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Introduction 

Hepatitis C Virus (HCV) infection evolved as a global 
pandemic, affecting about 3% of the world population 
(approximately 170 million people) (Clin et al., 2009). 
About 80% of the pathology is chronic, leading to liver 
cirrhosis and hepatocellular carcinoma (El-serag et al., 
2004). Virology of HCV uncovers, a single positive 
stranded RNA virus belongs to Flaviviridae family 
(Verna et al., 2008). Non-structural 5B (NS5B) polymer-
ase is responsible for the replication of viral genome 
(Behrens et al., 1996). It has become a potential target 
for inhibition of replication of HCV genome and 
perhaps terminating the prevalence of HCV disease. 

Based on chemical composition and/or mechanism of 
action NS5B inhibitors are categorized into four major 
classes such as nucleoside or nucleotide analogs (as 
competitors of NTPs during RNA synthesis), non-
nucleoside inhibitors (allosterically aim the NS5B) 
(Bressaneli et al., 1999; Lesburg et al., 1999), inhibitors 
covalently change the residues near the active site of 

NS5B, and compounds that target cellular proteins 
needed for HCV polymerase function (Biswal et al., 
2005; Love et al., 2003; Wang et al., 2003). Since there is 
still no effective, well-tolerated treatment for HCV 
infection, alternative novel therapies are needed. In the 
present investigation we focused on the identification 
and elucidation of common pharmacophore model 
from the previously published series of Indole deriva-
tives which are having significant inhibitory profile 
over HCV NS5B (Kevin et al., 2011). And also, we have 
developed a 3D QSAR model for validation of obtained 
pharmacophore model.  

 

Materials and Methods 

Dataset ligands 

A series of 49 indole derivatives are used in this study 
(Kevin CX et al., 2011). Table I (A-E) shows the 
structures of the compounds used and their observed 
activity (pIC50). The in vitro biological activity data was 
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stated in terms of IC50. These IC50 values were 
converted to pIC50 using the formula (pIC50= −log IC50). 
The distribution of pIC50 for the whole data set ranges 
from 4.7 to 9.0. We divided the data set, randomly 
choosing 39 compounds to be in the QSAR training set 
and 10 compounds for the test set on the basis of pIC50 
threshold range. 

Ligand preparation 

Ligand library was produced by using “LigPrep” 
module of Schrodinger suite. The simplest use of 
LigPrep, input structures (2D) were changed over to a 
single, energy minimized (3D) structure with correct 
chirality’s. At most 32 stereoisomers will generate for 

each ligand of these 1 low energy ring conformer with 
best ionization state is preferred. Tools used for 
ionization states, tautomers, stereo chemistries, and 
ring conformations, are OPLS 2005 for Force Field 
energy minimizer, Epik module is selected for 
ionization process, tautomeric states (Shelley et al., 
2007). Energy minimization for whole ligand library 
was performed with same parameters mentioned above 
(Ligprep, version 2.6). 

Generation of common pharmacophore hypotheses 

Pharmacophore hypothesis and 3D QSAR were 
performed using PHASE module. This work concerns 
about pharmacophore perception, structural alignment 
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Table IA 

Dataset ligands and their QSAR results 

Compound 
No. 

R4 R5 R6 pIC50  
experimental 

pIC50

predicted 
Pharm set Data set 

2 H Cl H 7.3 7.1 Training 

13 Cl Cl H 6.1 6.4 Inactive Training 

14 Br H H 5.4 5.9 Inactive Test 

15 H Cl Cl 7.3 7.4 Training 

16 H Br H 7.4 7.5 Training 

17 H H 5.2 4.9 Inactive Training 

18 H H 7.2 7.1 Training 

19 H H 5.9 6.1 Inactive Training 

20 H H 6.5 6.2 Inactive Training 

21 H ethyne H 7.3 7.4 Training 

22 H OH H 4.7 4.9 Inactive Training 

23 H H 7.8 7.8 Active Training 

24 H CF3 H 7.8 7.7 Active Test 
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Table IB 

Dataset ligands and their QSAR results 

Compound No. R1 pIC50 
experimental 

pIC50

predicted 
Pharm set Data set 

24 7.8 7.7 Active Test 

25 7.7 7.6 Active Training 

26 8.0 8.0 Active Training 

27 8.0 8.0 Active Training 

28 8.0 8.0 Active Training 

29 7.8 7.9 Active Training 

30 7.8 7.3 Active Test 

31 8.3 8.4 Active Training 

32 8.4 8.5 Active Training 

33 8.2 8.2 Active Training 
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Table IC 

Dataset ligands and their QSAR results 

Compound No. R5 pIC50  
experimental 

pIC50

predicted 
Pharm set Data set 

32 CF3 8.4 8.5 Active Training 

34 -OCF3 7.6 7.9 Active Training 

35 -OCH3 7.8 7.3 Active Training 

36 -C2H5 7.1 7.6 Test 

37 6.8 6.8 Inactive Training 

38 ME 8.1 8.1 Active Training 

39 C2H5 8.4 8.0 Active Test 

40 Br 8.5 8.5 Active Training 

41 -CH2CF3 8.1 8.2 Active Training 

42 -C(CH3)3 8.1 8.1 Active Training 

43 8.0 8.1 Active Training 

Table ID 

Dataset ligands and their QSAR results 

Compound 
No. 

R5 R2 pIC50  
experimental 

pIC50

predicted 
Pharm set Data set 

44 CH3 CH3 8.2 8.2 Active Training 

45 CH3 C2H5 8.0 8.1 Active Training 

46 CH3 -CH(CH3)2 8.2 8.1 Active Training 

47 CH3 Cyclo propane 8.2 8.2 Active Training 

48 C2H5 CH3 8.2 8.1 Active Training 

49 C2H5 C2H5 8.2 8.0 Active Test 

50 C2H5 -CH(CH3)2 8.3 8.1 Active Test 

51 C2H5 Cyclo propane 8.5 8.5 Active Training 



and activity prediction. Given a set of 49 molecules with 
affinity for a particular proposition target, the fine-
grained conformational sampling analysis and a range 
of scoring techniques to identify common pharmaco-
phore hypothesis of the module, convey the charac-
teristics of 3D chemical structures that are reported to 
be crucial for binding (PHASE, version 3.5; Dixon et al., 
2006). The pharmacophore model was developed using 
a set of criterion pharmacophore features to generate 
sites for all the compounds. PHASE provides a 
standard set of six pharmacophore features, hydrogen 
bond acceptor (A), hydrogen bond donor (D), hydro-
phobic group (H), negatively ionizable (N), positively 
ionizable (P), and aromatic ring (R). All the ligands 
were categorized into active (pIC50>7.5), inactive 
(pIC50<7) and intermediate (pIC50: 7-7.5) according to 
the activity thresholds. Maximum of six and a 
minimum of five sites were selected in order to obtain 
an efficient pharmacophore model. Hypotheses were 
generated by a systematic variation of number of sites 
(nsites) and the number of matching active compounds 
(nact). With nact = nact– tot. Initially (nact - tot) is the total 
number of active compounds in the training set, nsites 

(Rajendra Prasad et al., 2013). The scoring protocol 
provides ranking of different hypotheses to choose 
most appropriate for further investigation. The larger is 

the difference between the score of active and inactive, 
the best is the hypothesis at discriminating the active 
from inactive molecules. 

QSAR studies 

For QSAR development, pharmacophore models of 
training set molecules were localized into regular grid 
of cubes, with each cube allotted zero or more “bits” to 
account for the different type of pharmacophore fea-
tures in the training set that occupy the cube. This 
representation gives rise to binary-valued occupation 
patterns that can be used as independent variables to 
create partial least-squares (PLS) factors 3D-QSAR 
models. Statistical correlation of predicted with actual 
activity data were collated for the hypothesis. Our 
dataset is congeneric, but have many rotatable bonds, 
so we addressed a pharmacophore-based QSAR model. 
Pharmacophore-based QSAR models were generated 
for hypothesis using 39 training set ligands (80% of 
dataset were selected randomly) and 1.0 Å of grid 
spacing. QSAR models from one to nine PLS factors 
were generated, and the models were validated by 
predicting the activity of test set ligands. 

The predictive value of the models was evaluated by 
leave one-out (LOO) and leave-half-out (LHO) cross-
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Table IE 

Dataset ligands and their QSAR results 

Compound 
No. 

R5 R6 pIC50  
experimental 

pIC50 

predicted 
Pharm set Data set 

52 CF3 H 8.5 8.7 Active Training 

47 CH3 H 8.2 8.2 Active Training 

51 C2H5 H 8.5 8.5 Active Training 

53 -C(CH3)3 H 8.2 8.2 Active Training 

54 H 8.2 8.2 Active Training 

55 -CH2CF3 H 8.2 8.2 Active Training 

56 CH3 F 8.1 8.4 Active Test 

57 CH3 Cl 8.3 8.4 Active Training 

58 CH3 CF3 8.2 8.7 Active Training 

59 CF3 F 8.2 8.1 Active Training 

60 C2H5 F 8.3 8.3 Active Training 



validation. The cross validated coefficient, R2cv, was 
calculated using the following equation 1: 

 (1) 

Here, Ypredicted, Yobserved, and Ymean are the predicted, 
observed and mean values of the target property (pIC50) 
respectively. (Yobserved−Ymean)2 is the predictive residual 
sum of squares (PRESS). The predictive correlation 
coefficient (r2pred), based on molecules of test set, is 
defined as,  

 (2) 

Here, SD is the sum of the squared deviation between 
the biological activities of the test set and mean 
activities of the training set molecules, PRESS is the 
sum of squared deviation between predicted and actual 
activity values for every molecule in test set. According 
to the literature, 3D-QSAR models were accepted if 
(Golbraikh et al., 2002; Lu et al., 2010; Basu et al., 2009). 

R2>0.6; R2cv (Q2)>0.5  (3)                                                                                                      

We set a threshold for the active ligands and a 
threshold for the inactive ligands. Ligands with activity 

greater than or equal to the active threshold are marked 
as active ligands with activity less than the inactive 
threshold are marked as inactive and included in the 
pharm set. Ligands whose activity lies between the 
thresholds included as intermediate. 

Results and Discussion 

Pharmacophores from all conformations of the ligands 
in the active set are examined, and those pharmaco-
phores that match identical sets of features with very 
similar spatial arrangements are grouped together. If a 
given group contains at least one pharmacophore from 
each ligand, then this group gives rise to a common 
pharmacophore. 

We have selected maximum number of sites should be 
six because if the number of sites is too large, it will be 
too hard to find any common pharmacophores, but if 
the number of sites is too small, the common 
pharmacophores might not contain all required 
features, and therefore might not discriminate between 
actives and inactives very well. Then search starts from 
the highest number and shifts to the lower number of 
sites until it either finds common pharmacophores. We 
got 77 different variant lists from which eight 
hypotheses were obtained. They are AHHRRR (37), 
HHRRRR (20), HHH-RRR (40), AHHHRR (46), 
HNRRRR (15), AHNRRR (19), AHHNRR (8), and 
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Figure 1: 3D spatial arrangement of pharmacophoric features of HHRRRR.649 



HHNRRR (9). Total of 25 common pharmacophore 
hypotheses were obtained from the three variant 
hypotheses HHRRRR.649, HHH-RRR.731, AHHRRR. 
355. We have identified a six feature pharmacophoric
model consisting two hydrophobic groups, and four
aromatic ring systems (HHR-RRR.649) and examined
its structural features, the inter-pharmacophoric sit
distances (Table II) and 3D spatial arrangement (Figure
1).

Phase entails to build 3D QSAR models for a set of 
ligands that are aligned to a selection of hypotheses, 
and to visualize these models along with the ligand 
structures and the hypotheses. The QSAR models are 
developed from a series of ligands that have a range of 
activities. 80% of Dataset was randomly segregated into 
training and remaining as test sets for internal 
validation.  

Partial least squares (PLS) Regression analysis was 
employed to build a potential QSAR model of the 

dataset ligands over HHRRRR.649 hypothesis (Table 
III). Regression analysis of total nine factors were given 
of which result of PLS-6 was considered to be the best 
as the regression coefficients r2 is 0.98 (for training set), 
q2 is 0.88 (for test set) and Pearson-R is 0.96 . Predicted 
activity of all the dataset ligands obtained from QSAR 
studies considering PLS 6 were listed in Table I. 

QSAR result can also be validated by using Craig’s plot. 
In this, actual (experimental) and predicted activities 
obtained from the QSAR based on PLS regression 
analysis was extrapolated and results were correlated 
with each other. The slope of the line represents the 
regression coefficient of the ligands considered. As the 
regression coefficient is nearer to one, the slope of the 
line passes nearer to the origin of the plot. Efficiency of 
the system was based on the slope of the line and the 
alignment of the ligands around the line.  

We signify, the derived common pharmacophore 
through ligand based 3D-QSAR consists of six 
pharmacophore features HHRRRR, provides possible 
structural modifications for the strategic design of more 
potent derivatives in the treatment of hepatitis C virus. 
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