Surgical Outcome of Vestibular Schwannoma in a Tertiary Care Hospital, Dhaka
Samadder S1, Sardar M2, Ahmad MU3, Uddin KH4, Ashaduzzaman ATM5, Islam MJ6

Abstract:
Background: Presenting symptoms, treatment considerations, and outcome are strongly related to the extension of vestibular schwannomas (VS). The aim of the current retrospective study was to analyze the clinical features, microsurgical treatment, and outcome of VS with brainstem compression.

Methods: 130 patients presented with VS who had undergone operative procedures performed in our unit from Jan, 2017 to may, 2022. The facial nerve function and hearing assessment was done according to House-Brackmann [HB] grading and pure tone audiometry (PTA) respectively. All patients were operated by retro-sigmoid retrosigmoid sub-occipital approach.

Results: Most patients had large tumors and had no useful hearing (75.38%), had disabling cerebellar ataxia (84.61%) and presented with features of raised intracranial pressure (46.15%). Complete tumor excision was carried out 92.30% and anatomical preservation of facial nerve was achieved in 87.50% cases. Hearing preservation was achieved in eight patients. Cerebrospinal fluid leak with or without meningitis and transient lower cranial nerve paresis were common complications. The mortality rate was 7.69%.

Conclusions: Complete tumor excision with good facial nerve preservation can be achieved in large vestibular schwannomas. Hearing preservation is difficult in larger tumors. Primary microsurgical resection is an appropriate management option for large VS. In our experience, this goal can be achieved safely and successfully by using the retromastoid retrosigmoid sub-occipital approach.

Key Words: Vestibular schwannomas, cerebello-pontine angle, retrosigmoid approach, facial nerve preservation.

Introduction:
Vestibular schwannoma (VS) is a benign, slow-growing tumor originating from the Schwann cells of the vestibular branch of the vestibulocochlear nerve. The annual incidence of VS is 1–2:100,000 making it the third most common benign intracranial tumor. In its location, the cerebellopontine angle (CPA), VS is the most common type of tumor. The typical symptoms of VSs are caused by compression on the adjacent cranial nerves and may present as hearing loss, tinnitus, dizziness, facial numbness or weakness. Large VSs may even cause hydrocephalus or brainstem compression. Sporadic VSs are almost exclusively unilateral, whereas bilateral VSs are

1. Dr. Soumen Samadder, Registrar (Clinical Neurosurgery), Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.
2. Dr. Mithun Sardar, Medical Officer (Clinical Neurosurgery), Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.
3. Dr. Misbah Uddin Ahmad, Associate Professor, Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.
4. Dr. Kaz Hafiz Uddin, Assistant Professor, Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.
5. Dr. ATM Ashadullah, Associate Professor, Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.
6. Dr. Md Joynul Islam, Professor, Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka.

Address of Correspondence: Dr. Soumen Samadder, Registrar (Clinical Neurosurgery), Department of neurosurgery, National Institute of neurosciences and Hospital, Dhaka. Mob: 01816728424, Email: dr.soumen.s@gmail.com
typically associated with neurofibromatosis type 2 (NF2).

Since VSs are benign of nature, their treatment options are dependent on the symptoms caused by the tumor. Treatment indications and modalities for VSs vary between different centers. Surgical treatment of VSs results in permanent facial weakness in 10–40% of patients.

The aim of VS surgery:
Maximum safe resection without causing additional neurological defects in the function of adjacent cranial nerves. The preservation of facial nerve function.

The objective:
The perioperative and postoperative complications, thereby proposing a standardized methodology for diagnosis and treatment. To evaluate the signs and symptoms exhibited in 130 cases of Vestibular Schwannoma treated surgically between January, 2017 and May, 2022, describing the relevant aspects of clinical, audiometric, imaging diagnosis and postoperative complications.

Materials and methods:
Study design: A retrospective study
Study place: A single unit, Department of Neurosurgery, National Institute of Neurosciences and Hospital, Sher-E-Bangla Nagar, Dhaka
Study duration: January, 2017 to May, 2022 (65 months).
Study population: The patients with VS who had undergone operative procedures. Total number of patients were 130.

Clinical evaluation:
All patients underwent complete neurological evaluation before and after surgery.
Facial nerve function was assessed at each follow-up using the House–Brackmann scale and categorized as good (HB I–II), fair (HB III–IV), and poor (HB V and VI).
Pure tone audiograms- Criteria for useful hearing was taken as hearing loss <60 decibel (Norstadat Classification for audiometric hearing).
Functional outcomes at final follow-up were assessed by a phone survey using the Karnofsky performance scale.
The speech discrimination test was not done.
Dysphagia and vocal cord function were evaluated to assess lower cranial nerve involvement.
Evaluation of trigeminal nerve included motor and sensory function.
Motor examination, including strength of all extremities, coordination, and gait, were examined routinely to assess brainstem and cerebellar affection.
In addition, level of consciousness, orientation, memory, and other signs of elevated intracranial pressure (ICP) were evaluated.
In selected cases (visual impairment, diplopia, nystagmus), ophthalmological examination was performed before and after surgery.

Radiologic evaluation:
High-resolution bone window computed tomography (CT) studies
MRI of the brain with contrast
Follow-up MRI was performed in all patients three months after the surgery to exclude residual tumor, and then every year to exclude recurrence.
Note: Giant tumors — larger than 40 mm; Large tumors — up to 25 to 40 mm
Small tumors — up to 10 to 25 mm
Subtotal resection (STR): Residual contrast enhancement along facial nerve or brainstem with a diameter exceeding 5 mm.
Near-total resection (NTR): Residual contrast enhanced tissue measuring less than 5 mm

Operative procedure:
All the patients were operated via the retro-mastoid sub-occipital approach, with the patient positioned in the park bench position.
Cavintron ultrasonic surgical aspirator was used in few cases.
The facial nerve stimulator was not utilized.
The intrameatal component of tumor was removed and the lateral aspect of the intrameatal facial nerve defined, after drilling the roof of the internal acoustic meatus (IAM).
A piece of muscle was used to seal the drilled IAM in all patients.
Mean operation time was 6.25 hours (range: 2.5–10 hours).

Follow up:
All the patients were followed up at 6 weeks, at 3 months, at 6 months and yearly thereafter.

Results:

Sex distribution:

![Sex distribution graph](image)

Fig.-3: Distribution of patients by sex

Distribution of Location:
52 (40%) tumors were right-sided and 78 (60%) were left-sided.

![Location distribution](image)

Fig.-4: Distribution of location of tumor

Patient ages at diagnosis were distributed as follows:

- **Category 1:** 15–30 years: 40 (30.76%)
- **Category 2:** 31–45 years: 45 (34.61%)
- **Category 3:** 46–60 years: 37 (28.46%)
- **Category 4:** 61–75 years: 8 (6.15%)

![Age at diagnosis](image)

Fig.-5: Category of age at diagnosis of tumor
Table-I
Pre-operative cranial nerve and neurological deficits in patients with vestibular Schwannoma:

<table>
<thead>
<tr>
<th>Neurological deficits</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hearing loss (no useful hearing)</td>
<td>98 (75.38)</td>
</tr>
<tr>
<td>Cerebellar signs</td>
<td>110 (84.61)</td>
</tr>
<tr>
<td>Trigeminal dysfunction</td>
<td>72 (55.38)</td>
</tr>
<tr>
<td>Facial nerve paresis</td>
<td>74 (56.92)</td>
</tr>
<tr>
<td>Papilledema Secondary optic atrophy</td>
<td>60 (46.15)</td>
</tr>
<tr>
<td>Lower cranial nerve paresis</td>
<td>42 (32.30)</td>
</tr>
</tbody>
</table>

Regarding the duration of the chief complaint at diagnosis:
15 (11.53%) patients had the symptom for less than six months, 26 (20%) for six months to one year, and 79 (60.76%) for more than one year.

Pre or postoperative surgical procedures:
Thirteen patients (10%) underwent ventriculoperitoneal shunt procedure prior to definitive surgery. Eight patients (6.15%) required EVD (External Ventricular Drainage) surgery in the postoperative period. Four patients (3%) underwent Ventriculoperitoneal shunt procedure after definitive surgery. Complete excision of the VS along with intrametal portion was achieved in 92.30% (120/130) of patients. Out of the ten patients in whom complete excision could not achieved; Seven patients had tumor adhere to brainstem and in three patients the tumor was adhere to facial nerve (part of the tumor was left to avoid injury). In one patient, only a subtotal removal was possible due to massive intra-operative hemorrhage. Facial nerve anatomically preserved in 87.50% (105/120) patients with complete tumor excision. Ten patients died in post-operative period. The facial nerve preservation rates were 80.00% for giant size VS and increased rates were observed with tumors of smaller sizes (91.48% for large and 100% for medium size). Further the functional status of the facial nerve at follow up were better in patients with relatively smaller tumors who had mild grade facial paresis (H&B Grade 1and 2) pre-operatively.

Table-II
Anatomical preservation of facial nerve in patients with complete excision in different tumor sizes

<table>
<thead>
<tr>
<th>Tumor category</th>
<th>Patients with complete removal</th>
<th>Anatomical preservation of 7th nerve (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Large</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>Giant</td>
<td>55</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
<td>105</td>
</tr>
</tbody>
</table>

Useful hearing preoperatively and postoperatively:
Ten patients had useful hearing pre-operatively. Useful hearing could be retained in eight patients (60%) post-operatively. Amongst these ten patients, one had giant size tumor, four had large tumors and five had medium sized tumor.
Discussion:
Vestibular schwannoma (VS) is a histologically benign Schwann-cell sheath tumor that usually arises from the inferior division of the vestibular nerve. VSs arise as a result of the loss of a tumor-suppressor gene on the long arm of chromosome 22. Patients usually present with multiple cranial nerve deficits and signs of brainstem compression or intracranial hypertension. There are numerous options and factors to be considered in the optimal management of patients with acoustic neuromas. The options include microsurgical management; stereotactic radiosurgery and conservative 'wait and scan'. The decision is based on a number of factors which include the age of patient, size of tumor, preservation of hearing and the presence of co-morbid factors. With the availability of operating microscope, safe modern anesthesia and refinement in the microsurgical technique the goal of VS surgery has shifted from complete excision to excellent facial nerve function and preservation cochlear nerve function. In this present study, 91.48% and 80.00% of patients had a large and giant sized VS respectively. 75.38% of patients had no useful hearing at time of presentation. In contrast to certain western literature, majority of our patients sought medical attention at a stage when they developed disabling cerebellar ataxia and/or the symptoms of raised intra-cranial pressure. Thirteen patients underwent ventriculoperitoneal shunt procedure prior to definitive surgery. Eight patients required EVD (External Ventricular Drainage) surgery in the post-operative period. Four patients underwent Ventriculoperitoneal shunt procedure after definitive
surgery. Complete excision of the VS along with intrameatal portion was achieved in 92.30% (120/130) of patients. Out of the ten patients in whom complete excision could not be achieved; Seven patients had tumor adhesions to brainstem and in three patients the tumor was adherent to facial nerve (part of the tumor was left to avoid injury). In one patient, only a subtotal removal was possible due to massive intra-operative hemorrhage. Facial nerve anatomically preserved in 87.50% (105/120) patients with complete tumor excision. Ten patients died in post-operative period. The facial nerve preservation rates were 80.00% for giant size VS and increased rates were observed with tumors of smaller sizes (91.48% for large and 100% for medium size). Further the functional status of the facial nerve at follow up were better in patients with relatively smaller tumors who had mild grade facial paresis (H&B Grade 1and 2) pre-operatively. Gerganov et al recommended placement of external ventricular drainage (EVD) or VP shunt prior to surgery as surgery in patients with hydrocephalus and increased ICP is presumably more challenging, and related to worse outcome or higher complication rates. They found that the general and functional outcome in patients with primary VS removal is independent of the presence of hydrocephalus \(^{12, 13, 14}\). Complete tumor excision was achieved in 92.86% (65/70) of the patients. Yamakani et al \(^{20}\) reported complete tumor excision in 86% of patients by retrosigmoid approach for large acoustic tumors. Lanman et al \(^{19}\) reported higher rate (96.3%) of total removal by trans-labyrinthine approach \(^{14}\). Ebersold et al \(^{18}\) achieved total tumor resection in 97.2% (249/256) by retro-mastoid approach for tumors of any size 20. Each approach has advantages and disadvantages. The benefits of the translabyrinthine approach are a short distance to the tumor and avoidance of cerebellar retraction with early identification of the facial nerve. The disadvantages of the translabyrinthine approach include inevitable hearing loss and, in cases of large VS, restricted access to the trigeminal nerve, caudal cranial nerves, and anterior aspect of the CPA \(^{21, 22}\). The retrosigmoid approach is the most popular approach among neurosurgeons \(^{23, 24, 25, 26}\). It is fast, straightforward, and offers excellent visualization of the CPA, trigeminal nerve, lower cranial nerves, and majority of the posterior fossa arteries including the upper part of the vertebral artery and superior cerebellar artery \(^{26}\).

Anatomical preservation of facial nerve was achieved by 87.50% (105/120) patients. In the giant category facial nerve preservation was 80% (44/55) and in the large category was 91.48% (43/47) and 100% (18/18) for medium size tumors. In some western literatures the anatomical preservation rate is 80-90% with the removal of large tumors either by trans-lybrinthine approach \(^{27, 28}\). Samii and Matthias reported preservation rate of 87% with tumor size 33 cm until 1988, but in most recent 200 cases preservation rate rise to 94% independent of tumor size 27. This data confirms that there is a learning curve for surgery of VS. Microsurgical skills and experience of the surgeon influence postoperative facial nerve function \(^{26, 28}\). According to Whittaker et al a surgeon operating less than twelve cases per year cannot expect to get equal results of large series 21. Another major factor influencing facial nerve function is the tumor size. The risk of facial nerve palsy may increase by up to six fold in large VS \(^{29}\). Facial nerve, having a reciprocal relationship with tumor size i.e. larger size of tumor lesser the chances of preservation facial nerve was also observed in this present study. In the present study ten patients had useful hearing pre-operatively. Useful hearing could be retained in eight patients (60%) post-operatively. Among these ten patients, one had giant size tumor, four had large tumors and five had medium sized tumor.

Though the retro-mastoid approach gives the surgeon great opportunity for saving hearing in small sized tumors, but in tumors move than 4 cm, the post-operative hearing is usually very poor as observed by Ebersold et al, who reported no post-operative hearing in any of patients with tumor size more than 4 cm \(^{14, 15, 18}\). According to Samii et al, patients with large tumor (30 mm x 20 mm) hearing was preserved in 23.6% (78/330). Almost all authors agree that hearing preservation is more likely with smaller tumors with good pre-operative hearing \(^{29, 30}\). The reported incidence of cerebrospinal fluid leak ranges between 0% and 30%, with the average approximately 12%, although making comparisons between published series is difficult because of the various methods and reporting criteria used by different authors \(^{31}\). In the present study 6.7% (7/130) of patients of cerebrospinal fluid leak. Most cases were managed conservatively with or without lumber puncture and CSF drainage.
and the incidence is at par with the series published by Yamakani et al. However the incidence of associated meningitis in our study is 4.8% also similar as compared to other series (between 3.7 to 9.2%).14,32-34

Although loss of cochlear and seven nerve function are ten of the major cranial nerve injuries that can occur during the surgery, there are risks of injury of lower cranial nerves in large and giant sized tumors, which can complicate the postoperative course. Judicious use of nasogastric tube feeding and planned tracheostomy can avoid major respiratory complications post-operatively. The incidence of lower cranial nerve paresis has been reported to range from 1.5% to 5.5%14,18,35,19 against 7.64% in the present study. Cerebellar retraction is the event with the greatest influence on the surgical risk, and should be avoided. Appropriate preoperative patient positioning and intraoperative general anesthesia should enable spontaneous retraction.35

The mortality rate was in 7.69% patients (10/130). Massive cerebellar edema leading to brainstem failure occurred in one patient. Massive intraoperative haemorrhage, operative site haematoma, postoperative myocardial infraction caused mortality in one patient each. The mortality rate was similar to study of Jain et al 6% patients (15/250)12. As compared to other study the mortality rate in our series was high. Some authors have stated that 20 to 60 operations are necessary to achieve results similar to those of highly experienced surgeons35-38.

Vestibular schwannoma surgery requires continuing refinement and improvement. In the present study, all the cases were operated by retro-sigmoid approach with park bench position. This concludes the fact that the retro-sigmoid approach in experienced hands is a good options; with good results compared to other series irrespective of tumor size. This is an extension to the view put forward by Semii et al that from any of the available approaches, such as sub-occipital, the middle fossa, and the translabyrinthine; surgeons can develop expertise to high standards, by training and experience, with respect to the optimum patient’s safety, morbidity and mortality.19

Gormley and Sekhar et al used the combined transpetrosal and retrosigmoid approach for tumors greater or more than 4 cm in the cerebello- pontine angle, especially when they extend up to the tentorial notch, because the combination allows good visualization of tumor-brainstem interface and the tentorial notch and better facial nerve outcome for these group of tumors.15 But in our series, using retrosigmoid approach alone visualization of tumor-brainstem interface and facial nerve preservation could be possible in giant sized tumors without much difficulty. Although the choice is influenced by surgeons’ preferences, the retrosigmoid approach is recommended in surgery for acoustic neuroma whenever hearing preservation surgery is an option, or for tumors of any size irrespective of hearing function.36

Conclusions:

Vestibular Schwannomas tend to be diagnosed late in our local setting, with large tumors and compressive symptoms. The goal in treating VSs should be total removal in one stage and preservation of neurological functions to improve the quality of life for patients. In our experience, this goal can be achieved safely and successfully by using the Retro-mastoid retro-sigmoid suboccipital approach.

References:

