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Interaction between numerical variables in regression model, and its graphical interpretation
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Abstract

Background and aim: One of the most important steps in the models to be established in order to define
the relationships between the measured characteristics in health field research is to define the effects in
the model correctly. One of these effects is the interaction effect, which is rarely used in practice, but on
the contrary, should be required frequently used. The aim of this study, the concept of interaction between
numerical independent variables, which is rarely used because it is little known in regression-like models,
is to be presented with an easily interpretable graphical result. Materials and methods: The data used to
emphasize the interpretation and importance of the interaction in the regression model were produced by
simulation based on the descriptive statistics and distribution patterns of the data in a real study. The data
set includes the systolic blood pressures (SBP) of 167 people aged between 40 and 76 and a body mass
index between 21 and 52. Age and body mass index were defined as independent variables and SBP as
dependent variables. Results: In the model without interaction, it was observed that an increase in body
mass index increased SBP when age was kept constant, and an increase in age increased SBP when body
mass index was kept constant. Although this result is sufficient, appropriate, and meaningful for the
practitioner, it will not make sense without knowing the importance and meaning of the interaction
between body mass index and age. When the interaction term was added to the model, it was seen that the
above described result could lead to an invalid and erroneous interpretation. It was seen that the effect of a
1-unit change observed in body mass index on SBP differs at various ages and the effect of a 1-year
increase in age on SBP differs according to body mass index values. In this case, it has emerged that a
physician who will make a clinical decision should also consider age when deciding on SBP according to
body mass index (or vice versa). In addition, the contour graphic method, which will facilitate the work of
the practitioners in the interpretation of the interaction, will make a significant contribution to the
evaluation of this term in models. Conclusion: Using an incorrect or incomplete model in data analysis
results in, erroneous or incomplete results. The modeling process in healthcare research involving
complex relationships requires substantial knowledge, domain knowledge, modeling knowledge, and
accurate interpretation of results. Examining the interaction terms is of great importance in the modeling
process. If this effect is significant, the actual effects of the interacting effects are meaningless and their
interpretation will yield erroneous results.
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Introduction in the model can be summarized as follows. In the
The mathematical equivalent of the hypotheses established model, the variable on the left side of

established in analytical research is the model. the equation is called the dependent variable, and
Models are a kind of mathematical expression of the ones on the right are referred to as independent
the subject to be investigated. Therefore, the correct ~variables, risk factors, and covariates. The aim is
model is synonymous with the correct hypothesis. to evaluate the effects of the variables on the right
When statistical models are evaluated in general, side alone or together or to estimate the value of
model nomenclature and definitions of variables the variable on the left by controlling the effects of
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the variables on the right. Considering the number
of variables on the right, these models are classified
as simple or multiple models'. When the number
of variables on the left is one, a univariate model is
defined, when there is more than one, a multivariate
model is defined'. In addition, depending on the
type of independent variables in the model, factor,
block, or covariate naming is done. The factor and
block represent the categorical predictor, while the
covariate defines the continuous predictor’.Besides,
while the factor effect is a factor under
investigation, the block effect refers to a categorical
independent variable that is more or less known but
whose effect should be taken into account. The
covariate is a variable of numerical type, which is
generally known to have an effect but needs to be
controlled. The numeric type of independent
variable whose effect is to be investigated is usually
defined as a numeric independent variable.
However, these definitions can be expressed with
much more diverse concepts in various fields.

Another important step in the modeling process is
the correct definition of the effects in the model in
case the number of independent variables to be
included in the model is more than one. Also, it is
necessary to decide whether to take the interaction
effects together with the main effects of the
predictors whose effects are being investigated.
However, it should be known that this decision is
directly related to knowing or understanding very
well what the researcher wants in her hypothesis.
Generally, interaction terms are not included in
regression models because the meaning of
interaction is often not well known or it is difficult
to interpret the interaction. In addition often,
hypotheses can be incomplete or incorrectly
constructed because the researcher does not reflect
their wishes well or clearly does not know what to
examine.

As a general definition, the interaction between any
two independent variables, either a categorical or
continuous variable, is called first-order interaction
and is interpreted as the change of the relationship
between one of these variables and the outcome
variable according to the values of the other
independent variable’. Interpreting the interaction is
relatively well known and easier when the
independent variables are categorical. However, the
interpretation of the interaction does not differ
according to the type of variables. The main
problem is that researchers have problems with
what the interactions between continuous variables,
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what role they play in the model, and how to
interpret the results, and accordingly they do not
include these terms in their models. When the
literature including health field research is
examined, it is seen that the models containing the
interactions between the numerical variables in the
continuous structure are used almost non-existent
and there are few methodological studies on the
subject*>. On the other hand, in cases where it is
desired to examine the relations between variables
in the field of health, it is almost always seen that
more than one factor and result occur. This situation
requires maximum attention in the modeling process
of the relations between these variables.

The aim of this study is to describe the interactions
between continuous independent variables which
are little known and rarely used, in regression-like
models, and present the results with an easily
interpretable graphic.

Material and methods

Regression models with interaction terms

A regression model with two independent variables
is set up as follows®:

AY; =By + B, X1a + By Xy +B; (X X2) +u; X
The interaction term is expressed as (Xp; X3;).

When X; is given, the effect of the change in X; on
the Y is calculated with the help of the following
equation and a positive f; indicates that the effect of
an additional unit increase in X; on Y increases
linearly with X.

AY

A—Xl = [-)’1 + B:,»Xz
Or when Xj is given, the effect of the change in X,
on Y is calculated with the help of the following
equation. AY

L‘A_Xz = ﬁz + BgXl
These statements show that when examining the
effects of variables on the outcome in regression
models containing more than one variable, it is not
enough to obtain the adjusted effects by controlling
the effects of other variables, and it may even be
misleading. In this case, it is also necessary to test
whether the effects of the variables on the resulting
change according to the various values of other

variables.
Hypothetical data set

The data used for application purposes in the study
were produced by simulation based on the descriptive
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statistics and distribution shape of the data in real
research. The dataset includes systolic blood
pressure (¥, SBP), body mass index (X;, BMI), and
age (X;) measurements of 167 people aged between
40 and 76 years who applied to the internal
medicine outpatient clinic. Using the available
information, the effect of bmi and age on the
systolic blood pressure will be investigated.

Data for application were simulated with Minitab
macro (ver. 18.0) and Stata (ver. 14.0) was used for
data analysis.

e [Ethical clearence: No material requiring ethical
permission was used in the study. The data were
generated by simulation.

Results

The effects of age and BMI, which will be included
as independent variables in the linear regression
model, on the SBP will be investigated. In order to
understand the subject, the results of the model
without interaction are given in the first stage.
Descriptive statistics of the variables included in the
model are presented in Table 1, and the model
results without interaction terms are presented in
Table 2.

Table 1. Descriptive statistics of variables

N Mean Sd Minimum | Maximum
SBP 167 130,03 19,547 90 210
Age 167 54,92 8,988 40 76
BMI 167 32,93 5,833 21 52

Suppose there is a group of people of the same age
but with different BMI values. Logically, as
people’s BMI increases, we would expect their SBP
to increase. In other words, “SBP as BMI increases
when age is kept constant”.

In addition, in individuals with the same body mass
index, SBP is expected to increase as age increases.
This interpretation means that when the body mass
index is kept constant, SBP increases with age.

When Table 2 is examined, it is observed that the
above described results have been achieved. That is,
when body mass index is held constant, SBP
increases by 0.912 mmhg for each year increase in
age. Similarly, when age is kept constant, it is
observed that an increase of 1 kg/m2 in body mass
index increases the SBP by 1.070 mmHg. These
results are defined as adjusted effects in models
where multiple factors are investigated.

Table2. Model results without interaction terms

T P
B SE

Constant | 44,738 10,082 4,437 <0,001

BMI 1,070 0,219 4,883 <0,001

Age 0,912 0,142 6,411 <0,001

B: Regression coefficient; SE: Standart Error of B

The model whose results are given in Table 2
requires that the effect of increasing body mass
index on SBP be constant at all ages. However, this
may not be the case. The change in the SBP per
body mass index for 40-year-olds may be different
for 60-year-olds. In other words, the amount of the
relationship between body mass index and SBP may
differ in different ages or age groups. It is possible
to say this in terms of the relationship between the
age and SBP. In order to give the correct answer to
this question, the interaction term must be added to
the model.

When the interaction term between age and body
mass index is added to the model results that do not
contain the interaction term in Table 2, the results
given in Table 3 are obtained.

When Table 3 is examined, it is seen that the
interaction between age and BMI is significant. In
this model, the interaction(s) are tested first, and if
the result is not found statistically significant, only
the main effects of the variables involved in the
interaction should be examined. In this direction,
when the interaction term is examined, it is seen
that it is statistically significant and according to
this result, it is inferred that the main effects do not
make any sense for the results. In addition, it is seen
that the main effects are not significant unlike the
ones in Table 2. This result once again emphasizes
the importance of accurate modelling. When the
term interaction is interpreted, it highlights that the
effect of 1-unit change observed in BMI on SBP
differs at different ages (P=0.022). Similarly, the
effect of 1-year increase in age on SBP appears to
differ according to bmi levels. In this case, it would
not be correct to explain how a 1-unit change in
BMI changes SBP without considering age (main
effect of BMI) or to explain how a 1-year change in
age changes sbpwithout considering BMI values
(main effect of age).
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Table 3. Model results with the interaction term

B SE T P
Constant 149,46 46,48 3,22 0,002
BMI -2,15 1,412 4,88 0,130
Age 1,05 ,862 -1,52 0,225
Age x BMI
interaction 0,061 ,0261 2,31 0,022

B: Regression coefficient; SE: Standart Error of B

When the regression coefficients of BMI for
different ages are estimated, the results given in
Table 4 are obtained. When Table 4 is examined, it
is seen that a 1-unit increase in BMI at age 40 does
not significantly affect SBP, but a 1-unit increase in
BMI at other ages significantly increases SBP, and
this effect increases with increasing age.

Table 4. Regression coefficients of BMI for
different ages

Coegiﬁilzg)for SE T P
Yas=40 0,25 0,41 0,61 0,542
Yas=50 0,85 0,24 3,63 <0,001
Yas=60 1,46 0,27 5,32 <0,001
Yas=70 2,06 0,48 4,29 <0,001
Yas=80 2,66 0,72 3,68 <0,001

B: Regression coefficient; SE: Standart Error of B

The graphical representation of the results obtained
in Table 4 is presented in Figure 1.The interaction
term can be interpreted much more simply than the
odds ratio or regression coefficient with the this
contour plot.
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Figure 1. Regression coefficients of BMI for different ages

The graph showed that if the BMI level of 40-year-
olds is between 20-50, the SBP will vary between
120 and 140.
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However, if the BMI level of 60-year-olds is 35 and
above, the SBP will vary between 140-160. In
addition, if the BMI level is higher than 40 in 80-
year-olds, the SBP is a minimum of 180. The
interaction term in our model causes the curvature
of the contour lines in the chart. Without interaction,
the contour lines will be straight’.

The variation of corrected SBP predictive values by
age for various BMI levels and by BMI for various
ages are given in Figures 3a and 3b.When Figure 3
is examined, it shows that the effect of age on sbp
increases as BMI increases. Similarly, as age
increases, BMI change appears to change sbp even
more.

Estimates of SBP for different ages and bmi levels
are given in Table 5.

Table 5. Predicted values of systolic blood
pressures for different ages and BMI levels

Different subgroups Predicted Standard error
systolic blood of prediction
pressure (SE)
Age =40 ve BMI =21 112,78 5,20
Age =40 ve BMI=31 115,32 2,47
Age =40 ve BMI=41 117,86 4,42
Age =40 ve BMI=51 120,39 8,21
Age =60 ve BMI =21 117,02 3,69
Age =60 ve BMI=31 131,57 1,58
Age =60 ve BMI=41 146,12 2,52
Age =60 ve BMI=51 160,68 5,01
Age =80 ve BMI =21 121,25 9,47
Age =80 ve BMI=31 147,82 4,02
Age =80 ve BMI=41 174,39 6,83
Age =80 ve BMI=51 200,96 13,47

Discussion

Incorrect modeling means misleading results. This
means producing false evidence unknowingly. The
modeling process in healthcare research involving
complex  relationships  requires  substantial
knowledge, @ domain  knowledge, = modeling
knowledge, and accurate interpretation of results. As
can be seen from the sample data set, the results of
which are given in the findings section, the term
interaction offers a different perspectiveondiagnosis
and treatment in health research.
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Figure 2. Graphical interpretation of BMIxAge
interaction

The number of independent variables included in
the statistical models and the relationship between
these variables and the dependent variable should be
determined based on the established hypothesis.
Interaction terms are often omitted from the model
due to difficulties in interpretation and the often
unknown biological meaning. On the contrary,
interaction terms are so important that if there is a
significant interaction effect in the model, this effect
is interpreted. The main effects of interacting
variables are not interpreted. In addition, depending
on the number of variables whose interaction will
be examined, interaction levels are named first-
order, second-order, third-order.®. However, first-
order interaction, which is the simplest interaction,
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should be evaluated in the process of establishing
the model, as it will be the solution to the
researched problem in many cases and it is the most
easily interpreted interaction term. Third-order or
higher-order interactions should be interpreted with
the support of experts.The contour graphic proposed
to be used in the interpretation of the interaction in
this study is suitable for the first-order interaction
result’. In addition, it can be interpreted by drawing
a 3-dimensional contour graphic in second-order
interaction. However, a graphical representation is
not yet available for higher-order interactions. If
there are important interactions for researhers are
found, these terms can be interpreted without using
graphics.
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Figure 3. Changes in adjusted SBP predictors (a) by age for various BMI levels, (b) by BMI for various ages
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