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A graphical abstract of this paper is illustrated 
in Figure 1.

INTRODUCTION
The rapid accumulation of pharmaceutical 
contaminants within aquatic environments 
has raised serious ecological and public health 
concerns. Among these pollutants, AMX or 
amoxicillin, the most often prescribed β-lactam 
antibiotic, is frequently detected in wastewater 
due to its extensive use in medical and veterinary 
applications. Conventional wastewater treatment 
processes, including biological, chemical, and 
physical methods, often fail to completely 
remove AMX, resulting in its persistence in 
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This review comprehensively examines current progress in developing 
emerging photocatalytic nanocomposites for the degradation of 
amoxicillin (AMX) in wastewater treatment systems. A range of 
advanced nanomaterials, including mesoporous carbon nitride (MCN), 
TiO2 nanoparticles, sulfur-doped C3N5/DyFeO3, and BiVO4, have 
demonstrated enhanced photocatalytic activity underneath visible 
light, primarily through the generation for reactive species such 
as hydroxyl as well as sulfate radicals. Special attention is given to 
innovative modification strategies, like heterojunction formation, 
elemental doping, and green synthesis routes that significantly improve 
photocatalytic efficiency and pollutant selectivity. Notably, MXene-
based nanocomposites have achieved AMX removal efficiencies 
approaching 99%. The review delves into the superior photocatalytic 
mechanisms underlying these materials, including S-scheme 
heterojunctions and hybrid configurations like Cs3PMo12O40/MnIn2S4, 
contributing to enhanced charge separation and interfacial charge 
transfer. Emerging systems such as α-Fe2O3/WO3/activated carbon 
and Co3O4/CdO/clinoptilolite are also highlighted for their promising 
degradation performance under optimized kinetic conditions. 
Furthermore, the integration of advanced oxidation processes 
(AOPs) containing UV/chloramine and ozonation is discussed for 
their synergistic potential in reducing AMX toxicity and improving 
degradation rates. Complementary biological approaches, including 
Trametes versicolor fungi, are explored as eco-friendly alternatives 
for pharmaceutical wastewater remediation. This review provides 
critical insights into the mechanisms, kinetic optimization strategies, 
and ecological considerations associated with nanocomposite-
based photocatalysis. Additionally, it outlines current challenges and 
forthcoming research directions to advance sustainable and efficient 
technologies for antibiotic-contaminated wastewater treatment.
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Figure 1: Graphical Abstract.
Image Credit: Pandurangan Vijayalakshmi

water bodies 1. This incomplete degradation contributes 
to environmental toxicity and accelerates the emergence 
of antimicrobial resistance (AMR), posing a significant 
threat to human and ecosystem health 2. As a result, 
developing efficient and sustainable strategies for 
AMX degradation is crucial to mitigating its long-term 
environmental impact 3.

Photocatalytic degradation using nanocomposite-based 
materials has emerged as a highly effective approach 
to AMX removal from wastewater 4. Among various 
photocatalysts, mesoporous carbon nitride (MCN) has 
demonstrated superior performance under visible light 
irradiation, effectively enhancing degradation through 
hydroxyl (•OH) and sulfate radical (SO4•⁻) generation 
5. Several advanced materials, including TiO2 
nanoparticles, sulfur-doped C3N5/DyFeO3, and BiVO4, 
have also exhibited promising antibiotic degradation 
capabilities while minimizing toxic byproducts 6. 
Additionally, MXene-based composites have gained 
attention for their remarkable photocatalytic efficiency, 
with some studies reporting up to 99% AMX removal 
under optimized conditions 7.

Researchers have explored strategies such as 
heterostructure formation, elemental doping, and 
biosynthesized nanoparticles to enhance photocatalytic 
efficacy further. The integration of S-scheme 
heterojunctions and hybrid systems, including 
Cs3PMo12O40/MnIn2S4 

8 and plasmonic CaIn2S4/Sb2O3/
Bi heterojunctions 9, has significantly improved charge 
separation and interfacial interactions, leading to 
enhanced degradation performance. Other promising 
nanocomposites, such as ZnO/g-C3N4 

10, Ag/Ag2O/TiO2 
11, CuO/Bi2WO6 

12, and Fe3O4-based photocatalysts 13, 
have demonstrated high photocatalytic activity due to 
their excellent charge transport properties and extended 
light absorption range 14. Recent studies also highlighted 
the effectiveness of metal-organic frameworks (MOFs) 
and carbon-based materials, such as graphene oxide 
(GO), in improving the stability and reusability of 
photocatalysts for AMX degradation 15.

Beyond photocatalysis, advanced oxidation processes 
(AOPs), including UV/H2O2 

3, UV/persulfate (PS) 
16, and ozonation 17, have been investigated for their 
ability to degrade pharmaceutical contaminants while 

https://www.ibnsinatrust.com/Medical_College_Hospital.php


Bangladesh Journal of Medical Science Volume 24 No. 03 July 2025 ©The Ibn Sina Trust

711Available at:     http://www.banglajol.info/index.php/BJMS

minimizing secondary pollution 18. Moreover, biological 
remediation approaches, such as using Trametes 
versicolor fungi for cytostatic drug detoxification, 
offer complementary solutions for environmentally 
sustainable wastewater treatment 19, 20.
The precise control of energy transfer enabled enhanced 
electron-hole separation, achieving 93 % tetracycline 
degradation in 12 hours and providing insights into 
designing advanced photocatalysts for environmental 
remediation 21. A Bi2MoO6/g-C3N4 photocatalyst with 
oxygen vacancies has been synthesized to enhance 
ciprofloxacin degradation. After four cycles, the 
optimized heterojunction achieved 94% removal in 
90 minutes, maintaining 85% efficiency. The process 
proved primarily driven through holes (h⁺), with LC-
MS identifying possible degradation pathways 22. A 
cost-effective Fe (III)-SA gel ball aerogel (FA) was 
developed for efficient antibiotic removal. FA attained 
a high NOR adsorption capacity of 338.40 mg/g and 
removed 97 % of NOR within 150 minutes under 
photocatalysis. It maintained stable performance over 
10 cycles with effective regeneration. DFT analysis 
confirmed the degradation pathway, ensuring reduced 

toxicity and environmental safety 23. It utilizes BiVO4 
(BVO) as a photocatalyst for water’s amoxicillin 
(AMX) degradation. BVO150, with a bandgap of 2.36 
eV, has shown the highest efficiency, achieving ≥93 
% degradation in 120 minutes. The method followed 
a pseudo-first-order kinetic model and maintained 
stability over five cycles. A possible degradation of 
the photocatalytic mechanism and pathway has been 
proposed 24. Mesoporous carbon nitride (MCN) and 
various advanced photocatalysts were synthesized for 
efficient antibiotic degradation in wastewater. These 
materials demonstrated enhanced charge transfer, 
improved light absorption, and reduced byproduct 
toxicity, ensuring sustainable water treatment solutions.
This review analyzes recent advancements within 
nanocomposite-based photocatalytic systems for 
AMX degradation, discussing key photocatalytic 
mechanisms, influencing factors, and future research 
directions. By exploring novel nanocomposite materials 
and their integration with other treatment technologies, 
the present research aims to benefit the development 
of more sustainable and efficient wastewater treatment 
solutions (Figure 2).

Figure 2: Advancements in photocatalytic antibiotic degradation. 
Image Credit: Pandurangan Vijayalakshmi
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Photocatalytic Degradation of Amoxicillin: Overview

The widespread use of antibiotics such as amoxicillin 
has raised growing concerns about their persistence 
in aquatic environments and the associated risks of 
antibiotic resistance. Amoxicillin, a β-lactam antibiotic 
commonly used in clinical and veterinary practices, 
often remains unmetabolized and is discharged 
into wastewater systems. Conventional wastewater 
treatment methods are largely ineffective at entirely 
removing such pharmaceutical residues, leading to 
their accumulation in surface waters and posing threats 
to ecosystems and human health. As a result, advanced 
treatment techniques, particularly photocatalysis, 
have emerged as promising alternatives due to their 
environmental compatibility and high degradation 
efficiency 25. Photocatalytic degradation utilizes light-
activated semiconductor materials to generate reactive 
oxygen species that break down organic contaminants 
into harmless byproducts. This section provides a 
comprehensive overview of the current advancements 
in the photocatalytic degradation of amoxicillin, 
highlighting key materials, degradation mechanisms, 
performance factors, and future perspectives for 
sustainable water treatment technologies. The 
increasing use of antibiotics raises concerns about their 
presence in water and the development of antibiotic-
resistant genes 26. MXene-based composites enhance 
photocatalytic efficiency in wastewater treatment, 
achieving up to 99 % degradation for the potential 
for environmental remediation 27. Triclocarban (TCC) 
persists in water, posing ecological risks. TiO2-zeolite 
nanotubes (TNZPC) achieved 95.2% degradation 
in greywater. Biosynthesized nanoparticles (BNPs) 
offer an eco-friendly alternative, reaching over 80 % 
degradation in 10 minutes. These sustainable methods 
enhance wastewater treatment efficiency 28, 29. The rise of 
multidrug resistance and pharmaceutical contamination 
threatens global health.
Biochar-based composites offer an efficient solution, with 
modifications enhancing photocatalytic performance. 
This review highlights recent advancements, degradation 
mechanisms, and challenges in wastewater treatment 30. 
Graphitic carbon nitride (g-C3N4) and graphene-based 
materials are promising photocatalysts for antibiotic 
removal but face efficiency challenges. Modifications 
like heterostructure formation and metal doping enhance 
their performance and explore key advancements, 
degradation mechanisms, and future perspectives 31, 32. 

Cr-doped TiO2, synthesized from tannery wastewater, 
effectively degraded amoxicillin under visible light. 
TiO2-0.33Cr showed the highest efficiency, achieving 
nearly 100 % degradation in three cycles. The process 
followed a pseudo-first-order kinetic model within an 
optimal rate constant for 0.004 min⁻¹ 33. MXene-based 
composites are cost-effective and highly efficient for 
antibiotic degradation. Their superior catalytic activity 
stems from increased surface area and enhanced optical 
properties. Amoxicillin photodegradation accelerates 
at higher pH but slows in high salinity conditions. 
Hydroxyl radicals (•OH) play a key role in the 
photocatalytic degradation process 34,35. Drugs play a 
vital role in disease management but also pose health 
and environmental risks. Effective degradation methods, 
including photocatalysis, are essential for mitigating 
their impact. Carbon-based materials like graphene 
and its derivatives show promise in drug degradation. 
This review highlights their potential in photocatalytic 
applications 35. Degradation of photocatalytic was 
a sustainable method of removing pharmaceutical 
contaminants from water. MOF-based nanocomposites, 
with high surface area and functionality, enhance 
pollutant breakdown (Figure 3). 

Figure 3: Mechanism of Photocatalytic Degradation of 
Amoxicillin Using Nanocomposites.
Image Credit: Pandurangan Vijayalakshmi. 

This review explores their synthesis, efficiency, and 
modifications for improved stability 26. MXene is a 
promising photocatalyst of pharmaceutical degradation 
in aqueous under simulated sunlight. Its unique structure, 
high conductivity, and active functional groups enhance 
performance and stability. Heterostructured MXene-
based catalysts efficiently remove pharmaceutical waste 
and antibiotics. Photocatalytic degradation effectively 
eliminates organic pollutants like antibiotics, dyes, 
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and hydrocarbons. Modified photocatalysts, such as 
doped metal oxides and composites, enhance efficiency 
by improving light absorption and charge separation. 
Optimized conditions, including temperature, pH, and 

catalyst concentration, significantly boost degradation 
rates for sustainable environmental remediation 36, 37. 
The increasing presence of antibiotics in water raises 
concerns about resistance and contamination (Figure 4). 

Figure 4: Advances in wastewater treatment.
Image Credit: Pandurangan Vijayalakshmi. 

MXene-based and biochar composites enhance 
photocatalytic degradation, achieving up to 99 % 
efficiency. Modified photocatalysts like MOFs and 
doped TiO2 offer sustainable solutions for wastewater 
treatment.
Photocatalysis: Principles and Mechanism

Photocatalysis is a promising green technology for 
addressing energy and environmental challenges. By 
harnessing solar energy to activate semiconductor 

materials, photocatalysis enables a range of chemical 
transformations, including the degradation of organic 
pollutants, hydrogen production, and carbon dioxide 
reduction 38. This light-induced catalytic process offers 
several advantages, such as low energy consumption, 
environmental friendliness, and potential for large-
scale applications. Traditional photocatalysts like 
titanium dioxide (TiO2) and zinc oxide (ZnO) have 
been widely studied for their photocatalytic efficiency, 
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stability, and availability 39. However, these materials 
face challenges such as wide band gaps and limited 
visible light absorption. To overcome these limitations, 
significant research efforts have been directed toward 

the development of modified semiconductors, including 
graphitic carbon nitride (g-C3N4), metal-organic 
frameworks (MOFs), and a variety of heterojunction-
based nanocomposites 40 (Table 1).

Table 1: Physicochemical Properties of Amoxicillin Relevant to Photocatalysis

Property Value / Description Relevance to Photocatalysis Reference

Chemical Name Amoxicillin trihydrate Identifies the compound under study 41

Molecular Formula C₁₆H₁₉N₃O₅S Helps determine degradation pathways and 
stoichiometry 42

Molecular Weight 365.40 g/mol It affects diffusion and adsorption behavior on catalyst 
surfaces 43

Structure β-lactam ring with amino and hydroxyl 
groups

Functional groups affect interaction with active sites 
and ROS 44

pKa values ~2.4 (carboxylic), ~7.4 (amino), ~9.6 
(phenolic)

Determines ionization state in aqueous media and 
optimal pH for degradation 42

Solubility in Water Highly soluble (4 mg/mL at 25°C) Facilitates aqueous photocatalytic treatment 45

Log Kow (octanol-water) −1.07 Indicates hydrophilicity and low bioaccumulation 
potential 46

UV Absorption λmax ~230 nm and ~270 nm Relevant for UV/Vis-based degradation and analytical 
monitoring 42

Photolysis Stability Moderately stable under light Justifies the need for photocatalysts to enhance 
degradation 47

Biodegradability Poorly biodegradable Emphasizes the importance of advanced oxidation 
processes like photocatalysis 48

Antibacterial Activity Broad-spectrum (Gram-positive and some 
Gram-negative)

Highlighting ecological risk if unmetabolized in the 
environment 49

Table Credit: Pandurangan Vijayalakshmi.

This section reviews the fundamental principles of 
photocatalysis, including light absorption, charge 
carrier generation, separation, surface redox reactions, 
and recombination processes. It also highlights the 
mechanisms of advanced photocatalytic systems such as 
Z-scheme, S-scheme, and p–n junction heterostructures. 
Emphasis is placed on design strategies, materials 
engineering, and recent innovations to enhance 
photocatalytic efficiency for environmental and energy-
related applications. Photocatalysis offers a sustainable 
approach to pollution control and solar energy storage. 
Z-scheme photocatalysts, including MnO2-based 
composites, enhance electron transport and degradation 
efficiency 50. Semiconductor photocatalysis is widely 
used for pollutant degradation and hydrogen production 
but suffers from rapid charge carrier recombination. 
Various heterostructures have been explored to enhance 
charge separation, including type II, Z-scheme, p–n 

junctions, and Schottky junctions. Recently, S-scheme 
heterojunctions have shown superior charge preservation 
for photocatalytic reactions. This review discusses 
their charge transfer mechanisms, key semiconductors, 
identification methods, challenges, and prospects 51.

Photocatalysis utilizes photon energy to drive chemical 
reactions via electron, energy, or atom transfer. 
Photoredox catalysis, employing photocatalysts as 
oxidizing and reducing agents, has revolutionized fields 
like organic synthesis, biomedicine, and environmental 
management. Recent studies highlight the need to 
improve efficiency, recyclability, and ecological impact. 
This review explores the fundamentals, applications, 
and prospects of photocatalysis 52. Photocatalysis in 
environmental and energy applications is hindered 
by rapid charge recombination, with built-in electric 
fields (BIEFs) offering a solution. This review explores 
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polarization and interface BIEFs, their synergy with 
external fields, and novel self-healing mechanisms. 
Analytical methods and driving mechanisms in 
photocatalysis are discussed, and finally, the challenges 
and prospects of BIEFs 53 are discussed. Nano-energetic 
semiconductor-based photocatalysis efficiently utilizes 
solar energy for fuel generation and contaminant removal 
but faces challenges like rapid charge recombination 
and low light utilization. Well-designed heterojunction 
photocatalysts enhance charge separation, improving 
efficiency. This review explores photocatalysis 
principles, classifications, and applications, including 
optical and electronic properties. Recent advancements 
in heterojunction photocatalysts for environmental and 
energy applications are discussed.
 Finally, future research directions in nano-energetic 
photocatalysts 54. Photocatalysis is a sustainable approach 
for environmental remediation, with applications in dye 
degradation, CO2 and NOx reduction, and hydrogen 
generation. Enhancing efficiency relies on minimizing 
electron-hole recombination, often achieved through 
heterojunction formation. Various semiconductor 
materials and heterojunction types are explored 
for optimized performance. This review discusses 
fundamental principles, charge transfer mechanisms, 
and strategies for designing efficient heterojunctions 55. 
S-scheme heterojunction photocatalysts enable efficient 

solar-to-chemical conversion for sustainable energy 
production. Research has traditionally focused on band 
structure alignment, but this review highlights factors 
like light absorption, interfacial recombination, selective 
contact, and ferroelectric polarization. Different charge 
transfer pathways are analyzed using band structure 
theory. Design strategies for optimizing S-scheme 
heterojunctions are proposed 56. Photocatalytic 
technology has a cost-effective and environment-
friendly approach to removing organic pollutants. 
TiO2-conjugated/coordination polymer heterojunctions 
have emerged as promising photocatalysts for 
environmental remediation. This review explores their 
classifications, synthesis, photocatalytic mechanisms, 
and performance—prospects and challenges in 
advancing TiO2-based heterojunction photocatalysts 
57. It examines recent advancements in photocatalytic 
methods for plastic pollution remediation. It covers 
fundamental principles, photocatalysts, and factors 
influencing degradation efficiency. Challenges, 
environmental impacts, and the potential for converting 
plastic waste into valuable products are discussed 
(Figure 5). Industrial applications, scalability, and 
future research directions 58. Photocatalysis enables 
sustainable pollution control and energy storage. This 
review explores advancements in photocatalysts, charge 
transfer mechanisms, and prospects.

Figure 5: Schematic Illustration of Photocatalysis Principles.
Image Credit: Pandurangan Vijayalakshmi. 
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Fundamentals of Photocatalysis

These covalent triazine frameworks (CTFs) are highly 
stable, nitrogen-rich porous materials with applications 
in gas purification, energy storage, and photocatalysis. 
Different synthesis techniques have been developed 
to enhance their structural and functional properties. 
This review explores recent advancements in CTF 
synthesis, functionalization, and photocatalytic 
performance, along with prospects for optimizing 
CTFs in energy and environmental applications 59. 
Photocatalysis and photoelectrocatalysis are promising 
methods for solar energy conversion but still face 
challenges related to efficiency. Recently, polarons 
have emerged as key factors in enhancing catalytic 
performance. This review highlights polaron models, 
experimental observations, and their role in improving 
the performance of photocatalysts and photoelectrodes, 
offering insights into mechanism optimization and 
efficiency enhancement 60. Piezopolarization-driven 
photocatalysis improves solar-to-chemical conversion 
by utilizing a piezoelectric field for effective charge 
separation. It contributes to fundamental reactions, 
such as H2O2 production and detection techniques. 
Recent advancements and theoretical insights focus on 
improving efficiency for green energy applications 61.  
Photocatalytic water splitting and CO2 reduction are vital 
for addressing energy and environmental challenges. 
While direct Z-scheme heterostructures improve charge 
separation, they also face crystal defects. Van der Waals 
heterostructures offer a solution by preserving material 
properties. This summarizes recent advances and design 
strategies for efficient photocatalysts 62. The global 
transition to renewable energy is crucial for reducing 
CO2 emissions. Electrocatalytic and photocatalytic 
CO2 reduction to methane presents a sustainable 
approach. This explores reaction mechanisms, catalyst 
design, and the associated challenges in implementing 
this technology 63. Hydrogen peroxide (H2O2) plays 
a significant role in water treatment and chemical 
synthesis. Its photocatalytic production using Z-scheme 
systems has gained attention due to improved electron 
transfer and reaction efficiency, advancements, 
challenges, and prospects 64. Photocatalysis has a 
promising green technology for solar energy conversion 
and environmental remediation. X-ray absorption 
spectroscopy (XAS) provides atomic-level insights 
into photocatalyst structures and reaction mechanisms. 
Time-resolved XAS enables real-time monitoring of 

photocatalytic processes in exploring XAS applications 
in photocatalysis and future research directions 65. CTFs 
are stable, nitrogen-rich materials with applications in 
energy and environmental fields of recent advancements 
in their synthesis, functionalization, and photocatalytic 
performance.
Common Photocatalysts Used (e.g., TiO2, ZnO, g-C3N4, 
Nanocomposites)

Solar-driven photocatalysis has emerged as a sustainable 
and efficient method for environmental remediation, 
including hydrogen production, CO2 reduction, and, 
notably, the degradation of pharmaceutical pollutants 
like AMX. Among the various semiconductors, 
graphitic carbon nitride (g-C3N4), titanium dioxide 
(TiO2), and Zinc oxide (ZnO) have been widely 
explored due to their suitable band gaps and strong 
redox capabilities. For instance, graphitic carbon 
nitride/strontium titanate/zinc oxide (g-C3N4/SrTiO3/
ZnO) nanocomposites achieved 96% degradation of 
Cefixime, showcasing their potential for antibiotic 
pollutant removal 66. Similarly, graphitic carbon 
nitride (g-C3N4) and ZnO semiconductors (ZnO/g-
C3N4) hybrids demonstrated superior self-cleaning and 
antibacterial properties in treated fabrics, indicating 
potent ROS (reactive oxygen species) generation and 
surface activity 67. These composites benefit from 
enhanced visible-light absorption, increased surface 
area, and better charge separation, which are essential 
for photocatalytic efficiency.
A green-synthesized (ZnO/g-C3N4) coating tested 
in a flow reactor achieved 100 % degradation of 
ciprofloxacin under concentrated sunlight in 210 
minutes, proving the composite’s effectiveness in solar-
driven systems 68. TiO₂/g-C₃N₄ heterojunctions have 
been developed to optimize electron-hole separation, 
narrow the band gap, and improve AMX degradation 
under visible light conditions 69.
The photocatalysts summarized in Table 2 represent 
a broad spectrum of engineered nanomaterials with 
tunable band gaps, enhanced interfacial properties, 
and hybrid heterojunction structures that significantly 
improve AMX degradation efficiency. These include 
widely used materials such as TiO2, ZnO, and g-C3N4, 
as well as more advanced configurations like Ag/
ZnO, Mn-Cu2O, and black TiO2, each offering unique 
advantages in terms of reusability, band alignment, and 
ROS generation mechanisms.
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Table 2: Overview of Advanced Photocatalysts Employed in the Degradation of Amoxicillin: Band Gap, Mechanism, 
and Efficiency

Photocatalyst Band Gap (eV) Key Features Advantages of Amoxicillin 
Degradation Reference

TiO2 (anatase) ~3.2 UV-active, stable Strong oxidizing power 70

ZnO ~3.2 High electron mobility Comparable to TiO₂, 
antibacterial 71

g-C3N4 ~2.7 Visible-light responsive Metal-free, tunable 2

TiO2/g-C3N4 (Heterojunction) 2.6–3.0 Type-II heterojunction Enhanced e⁻/h⁺ separation 72

ZnO/CdS 2.4–3.2 Heterojunction Visible-light responsive 73

Ag/ZnO ~3.2 Plasmonic Ag NPs Enhanced ROS generation 74

BiVO4 ~2.4 Visible-light active Environmentally friendly 75

Mn-Cu2O ~2.0 Narrow bandgap Red-light active 76

Cu-WO3 ~2.8 Acid stable Visible-light driven 77

TiO2/Fe2O3 ~2.1 Earth-abundant Magnetic recovery 78

MoS2 ~1.8 2D material Charge separation booster 79

SnO2 ~3.6 UV active High e⁻ conductivity 80

ZnO/Bi2O3 ~2.8 Layered oxide Visible-light responsive 81

CuO/SiO2 ~1.5 Narrow bandgap Visible light responsive 82

NiO ~3.4 p-type semiconductor Active sites for oxidation 83

ZnO-CeO2 ~3.2 Oxygen vacancies Reactive oxygen species 
generator 84

MnO2 ~1.3 Strong oxidizer Dual redox states 85

ZnO-rGO ~3.2 Hybrid material Electron mobility enhanced 86

BiOI ~1.8 Narrow bandgap Visible light enhancement 87

Fe-Bi2WO6 ~2.7 Layered Aurivilius oxide Stable under visible light 88

difluoride/graphene/
ZnFe2O4

~1.9 Magnetic spinel Visible, active, reusable 89

TiO2/single-walled CNTs ~3.2 Carbon support Increased surface area 90

Black TiO2 ~2.0–2.6 Reduced form Enhanced visible-light 
absorption 91

Notes: “UV-active” refers to a substance that interacts with and absorbs ultraviolet (UV) light, while “UV-stable” 
means a material can withstand the damaging effects of UV light without significant degradation; Plasmonic Ag 
NPs denotes silver nanoparticles exhibiting plasmonic effects. Table Credit: Pandurangan Vijayalakshmi.

Mechanisms of Amoxicillin Degradation via 
Photocatalysis

Antibiotics such as AMX in aquatic environments 
pose significant ecological and health risks due to 
their persistence, bioaccumulation, and potential 
to induce antimicrobial resistance. Conventional 
wastewater treatment processes often fail to completely 
remove these micropollutants, necessitating the 
development of advanced remediation strategies. 
Among them, semiconductor-based photocatalysis 

has emerged as a promising technique for efficiently 
degrading antibiotics under light irradiation. Recent 
advances focus on engineering photocatalysts 
with enhanced light absorption, charge carrier 
separation, and redox capabilities. Various strategies 
have improved photocatalytic efficiency, including 
constructing S-scheme heterojunctions, integrating 
plasmonic materials, and developing multifunctional 
nanocomposites. The following studies highlight 
recent innovations in photocatalyst design and their 
mechanisms in degrading antibiotics like tetracycline, 
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ciprofloxacin, and others, offering insights into their 
environmental applicability and effectiveness.

An S-scheme Cs3PMo12O40/MnIn2S4 (CPM/MIS) core-
shell heterojunction has been developed for efficient 
antibiotic and Cr (VI) removal. The optimal 9% 
CPM/MIS achieved 97.81 % tetracycline, 61.78 % 
ciprofloxacin, and 67.07 % Cr (VI) degradation under 
visible light. Its superior performance was attributed 
to enhanced charge separation, strong interfacial 
interactions, and improved redox activity. ESR and XPS 
analyses confirmed the S-scheme mechanism, offering 
a promising strategy for contaminant removal 92. The 
MoS2-based photocatalyst nanocomposites and aerogels 
for antibiotic degradation highlight their structure, 

optical properties, and photocatalytic mechanisms. 
The review examines synthesis methods, the transfer 
of photoelectron pathways, and the involvement of 
reactive oxygen species (ROS). Challenges and future 
perspectives are discussed to advance MoS2-based 
photocatalysts for environmental applications 93. A 
plasmonic CaIn2S4/Sb2O3/Bi heterojunction has shown 
efficient antibiotic photodegradation under LED light 
irradiation. The CaIn2S4/Sb2O3/Bi-10 % hybrid achieved 
up to 97.4 % degradation of antibiotics, with effective 
photocatalytic performance due to the synergistic 
effects of the S-scheme system and plasmonic Bi0. The 
catalyst also demonstrated excellent TOC reduction 
and charge separation efficiency 9. The ZnO/Bi2MoO6/
ZIF-67 photocatalyst was investigated for tetracycline 

Figure 6: Schematic Representation of Photocatalytic Degradation Routes of Amoxicillin.
Image Credit: Pandurangan Vijayalakshmi. 
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degradation underneath visible light. The optimal molar 
ratio (ZnO: Bi2MoO6: ZIF-67 = 1:0.6:0.157) achieved 
90.3% tetracycline removal under ideal conditions. The 
degradation followed first-order kinetics, with OH• 
and •O2⁻ species significantly enhancing the process 
(Figure 6).  
The composite outperformed individual components, 
offering a promising solution for antibiotic removal 
94. A self-standing dual-electric field synergistic Janus 
nanofiber photocatalyst ([TP]/[CTP]JNs) was developed 
using conjugate electrospinning—the dual electric fields, 
from the S-scheme heterostructure and piezoelectric 
PVDF, enhanced charge separation and transfer. The 
photocatalytic efficiency for tetracycline degradation 
under combined ultrasonic and sunlight illumination 
reached 93.35%. This approach outperformed light-
only and ultrasonic-only methods, demonstrating the 
benefits of the synergistic piezoelectric-photocatalytic 
effect 95. It introduces novel photocatalysts, including 
the S-scheme CPM/MIS core-shell heterojunction and 
plasmonic CaIn2S4/Sb2O3/Bi hybrid, enhance antibiotic 
and contaminant degradation through synergistic effects 
and improved charge separation. The development 
of dual-field Janus nanofibers and MoS₂-based 
nanocomposites offers efficient, sustainable solutions 
for environmental pollutant removal.
Influence of Operational Parameters (Light Source, 
pH, Pollutant Concentration and Catalyst Dosage)

The efficiency of photocatalytic degradation processes 
is strongly influenced by operational parameters such as 
light source, pH, pollutant concentration, and catalyst 
dosage, making their optimization essential for enhancing 
contaminant removal and ensuring reliable performance 
in wastewater treatment applications. A novel α-Fe2O3/
WO3/AC photocatalyst has been synthesized from 
Rosa Canina seeds to improve degradation efficacy by 
reducing electron-hole recombination and preventing 
nanoparticle aggregation. The optimal catalyst (50 
wt.%: FeW/AC3–500) achieved 98.01% doxycycline 
degradation within a rate constant of 0.030 min⁻¹. 
Trapping experiments identified •O2⁻ and •OH as 
key reactive species. Transient photocurrent and EIS 
measurements confirmed enhanced charge separation, 
improving photocatalytic activity. This approach 
offers a promising solution for wastewater treatment 
and environmental remediation 96. Photocatalysis is 
environmentally friendly and includes cost-effective 
processes for wastewater treatment, with semiconductor 

nanoparticles playing a key role. This study optimized 
operational parameters for photocatalytic degradation 
of synthetic wastewater using CaTiO3 nanoparticles. 
The best performance was achieved in 33 W UV 
light sources, pH 6.0, and catalyst dose of 3.33 g L⁻¹, 
resulting in 77-100% COD removal. CaTiO3 exhibited 
a band gap of 3.57 eV and a particle size of less than 
47.62 nm 97. Another investigation explored the 
photocatalytic degradation for acetaminophen (ATP) 
and sulfadiazine (SFZ) utilizing green-synthesized 
ZnO nanoparticles derived from neem leaf extract. 
These nanoparticles were immobilized on carbon from 
spent tea waste (N-ZnO@TAC) to enhance recovery 
and reuse. Under optimal conditions, N-ZnO@TAC 
achieved 100% removal of both contaminants. The 
degradation pathways were analyzed using LC-MS. 
N-ZnO exhibited superior antibacterial properties 
compared to TAC and N-ZnO@TAC, demonstrating its 
potential for wastewater treatment 98.  
A GO/MgO nanohybrid was developed as a 
photocatalyst and a periodate (PI) activator of degrading 
reactive blue-222 dye, sulfamethazine, and atrazine. 
The composite showed improved charge separation and 
high stability across multiple cycles. Under optimal 
conditions, it achieved 97.3 % degradation of RB-
222 in 120 minutes and effectively degraded other 
pollutants. The system’s performance was reduced 
in canal and seawater, demonstrating its potential for 
industrial effluent treatment 99. A stable and reusable 
CeO2/WO3/AC photocatalyst was synthesized and 
optimized for doxycycline (DOX) degradation using 
Central Composite Design (CCD). Characterization 
techniques revealed the catalyst’s properties and 
determined operational parameters for efficient 
degradation. The optimal photocatalyst achieved 97.23 
% DOX degradation and 83.11 % of COD removed. 
h⁺ also •O2⁻ radicals played a key role within the 
photocatalytic degradation processes. The catalyst 
maintained high stability after five degradation cycles 
100. A Co3O4/CdO/clinoptilolite (CCC) heterojunction 
photo nanocomposite was developed as an efficient 
S-scheme photocatalyst for degrading levofloxacin 
underneath sunlight. CCC exhibited superior 
performance, achieving near-total degradation within a 
reaction rate constant of 0.0412120 min⁻¹ underneath 
optimal conditions. The composite demonstrated 
excellent stability, recyclability, and antimicrobial 
activity. This research provides valuable insight into 
the design of ternary nanocomposites for effective 
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pollutant photodegradation and diverse applications 101. 
Overall, novel photocatalysts, including α-Fe2O3/WO3/
AC, N-ZnO@TAC, and Co3O4/CdO/clinoptilolite, 
demonstrated efficient degradation of various pollutants 
such as doxycycline, acetaminophen, also levofloxacin. 
These composites showed enhanced photocatalytic 
performance, high stability, and reusability, offering 
promising solutions for wastewater treatment and 
environmental remediation.
Degradation Byproducts and Toxicity 

Understanding the degradation pathways and 
associated toxicity of pharmaceutical contaminants is 
crucial for evaluating the environmental risk of their 
removal processes. Various studies have explored the 
transformation of these compounds through different 
advanced oxidation processes and biological treatments, 
highlighting the formation of intermediate byproducts, 
their potential toxicity, and the overall effectiveness 
of the methods used 102,103. Different pathways of 
AMX degradation have been proposed, including the 
opening of the four-membered β-lactam ring, followed 
by oxidation of the methyl group to an aldehyde and/
or hydroxylation of the benzoic ring. These processes 
generate various intermediates through bond cleavage 
between different atoms and subsequent oxidation to 
carboxylates such as acetate, oxalate, and propionate, 
along with the formation of nitrate and ammonium 104. 
The use of white-rot fungi for removing anticancer drugs 
bleomycin and vincristine from wastewater has shown 
promising results. Fungi like Trametes versicolor and 
Hypholoma fasciculare achieved over 90 % removal 
of vincristine within two days, with oxygen supply 
enhancing degradation. Laccase activity was linked 
to drug elimination. The process also demonstrated 
detoxification, highlighting fungi as a promising solution 
for cytostatic removal 105. The thermo-activation for 
periodate (heat/PI) for water pollution removal has been 
underexplored. This study evaluates the heat/PI system 
using tetracycline antibiotics as a model pollutant. The 
system showed effective remediation with increased 
temperature. Quenching and electron paramagnetic 
resonance experiments identified the reactive oxidative 
species, and density functional theory calculations 
revealed potential reactive sites in tetracycline. Toxicity 
estimation of byproducts showed no significant 
differences across temperatures, providing insights into 
the oxidation power, byproduct transformation, and 
system toxicity of the system 106.  

Ambroxol (AMB) degradation within the UV/
chloramine method, identifying reactive chlorine 
and nitrogen species as key radicals. Debromination 
occurred mainly within the initial stage, with a 34.5 % 
rate at 10 minutes. Four photodegradation pathways have 
been proposed, and toxicity risks were assessed using 
the ECOSAR model. The UV/chloramine processes 
effectively remove AMB while reducing the formation 
of brominated disinfection byproducts (Br-DBPs), 
showing promise for water treatment applications 107. 
The degradation of 6PPD-Q using a UV/PMS process, 
revealing complete degradation at a PMS/6PPD-Q 
ratio of 60:1. SO4•− and •OH radicals were key to its 
removal, with toxicity prediction showing reduced 
risks from the degradation products. In another study, a 
hybrid CuxFe1-xZnO-LDO/PMS/US system efficiently 
degraded ofloxacin (OFC), including reduced total 
organic carbon (TOC) from pharmaceutical wastewater, 
demonstrating excellent catalytic activity and reduced 
biotoxicity. The system also showed stability with 
minimal metal ion leaching and an estimated treatment 
cost of $0.059/L 108, 109. Spinel MnFe2O4 was synthesized 
to activate periodate (PI) to degrade sulfamethoxazole 
(SMX), with 500-MFO showing superior activity and 
selectivity. Multiple active species, such as IO3•, •OH, 
and Mn (IV), were identified, with IO3• as the primary 
species. PMSO promoted Mn (IV) regeneration, 
enhancing SMX degradation. Toxicity predictions 
showed that while intermediate byproducts varied in 
toxicity, the final products have been environmentally 
benign, offering viable processes for SMX degradation 
within wastewater treatment 110. Ozonation effectively 
degrades and mineralizes pharmaceutical compounds, 
with over 97% removal in pH 10 conditions and an 
ozone dose of 1.0 g. L−1. Mineralization increased 
under alkaline conditions, with rates of 22.3 % for CAF, 
20.8% for AMP, and 34.04 % in a composite matrix. 
Post-ozonation concentrations have below toxic limits 
predicted through QSAR-OECD. Moreover, research 
on the toxicity of the byproducts is needed to assess the 
process 111 fully. The effective use of advanced oxidation 
processes, including UV/chloramine, UV/PMS, and 
ozonation, has demonstrated efficient degradation of 
pharmaceutical contaminants with minimal byproduct 
toxicity. The methods offer sustainable solutions 
for treating complex pharmaceutical pollutants in 
wastewater 103.
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Kinetics and Reaction Pathways in Advanced 
Photocatalytic Systems

The efficiency of emerging catalytic systems relies 
heavily on a deep understanding of their reaction 
kinetics and underlying mechanistic pathways. In 
photocatalytic CO2 reduction (CO2RR), key factors 
such as photo-excitation, electron-hole pair separation, 
and CO2 activation play critical roles. Optimization 
strategies like defect engineering, doping, and co-
catalyst loading are employed to improve conversion 
rates and product selectivity. Various catalyst 
types, including TiO2, carbon nitride, and Cu-based 
materials, have demonstrated promising performance 
112. In parallel, advancements in thermal stability and 
combustion characteristics for polyimide (PI) aerogels 
have been observed. 
In-situ scanning electron microscopy reveals pore 
structure evolution and fiber expansion under increased 
temperatures. The pyrolysis mechanism was analyzed 
through synchrotron photoionization mass spectrometry, 
revealing a three-stage thermal decomposition process 
offering insights into PI aerogel applications under 
thermal conditions 113. In zinc-air batteries (ZABs), 
hydrophilic porous carbon materials exhibit inner 
surface ion confinement effects that enhance cathodic 
reaction kinetics in neutral media. The microporous 

structure temporarily stores OH⁻ ions, shifting the 
reaction pathway toward a more efficient electrolyte 
mechanism. This reduces zinc salt precipitation and 
overpotentials, improving energy efficiency from 46.0% 
to 74.5%. These advances enable scalable applications 
using a 10 Ah pouch and flexible cells 114.

Catalyst engineering has also shown potential in tuning 
strain and reactivity. For instance, cerium dioxide (CeO2) 
can modulate in-plane strain in 2D metastable 1T-phase 
IrO2, resulting in improved catalytic performance. A 
5% CeO2-loaded 1T-IrO2 within 8 % compressive strain 
achieves a low overpotential (194 mV) and excellent 
stability up to 400 hours. This material follows a distinct 
*O–*O radical coupling mechanism of O2 evolution, 
offering a robust electrochemical pathway 115. 

These studies reveal degradation efficiencies ranging 
from 65-100% depending on the catalyst, light source, 
and reaction conditions. For instance, CdS/NH4V4O10 
achieved 94.4% degradation of AMX under sunlight 
in 120 minutes, while TiO2-0.33Cr reached 100% 
degradation in 180 minutes under the same conditions. 
A detailed comparison of photocatalysts for antibiotic 
removal underneath different light sources is presented 
in Table 3. The principal findings of this narrative are 
depicted in Figure 7.  

Table 3: Comparison of Photocatalysts for Antibiotic Removal Under Different Light Sources.

Serial No. Catalyst Antibiotic Light Source Degradation 
Efficiency (%) Duration (min) Ref.

1 metal-free polymeric carbon 
nitrides AMX xenon lamp – 

Visible Light 100 48 h 116

2 Commercial TiO2 AMX Sun Light 89.31

120 117
3 Commercial TiO2 Ciprofloxacin Sun Light 90.2

4 N-TiO2 AMX Sun Light 95.8

5 N-TiO2 Ciprofloxacin Sun Light 97.3

6
p-n 

heterojunction 
CuI/FePO4 

AMX Sun Light

90

118
7 CuI 41

8 FePO4 69

9 UVC/S2O8
2- and UVCS2O82-/Fe2+ AMX Mercury 

germicidal lamp 99 2 h 119
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Serial No. Catalyst Antibiotic Light Source Degradation 
Efficiency (%) Duration (min) Ref.

10 2D/2D Bi2WO6/Ti3C2 AMX Solar lamp 100 40 120

11 UV/TiO2

AMX
UV lamp 
(100 W) 70 120 121

Metronidazole

12 V2O5/C3N4 AMX Solar Light 91.3 122

13 N-TiO2 AMX Blue LED Light 65.3 90 123

14 TiO2/single-walled carbon 
nanohorns AMX UV light 92.4% 90 90

15 CDs/NH4V4O10 AMX Sun Light 94.4 120 124

16 TiO2-o.33Cr AMX Sun Light 100 180 33

17 Bi2WO6/nano-ZnO AMX  Visible Light 93.10 2 h  125

18 ZnxCo1−xFe2O4  AMX  Visible Light 89 180 126

19 BiVO4 AMX Sun Light 98.6 90 127

20  Ag/Ag2O/TiO2  AMX  Visible Light 97.91 90 11

21 Ba(Ti0.950Sc0.025Nb0.025)O3  AMX Solar Light 72 123 128

22 TiO2/zeolite AMX Ultra Visible 
light Irradiation 99.8 240 129

23 Green Extract (Camellia 
sinensis var. assamica)/SnS2

AMX

Visible Light

93.72

90 130
Congo Red 98.43

24 Mesoporous g-C3N4

AMX
Visible Light

90
60 2

Cefotaxime 99

25 CuO/activated carbon AMX Solar 98 90 131

26 Pt–Bi–TiO2 AMX
Visible light 

300 W halogen–
tungsten lamp

87.67% 120 132

27

UV/g-C3N4

AMX
Visible Light 

500 W halogen 
lamp

53

120 133UV/Fe3O4/g-C3N4  34

Visible/Fe3O4/g-C3N4  81

28 TiO2/Fe2O3  AMX Solar Light 96.5 50 78

29 p-CuO/n-ZnO AMX Solar Light 90 240 134

30 Sn/Zn/TiO2 AMX Visible Light 67 12 135

Notes: Amoxicillin - AMX; Ultraviolet - UV. Table Credit: Pandurangan Vijayalakshmi.
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CONCLUSION
This review highlights recent advancements in 
photocatalytic nanocomposites for the efficient 
degradation of amoxicillin (AMX) in wastewater 
treatment. The superior photocatalytic performance of 
materials such as mesoporous carbon nitride (MCN), 
TiO2 nanoparticles, sulfur-doped C3N5/DyFeO3, BiVO4, 
and MXene-based composites demonstrates their 
potential in antibiotic removal with minimal byproduct 
toxicity. Integrating advanced strategies, including 
heterostructure formation, elemental doping, and 
biosynthesized nanoparticles, has significantly enhanced 
photocatalytic activity, with MXene-based systems 
achieving up to 99% AMX degradation efficiency. 
Additionally, incorporating S-scheme heterojunctions 
and hybrid photocatalytic systems, such as Cs3PMo12O40/
MnIn2S4, has improved charge separation and interfacial 
interactions, further boosting degradation efficiency. 
Beyond photocatalysis, advanced oxidation processes 
(AOPs), including UV/chloramine and ozonation, 
offer additional pathways for pharmaceutical pollutant 
degradation while minimizing secondary pollution. 
Biological remediation approaches, such as Trametes 
versicolor fungi for cytostatic drug detoxification, 
present sustainable and eco-friendly alternatives. 

Figure 7. The key findings of the overall process
Image Credit: Pandurangan Vijayalakshmi.

While significant progress has been made, challenges, 
including photocatalyst stability, scalability, and cost-
effectiveness, must be addressed to facilitate real-
world applications. Future research should optimize 
photocatalyst design, explore synergistic treatment 
approaches, and evaluate long-term environmental 
impacts. By advancing nanocomposite-based 
photocatalysis, this field can contribute to developing 
more sustainable and effective wastewater treatment 
technologies, ultimately mitigating the risks associated 
with pharmaceutical contaminants within aquatic 
ecosystems.
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