatin, a secretion acid inhibitor in vivo and 
in vitro44.  GIP receptor may also play a role in the 
development	 of	 tumor	 cells.	 The	 GIP	 effects	 were	
similar	to	the	effects	of	ACTH	on	tumor	cells.	
Conclusions
Gastric cancer (GC) is a heterogeneous disease 
known	to	associate	with	environmental	and	genetic	
predisposing factors45.	 And	 from	 our	 network	
biology study in Indian population and reports on 
previous literatures, it was evident that, GC has 
close association with other metabolic disorders. 
Deficiency	 in	 Thyroid,	 Adrenal	 hormones	 and	
Antidiuretic	 hormone	 (ADH)	 functions	 has	 been	
found to have distinguished share in the prognosis 
and pathogenesis of GC. It is suggested that GC 
should not be viewed as separate entity in the series 
of cancers. GC may arise due to defective functions 
of the above said metabolic disorders. Therefore, a, 
multilevel screening of metabolic functions and gene 
expression	profiling	is	suggested	before	the	treatment	

of GC, could pave a better solution in treatment 
strategy. In addition, as genetic predisposition 
is	 an	 important	 feature	 in	 GC,	 the	 markers	 may	
not be universal for all the patients worldwide. 
Populations	 wise	 gene	 expression	 profiling	 can	 be	
more appropriate. It is recommended that GC gene 
expression	 profiling	 of	 different	 populations	within	
India	could	still	validate	the	above	findings.
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