Enhancing Skin Health: The Role of Nutraceutical Synergies in Counteracting the Signs of Aging

Lim Chin Chuan¹, Lim Chin Choon², Hasbullani Zakaria³, Elamin Mohamed Elamin Mohamed⁴, Muhd Khairi Bin Mohd Taibi⁵, Abdus Salam⁶ , Jamaludin Bin Zainol⁷.

ABSTRACT

Skin is the largest organ of the human body which is affected by aging. The objective of this review-paper is to briefly highlights the factors responsible for skin changes in aging and the role of nutraceutical synergies in counteracting the signs of aging. Ageing is a multifaceted biological process impacting skin health through intrinsic genetic programming and extrinsic environmental factors. Intrinsic ageing, characterized by hormonal changes and fibroblast dysfunction, and extrinsic factors, such as reactive oxygen species and advanced glycation end-products, compromise skin structure and function. Modern lifestyles, including poor nutrition, environmental pollutants, and UV exposure exacerbate oxidative stress and accelerate skin ageing. Nutraceutical interventions demonstrate significant potential in mitigating these effects, including collagen peptides, hvaluronic acid. nicotinamide mononucleotide, and trace elements like zinc and copper. These bioactive compounds promote collagen synthesis, enhance hydration, and reduce oxidative stress, improving skin elasticity, hydration, and resilience. This study emphasizes the efficacy of a multi-nutraceutical approach, which synergistically addresses ageing pathways, providing a promising avenue for personalized, effective anti-ageing strategies. Future research is recommended to focus on long-term, populationdiverse studies to validate these findings and expand their applicability.

Keywords

Skin health, Aging, Nutraceutical, Counteracting skin sign in aging

INTRODUCTION

The skin is the largest organ of the human body, composed of three layers: epidermis, dermis and hypodermis¹. The primary structural component of the dermis is collagen, which provides essential mechanical support. Dermis also contains another important element elastin, contributing to the skin's resilience and elasticity¹. With ageing, collagen fibrils undergo progressive loss and fragmentation showing visible signs of aging manifested prominently as skin wrinkling, diminished elasticity, noticeable loss of hydration, appearance of dark spots and thinning of the blood vessel walls that significantly impact one's appearance^{1,2}. The aging of our skin is significantly influenced by

- Lim Chin Chuan, Physician Medical Director, Clinic Pelangi, Kuala Ketil, Kedah, Malaysia.
- Lim Chin Choon, Associate Professor, Pharmacology Unit, Faculty of Medicine, Widad University College (WUC), Kuantan, Malaysia.
- Hasbullani Zakaria, Deputy Vice Chancellor (Research and Postgraduate), Biochemistry Unit, Faculty of Medicine, WUC, Kuantan, Malaysia.
- Elamin Mohamed Elamin Mohamed, Microbiology Unit, Faculty of Medicine, WUC, Kuantan, Malaysia.
- Muhd Khairi Bin Mohd Taibi, Deputy Dean (Student Affairs). Family Medicine Unit, Faculty of Medicine, WUC, Kuantan, Malaysia.
- Abdus Salam, Associate Professor, Medical Education Unit, Faculty of Medicine, WUC, Kuantan, Malaysia.
- Jamaludin Bin Zainol, Professor of Surgery, Deputy Vice Chancellor (Academic and Internationalization), and Dean Faculty of Medicine, WUC, Kuantan, Malaysia.

Correspondence

Dr Abdus Salam, Medical Educationalist and Public Health Specialist, Associate Professor and Head of Medical Education Unit, Faculty of Medicine, Widad University College, Kuantan, Pahang, Malaysia. Email: abdussalam.dr@gmail.com,

DOI: https://doi.org/10.3329/bjms.v24i4.84670

a complex interplay of intrinsic genetic changes and external environmental factors, along with our dietary choices and lifestyle habits. Together, these elements play a crucial role in shaping the health and appearance of our skin over time³.

Changes of Skin in Aging

Intrinsic Factors

Intrinsic ageing is a natural, genetically determined process characterized by hormonal changes, fibroblast dysfunction, and a gradual decline in collagen production⁴, which leads to thinner, less resilient skin with reduced hydration and elasticity. There is also a decline in key molecules such as hyaluronic acid (HA) and nicotinamide adenine dinucleotide (NAD+) that further diminishes the skin's ability to retain moisture and energy metabolism, compounding visible signs of ageing^{5,6}.

Extrinsic Factors

On the other hand, extrinsic ageing is driven by external factors such as ultraviolet rays and pollution, which induces ROS production, leading to the activation of matrix metalloproteinases (MMPs) enzymes and the breaking down of collagen, resulting in fragmented collagen fibres and compromised dermal structure^{4,7-10}. Free radicals are constantly produced in our body as a by-product of normal aerobic respiration, metabolism and inflammation. Excess free radicals damage the skin stem cells, resulting in a decrease in collagen production by fibroblasts¹¹, and ultimately showing hallmarks of skin ageing, such as loss of elasticity and wrinkle formation². Other factors such as lifestyle choices, including smoking and poor dietary habits, cause deficiencies in vitamins, trace metals, and amino acids that exacerbate oxidative stress and reduce the skin's natural ability to repair itself8,9. Furthermore, sedentary habits and the widespread use of processed foods exacerbate nutritional deficiencies. Socioeconomic disparities also limit access to effective antiaging interventions, leaving many individuals without adequate preventive or restorative measures¹².

Nutraceutical interventions have emerged as promising tools to counteract the effects of ageing. These bioactive compounds promote collagen synthesis, enhance hydration, and reduce oxidative stress, improving skin elasticity, hydration, and resilience. Blends of collagen peptides and multiple active ingredients have been shown to restore skin hydration and elasticity

and to reduce fine lines and wrinkles. This review highlights the effectiveness of using nutraceuticals as potential anti-aging ingredients for skin rejuvenation, representing a promising pathway for personalized and effective anti-aging strategies.

NOVEL NUTRACEUTICAL INTERVENTIONS IN COUNTERACTING THE EFFECT OF AGING

The term "nutraceutical" is obtained by combining the terms "nutrition" and "pharmaceutical" by Dr Stephen DeFelice in 1989, founder and chairman of the Foundation for Innovation in Medicine (FIM), Cranford, New Jersey¹³. According to the 1996 definition by Dr Stephen DeFelice, nutraceuticals are "food or food ingredients providing medical and health benefits, including prevention and/or treatment of diseases"^{13,14}. Such products include isolated nutrients, dietary supplements, genetically engineered 'designer' foods, functional foods and herbal extracts" According to the above definition, all foods or food supplements can be defined as nutraceuticals¹⁵. A number of nutraceuticals having benefit on ageing skin are described here.

Bioactive Peptides (Collagen peptides)

Peptides are short polypeptidic chains formed by amino acids, have low molecular weight, and are usually under three kDa. Peptides used for nutraceuticals are typically derived from collagen with improved bioavailability and solubility¹⁶. Collagen peptides play a pivotal role by stimulating fibroblast activity, enhancing collagen synthesis, facilitating cellular migration and improving skin elasticity and hydration¹⁷⁻¹⁹. In recent years, collagen supplements have been increasingly used, as they are advertised as a potential remedy against ageing²⁰. Collagen obtained from livestock and poultry is a primary source of natural collagen and collagen peptides²¹. Marine-derived collagen has a homology with human collagen and is widely used for skin health and restoration²².

Marine Collagen Type I

Marine collagen, primarily sourced from fish skin, scales, and cartilage, has become a highly effective nutraceutical for addressing age-related skin and hair changes. The underlying mechanism of action for marine collagen lies in its hydrolyzed peptides, which stimulate dermal fibroblast activity and promote the production of collagen and hyaluronic acid both essential for maintaining skin structure, hydration,

and elasticity. These peptides also inhibit the activity of matrix metalloproteinases (MMPs), enzymes responsible for the breakdown of collagen, thereby preserving the extracellular matrix (ECM) and, thus, enhancing skin hydration and elasticity and reducing wrinkle formation. The peptides in marine collagen also protect the skin against oxidative damage by suppressing MAPK signaling pathways²³, further supporting collagen preservation and enhancing skin regeneration²².

One study showed that supplementation of fish collagen with low molecular weight at a dose of 1000 mg once daily for 12 weeks in a cohort of women aged 40–60 years has efficiently improved skin hydration as early as after 6 weeks of intake and skin wrinkling and elasticity after 12 weeks of intake²⁴. A meta-analysis has demonstrated significant improvements in skin hydration and elasticity with oral fish collagen supplementation compared to placebo treatments²⁵. Another meta-analysis showed that intervention with hydrolyzed collagen (2.5–10 g/day) vs. placebo for 2–12 weeks significantly improved skin hydration and elasticity²⁶.

Marine collagen supplementation is generally well-tolerated, with no significant adverse effects reported in clinical trials. However, individuals with fish or shellfish allergies should exercise caution due to potential allergenicity²⁵.

Sheep Collagen (Type I & III)

Sheep collagen, primarily extracted from sheep skin, sinews, and connective tissues, is rich in Type I and III collagen. It is a valuable ingredient in skin health because it enhances the extracellular matrix (ECM) and provides significant anti-ageing benefits. The hydrolyzed peptides in sheep collagen, such as Gly-Pro-Hyp, are quickly absorbed into the bloodstream and integrated into the dermal layers, stimulating fibroblast activity and promoting collagen and elastin production. Moreover, it causes inhibition of matrix metalloproteinases (MMPs), which degrade collagen. These actions are essential for maintaining skin structure, hydration, and elasticity^{27,28}.

Hyaluronic Acid

Hyaluronic acid (HA), a naturally occurring glycosaminoglycan polysaccharide, is essential for maintaining skin hydration, elasticity, and overall dermal health²⁹. HA is a key component of the

extracellular matrix (ECM) of the human body, with high concentrations in connective tissues such as skin. synovial fluid, and vitreous humour³⁰. It plays a critical role in skin structure by exhibiting excellent moisturizing properties by binding water molecules due to its highly anionic properties³⁰. Ageing causes loss of hyaluronic acid and collagen in the skin; thus, overlying wrinkles begin to form due to loss of viscoelastic properties. Hyaluronic acid counteracts ageing by replacing lost volume. In addition, hyaluronic acid fillers have also been shown to increase collagen production and affect fibroblast morphology³¹. The most common applications are cosmetics and intra-articular use, although many other ophthalmic and topical forms are also available³¹. HA can be prepared in various forms, such as creams, films, gels, serums, hydrogel, fillers, and plasma³². One study showed that daily use of a cream containing HA causes a significant improvement in skin firmness and a reduction in the depth of perioral and orbital wrinkles in all patients³³. It is found that oral administration as a dietary supplement can counteract skin ageing and effectively improve skin condition by increasing skin hydration and improving skin dryness³⁴⁻³⁹.

Nicotinamide Mononucleotide

Nicotinamide mononucleotide (NMN), a precursor to nicotinamide adenine dinucleotide (NAD+), has emerged as a promising supplement for combating age-related cellular decline. NAD+ is essential for physiological activities such as cellular energy metabolism, DNA repair, and oxidative stress regulation²³. As age advances, the cellular concentration of NAD+ naturally declines across multiple human tissues, including skin, blood, liver, muscle, and brain, declining the energy production in mitochondria and affecting the activities of NAD+-dependent enzymes with redox reactions. The decline in NAD+ levels also influences the function of sirtuins, which are proteins that modulate ROS activity. As NAD+ levels decline and sirtuin activity reduces in ageing skin, the accumulation of ROS can lead to oxidative stress in the skin^{40,41}, promoting melanogenesis, contributing to the development of ageing and a range of age-related disorders⁴².

The NMN supplementation has demonstrated the ability to replenish NAD+ levels, thereby improving biosynthesis pathways and overall cellular function, reversing the ageing process, physical performance and metabolic health²³. Clinical studies have provided

robust evidence supporting the efficacy of NMN⁴³⁻⁴⁵. For instance, Yi et al. (2023)⁴⁶ observed significant increase in Blood NAD concentrations and physical performance among participants supplemented with NMN in doses ranging from 300 mg to 900 mg daily. Its safety profile is favourable, with no significant adverse effects reported in doses up to 1,000 mg per day. However, long-term safety data remain limited, and further research is necessary to confirm the effects of prolonged use⁴⁷.

Minerals

Vitamins and minerals are essential micronutrients that play a vital role in skin cell turnover. Minerals like zinc and copper help stabilize collagen structure, offer antioxidant protection, and support enzymatic processes necessary for skin repair and maintenance⁴⁸.

Zinc (As Zinc Gluconate)

Zinc is pivotal in promoting skin health, with functions spanning immune modulation, antioxidation, and support for dermal integrity⁴⁹. Clinical studies have highlighted zinc's role in enhancing skin elasticity and hydration and reducing visible signs of ageing. One study demonstrated that zinc supplementation significantly reduced oxidative stress and inflammatory cytokines in elderly participants, improving immune function and skin health. It enhances collagen synthesis by activating fibroblasts and regulates inflammatory pathways by interacting with NF-κB signalling⁴⁸. Additionally, zinc mitigates oxidative stress by promoting the activity of antioxidant enzymes like superoxide dismutase and catalase. This dual role in antioxidation and inflammation control is crucial for maintaining skin integrity and preventing premature ageing⁴⁹.

Copper (As Ghk-Cu)

Copper, particularly GHK-Cu (Glycyl-L-Histidyl-L-Lysine Copper), is pivotal in skin rejuvenation, wound healing, and antiaging processes. GHK is a naturally occurring tripeptide found in human plasma. This molecule has a high affinity for copper (II) and forms the endogenous chelate GHK-Cu. The plasma level of GHK is about 200 ng/ml at age 20 but declines to 80 ng/ml by age 60, reducing its regenerative and antioxidant properties in the skin⁵⁰. Copper is essential for collagen synthesis, elastin formation, and the regulation of enzymes such as superoxide dismutase (SOD), which mitigate oxidative stress. Through its role in the

extracellular matrix (ECM), GHK Cu helps maintain skin elasticity and hydration, essential for reducing wrinkles, skin texture, inflammation, and free radical damage⁵¹. Studies have demonstrated GHK-Cu's effectiveness in tissue remodelling, collagen production, and anti-inflammatory activity. A clinical trial showed that topical GHK-Cu reduced wrinkle volume by 55.8% and wrinkle depth by 32.8% over eight weeks, outperforming other cosmetic products⁵¹. It has shown the ability to increase cellular production of collagen and elastin by human adult dermal fibroblast cells, supporting skin regeneration and antiaging benefits⁵².

Selenium

Selenium (Se) is a trace element that is essential for humans. It is widely distributed in various tissues and organs of the human body and animals⁵³. Selenium, is present in nuts particularly Brazil nuts and seafood such as fish and shellfish. Other sources include meats (especially liver and kidneys), edible fungi, poultry eggs, broccoli, whole grains, purple sweet potatoes, garlic etc.⁵⁴. The selenium ingested from food is absorbed by the digestive system and then transported through the bloodstream to various cells throughout the body, where it participates in multiple biological processes such as antioxidation and immune enhancement⁵³. Selenium stimulates antioxidant enzymes glutathione peroxidase and thioredoxin reductase, and thus protects the skin against the oxidative stress induced by UV radiation⁵⁵. Study showed that low doses of Se (30 nM) provide potent protection against UVA-induced cytotoxicity in young keratinocytes (from 20–30-year-old donors), while higher concentrations (240 nM) were required for protective efficacy in old keratinocytes (from donors 60-70 years old)⁵⁶.

Vitamins

Incorporation of vitamin-A and all of its derivatives, applied systemically or topically enhances skin elasticity and boosts the natural processes of collagen fibre regeneration and cellular repair⁵⁷. Vitamin C and vitamin E are potent antioxidants. The biological function of vitamin C in the skin is its active role in collagen synthesis. Due to its antioxidant property, vitamin C protect the skin, especially the epidermis, against oxidants generated by ultraviolet radiation and other environmental factors⁵⁷. Additionally, vitamin C plays a role in cholesterol synthesis and iron absorption and increases the bioavailability of selenium⁵⁸. Topically, ascorbic acid is used in various cosmetic products, such

as lightening skin depigmentation, antiaging, and sun protection formulations⁵⁸. Since the human body does not produce vitamin C naturally, obtaining enough of it through diet is crucial to maintain a healthy lifestyle⁵⁸. Vitamin E complex is a group of lipophilic compounds known as tocopherols. As a fat-soluble, membrane-bound antioxidant, tocopherol serves as a formidable defence against oxidative damage and protecting the epidermis and dermis against oxidative stress induced by environmental factors⁵⁸.

Challenges to Modern Society

Modern lifestyles introduce significant challenges to combating aging. Poor dietary habits, including low intake of collagen-boosting nutrients, vitamins, and essential minerals, impair the bodies' ability to repair and regenerate skin tissue¹⁷. Chronic stress, environmental pollution, and prolonged UV exposure contribute to oxidative stress and cellular damage, intensifying the aging process¹⁰. Furthermore, sedentary habits and the widespread use of processed foods exacerbate nutritional deficiencies. Socioeconomic disparities also limit access to effective anti-aging interventions, leaving many individuals without adequate preventive or restorative measures11. These combined factors have led to an increase in the prevalence of early aging symptoms, highlighting the urgent need for accessible, scientifically-backed solutions. Achieving the best result in enhancing aging skin health through nutraceutical synergies, media communication plays a great role⁵⁹⁻⁶⁰. Good media communication is an art that determines compliance and adherence to therapy^{59,61}.

CONCLUSION

Modern lifestyles with multiple factors such as poor nutrition, environmental pollutants, UV exposure etc. exaggerate the oxidative stress and accelerate skin ageing. Nutraceutical interventions have emerged as promising tools to counteract the effects of aging. By addressing multiple biological pathways, the combination of bioactive peptides (marine collagen, sheep collagen), hyaluronic acid, nicotinamide mononucleotide, minerals (zinc, copper, selenium), and vitamins provides a scientifically strong and synergistic approach in combating the multifaceted visible signs of aging. The integrated approach ensures optimal outcomes, making it an ideal choice for those seeking long-lasting and transformative anti-aging benefits.

Funding

No funding was received for this study

Conflict of Interest

The authors declared no conflicts of interest.

Authors' Contribution

All the authors participated well in the preparation of this manuscript, and approved the final version for submission to the Journal for publication.

REFERENCES

- Gibson R, Krug L, Ramsey DL, Safaei A, Aspley S. Beneficial Effects of Multi-Micronutrient Supplementation with Collagen Peptides on Global Wrinkles, Skin Elasticity and Appearance in Healthy Female Subjects. *Dermatol Ther* (*Heidelb*). 2024; 14:1599-1614. https://doi.org/10.1007/s13555-024-01184-2
- Marcilio Cândido T, Bueno Ariede M, Vieira Lima F, de Souza GL, Robles Velasco MV, Rolim Baby A, <u>Rosado</u> C. Dietary supplements and the skin: Focus on photoprotection and antioxidant activity-A review. *Nutrients*. 2022; 14(6):1248. doi: 10.3390/nu14061248.
- 3. Hussein RS, Bin Dayel S, Abahussein O, El-Sherbiny AA. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. *J Cosmet Dermatol.* 2025;**24**(2):e16688. doi: 10.1111/jocd.16688.

- 4. Vranesic-Bender D. The role of nutraceuticals in anti-aging medicine. *Acta Clin Croat*. 2010; **49**:537-544.
- Perez-Sanchez A, Barrajon-Catalan E, Herranz-Lopez M, Micol V. INutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies. *Nutrients*. 2018;**10**(4):403. doi:10.3390/nu10040403.
- Oesser S, Adam M, Babel W, Seifert J. Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL). *J Nutr*. 1999;**129**(10):1891-1895. doi: 10.1093/jn/129.10.1891.
- Tanaka M, Koyama Y, Nomura Y. Effects of collagen peptide ingestion on UV-B-induced skin damage. *Biosci Biotechnol Biochem*. 2009;73(4):930-932. doi: 10.1271/bbb.80649.
- 8. Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens

- and collagen-derived peptides. *Proc Natl Acad Sci USA*. 1978;**75**(2):871-875. doi: 10.1073/pnas.75.2.871.
- Al-Atif H. Collagen supplements for aging and wrinkles: a paradigm shift in the fields of dermatology and cosmetics.
 Dermatol Pract Concept. 2022;12(1):e2022018. doi: https://doi.org/10.5826/dpc.1201a18.
- Ahmed M, Verma AK, Patel R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. *Sustainable Chemistry* and *Pharmacy*. 2020;**18**:Article 100315, 10.1016/j. scp.2020.100315
- Rahman A, Rehmani R, Pirvu DG, Huang SM, Puri S, Arcos M. Unlocking the Therapeutic Potential of Marine Collagen: A Scientific Exploration for Delaying Skin Aging. Mar Drugs 2024;22(4):159. https://doi.org/10.3390/md22040159.
- 12. Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. *Adv Nutr.* 2023;**14**(6):1416-1435. doi: 10.1016/j.advnut.2023.08.008.
- Kim DU, Chung HC, Choi J, Sakai Y, Lee BY. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity, and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2018;10(7):826. doi: 10.3390/nu10070826.
- 14. Gunawan I, Widayati RI, Riyanto P. Budiastuti A, Malik DA, Muslimin, Widyawati, Suhartono. The Effectiveness of Oral Fish Collagen Supplementation on Skin Aging: A Systematic Review and Meta-analysis of Skin Hydration, Skin Elasticity, and Skin Wrinkles. American Journal of Dermatological Research and Reviews. 2023:6:57. doi: 10.28933/ajodrr-2023-01-0505ig.
- Pu SY, Huang YL, Pu CM, Kang YN, Hoang KD, Chen KH, Chen C. Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis. *Nutrients*. 2023;15(9):2080. doi: 10.3390/nu15092080.
- 16. Steele C. Collagen: A Review of Clinical Use and Efficacy. *Nutritional Medicine Journal*. 2022;**1**(2):12-36.
- He X, Gao X, Guo Y, Xie W. Research Progress on Bioactive Factors against Skin Aging. *International Journal* of Molecular Sciences. 2024;25(7):3797. doi:https://doi. org/10.3390/ijms25073797
- 18. Necas J, Bartosikova L, Brauner P, and Kolar J. Hyaluronic Acid (Hyaluronan): A Review. *Veterinarni Medicina*. 2008;**53**(8):397-411.
- Gao YR, Wang RP, Zhang L, Fan Y, Luan J, Liu Z, Yuan C. Oral administration of hyaluronic acid to improve skin conditions via a randomized double-blind clinical test. Skin

- Res Technol. 2023;29(11):e13531. doi:10.1111/srt.13531.
- Walker K, Basehore BM, Goyal A, Zito PM. Hyaluronic Acid. [Updated 2023 Jul 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482440/ Accessed 1st April 2025.
- 21. Ahmadian E, Dizaj SM, Eftekhari A, Dalir E, Vahedi P, Hasanzadeh A, Samie M. The potential applications of hyaluronic acid hydrogels in biomedicine. *Drug Res*. 2020;**70**(1):6-11. doi: 10.1055/a-0991-7585
- Poetschke J, Schwaiger H, Steckmeier S, Ruzicka T, Gauglitz GG. Anti-wrinkle creams with hyaluronic acid: how effective are they? MMW Fortschr Med. 2016;158(Suppl-4):1-6. doi: 10.1007/s15006-016-8302-1.
- Göllner I, Voss W; von Hehn U; Kammerer S. Ingestion of an oral hyaluronan solution improves skin hydration, wrinkle reduction, elasticity, and skin roughness: Results of a clinical study. *J Evid-Based Complementary Altern Med*. 2017;**22**:816-823.
- 24. Oe M; Sakai S; Yoshida H; Okado N; Kaneda H; Masuda Y; Urushibata O. Oral hyaluronan relieves wrinkles: A double-blinded, placebo-controlled study over a 12-week period. *Clin Cosmet Investig Dermatol.* 2017;**10**:267-273.
- 25. Kawada C, Yoshida T, Yoshida H, <u>Sakamoto</u> W, <u>Odanaka W, Sato T, Yamasaki T, Kanemitsu T, Masuda Y, Urushibata O. Ingestion of hyaluronans (molecular weights 800 k and 300k) improves dry skin conditions: a randomized, double blind, controlled study. *J Clin Biochem Nutr.* 2015;**56**(1):66-73. doi: 10.3164/jcbn.14-81</u>
- Sato T, Yoshida T, Kanemitsu T, Yoshida K, Hasegawa M, Urushibata O. Clinical effects of hyaluronic acid diet for moisture content of dry skin. *Aesthe Derma*. 2007;17:33-39.
- 27. Yoshida T, Kanemitsu T, Narabe O, Tobita M. Improvement of dry skin by a food containing hyaluronic acids derived from microbial fermentation. *J New Rem & Clin.* 2009;**58**:143-155.
- 28. Schwartz SR, Park J. Ingestion of BioCell Collagen((R)), a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. *Clin Interv Aging*. 2012;**7**:267-273.
- Anita DC, Sulistyorini SL, Kadarsih S. The RAGE expression in glomerulus and the Malondialdehyde level in the kidney of Diabetes Mellitus rat model after exercise. Bangladesh J. Med. Sci. 2019;18(3):484-490. https://doi.org/10.3329/bjms.v18i3.41615.
- Yusof N, Yasin NM, Yousuf R, Wahab AA, Aziz SA. Bangladesh J Med Sci 2022;21(03): 626-633. DOI: https://doi.org/10.3329/bjms.v21i3.59577.

- 31. Brito S, Baek JM, Cha B, Heo H, Lee SH, Lei L, Jung SY, Lee SM, Lee SH, Kwak BM, Chae S, Lee MG, Bin BH. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. *Journal of Dermatological Science* 2022;**106**(3):159-169. https://doi.org/10.1016/j.jdermsci.2022.05.002.
- 32. Huang H. A Multicentre, randomised, double blind, parallel design, placebo controlled study to evaluate the efficacy and safety of uthever (NMN Supplement), an orally administered supplementation in middle aged and older adults. *Front Aging*. 2022;3:Article 851698. doi: 10.3389/fragi.2022.851698.
- 33. Pencina KM, Lavu S, dos Santos M, Beleva YM, Cheng M, Livingston D, Bhasin S. MIB-626, an oral formulation of a microcrystalline unique polymorph of β-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. *J Gerontol Ser A*. 2023;78:90-96. doi: 10.1093/gerona/glac049.
- 34. Kuerec AH, Wang W, Yi L, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V, Maier AB. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mech Ageing Dev. 2024;218:111917. doi: 10.1016/j.mad.2024.111917.
- 35. Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. *Geroscience*. 2023;**45**(1):29-43. doi: 10.1007/s11357-022-00705-1.
- Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product -Promises and safety concerns. *J Adv Res*. 2021;37:267-278. doi: 10.1016/j.jare.2021.08.003.
- 37. Prasad AS. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. *Front Nutr.* 2014;**1**:14. doi: 10.3389/fnut.2014.00014.
- Rostan EF, DeBuys HV, Madey DL, Pinnell SR. Evidence supporting zinc as an important antioxidant for skin. *Int J Dermatol.* 2002;41(9):606-611. doi: 10.1046/j.1365-4362.2002.01567.x.
- 39. Dou Y, Lee A, Zhu L, Morton J, Ladiges W. The potential of GHK as an anti-aging peptide. *Aging Pathobiol Ther*. 2020;**2**(1):58-61. doi: 10.31491/apt.2020.03.014.
- Pickart L, Margolina A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. *Int J Mol Sci.* 2018;**19**(7):1987. doi: 10.3390/

- ijms19071987.
- Badenhorst T, Svirskis D, Merrilees M, Bolke L, and Wu Z. Effects of GHK-Cu on MMP and TIMP Expression, Collagen and Elastin Production, and Facial Wrinkle Parameters. *Journal of Aging Science*. 2016;4(3). doi:https://doi.org/10.4172/2329-8847.1000166
- 42. Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. *Molecules*. 2024;**30**(1):50. doi: 10.3390/molecules30010050.
- 43. Xia XJ, Zhang XL, Liu MC, Duan MY, Zhang SS, Wei XB, Liu XY. Toward improved human health: Efficacy of dietary selenium on immunity at the cellular level. *Food Func*. 2021;**12**:976-989. doi: 10.1039/D0FO03067H.
- 44. Park K. Role of micronutrients in skin health and function. *Biomol Ther*. 2015;**23**:207-217. doi: 10.4062/biomolther.2015.003.
- 45. Favrot C, Beal D, Blouin E, Leccia ME, Roussel AM. Age-dependent protective effect of selenium against UVA irradiation in primary human keratinocytes and the associated DNA repair signature. *Oxid Med Cell Longev*. 2018; doi: 10.1155/2018/5895439.
- Michalak M, Pierzak M, Kręcisz B, Suliga E. Bioactive Compounds for Skin Health: A Review. *Nutrients*. 2021;13(1):203. doi: 10.3390/nu13010203.
- Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link between nutrition and skin aging. Dermato-Endocrinology 2012:4(3):298-307. https://doi.org/10.4161/derm.22876.
- 48. Zabuddin NABM, Mohamad Aiman Arief Bin Jamaludin MAAB, Pasha MA, Salam A. Overweight and Obesity and its Associated Factors Among Office Staff at a Higher Education Institute in Malaysia. *Bangladesh J. Med. Sci.* 2023;**22**(04):833-841. doi: https://doi.org/10.3329/bjms. v22i4.67122.
- Romzi AAB, Megat Ahmad Kamaluddin MMSHB, Ahmed Baseri MFB, Norshim MZNB, Shadan SNB, Kamaruzaman SLAB, Salam A. Knowledge, Vaccine Preference and Fear of COVID-19 among Malaysians during the Heightened Phase of COVID-19 Pandemic. *Bangladesh J. Med. Sci.* 2023;**22**(01):135-144. doi: https://doi.org/10.3329/bjms.y22i1.61867.
- Salam A, Zakaria H, Abdelhalim AT, Choon LC, Alsharkawy A, Taibi MKBM, Satwi S, Hassan KM, Zainol J. Communication Skills of Fresh Medical Graduates in a Malaysian Private University. *Bangladesh J. Med. Sci.* 2022;**21**(02):404-412. doi: http://doi.org/10.3329/bjms.v21i2.58074.