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Introduction 

Human malaria is a life-threatening disease transmitted 
by female Anopheles mosquitoes. It is caused by four 
parasite species of the genus Plasmodium; P. vivax, P. 
malariae, P. ovale and P. falciparum. P. falciparum is the 
most pernicious, causing the majority of malaria related 
morbidity and mortality (Kumawat et al., 2011). WHO 
reported that 207 million cases of malaria and 627,000 
deaths occurred globally in 2012. Most cases (80%) and 
deaths (90%) occurred in Africa, and most deaths (77%) 
were in children under 5 years of age. 

The growing drug resistance towards P. falciparum and 
the lack of an effective antimalarial vaccine emphasize 
the need to develop a novel, safe, affordable antimala-
rial drug effective against multi drug-resistant malaria 
(Casteel, 1997; O’Neill et al., 2010). Tetraoxanes are 
believed to have a similar mode of activity as the 
naturally occurring endoperoxides such as artemisinin 
((O’Neill et al., 2008; Vennerstrom et al., 1992, 2000). 
1,2,4,5-tetraoxanes have been proven to be superior to 
other synthetic endoperoxides such as 1,2,4- trioxolanes 
in terms of stability and to trioxane analogues in terms 

of both stability and activity (Dong et al., 1999; Amewu 
et al., 2013). 

In the present study, seven molecules of dispiro-1,2,4,5-
tetraoxanes were synthesized and subsequently screen-
ed for their in vitro antimalarial activity against labora-
tory cultured P. falciparum. These molecules were also 
tested for their inhibitory potency against falcipain-2 
(FP-2). 

Materials and Methods 

Chemistry 

All the chemicals used in the work were procured 
either from Sigma–Aldrich Corporation, USA or Merck
Specialties Pvt. Ltd., Mumbai and were used without 
further purification. The melting points of the synthe-
sized compounds, including intermediate were deter-
mined by using Veego-MPI melting point apparatus. 
The progress of the reactions was monitored on silica 
gel-G TLC plate using various solvent combinations. 
The spots were detected with iodine vapors and by 
observing under UV-light. The UV–visible spectra of
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the synthesized compounds were recorded on UV–
visible spectrophotometer (Shimadzu UV-1800). Infra-
red spectra were recorded on an FT-IR Perkin-Elmer 
spectrometer. The 1H and 13C NMR spectra were 
recorded at 400 MHz and 100 MHz, respectively, on a 
Bruker Avance-II 400 NMR spectrometer using either 
DMSO-d6 or CDCl3 as solvent with tetramethylsilane 
(TMS) as an internal standard. Mass spectra were 
obtained on a Waters Q-TOF MICROMA SS LC mass 
spectrometer. Elemental analyses (CHN and O) were 
carried out on Eager Xperience Elemental analyzer 
(Coates, 2000; Pasto et al., 1992; Mathieson, 1965; 
Silverstein and Webster, 1963).

General Procedure 

Synthesis of intermediate dihydroperoxides (Step I) 

Cyclic aldehyde/ketone (1 mL, 10 mmol) was dissolved 
at room temperature in a CH2Cl2/CH3CN mixture (20 
mL, 1:3 v/v) followed by 30% H2O2 (10.4 mL, 0.1 mol) 
and 0.5 mL of concentrated HCl. The reaction mixture 
was stirred for 2 hours at room temperature and 
quenched with saturated NaHCO3 and CH2Cl2. The 
organic layer was separated, and the water layer was 
filtered and dried (O’Neill et al., 2008; Opsenica et al., 
2008; Terent’ev et al., 2012).

Synthesis of targeted dispiro-1,2,4,5-tetraoxanes 5 (a-g) 
(Step II) 

Cyclic ketone/aldehyde (0.36 g, 2.3 mmol) was added 
to a cooled solution (ice bath) of dihydroperoxide (0.34 
g, 2.3 mmol) in CH2Cl2 (20 mL). The mixture was stirred 
for 30 min at the same temperature, and then a cooled 
H2SO4/CH3CN mixture (1.66 mL, 1:10, v/v) was added 
drop wise. After an additional 50 min of stirring, the 
reaction was quenched with saturated NaHCO3 and 
CH2Cl2. The organic layer was separated, and the water 
layer was filtered and dried (O’Neill et al., 2008; 
Opsenica et al., 2008; Terent’ev et al., 2012). 

6,7,14,15-tetraoxa-dispiro[4.2.5.2]pentadecane; 5a 

Brownish semisolid with a characteristic odor; soluble 
in dichloromethane, DMSO, chloroform; %yield 43.98; 
Rf value 0.81 (petroleum ether: acetone: 1:4); spectros-
copic analysis: λmax (in CHCl3) 242.72 nm; FTIR (νmax, in
cm-1, film) 2934.34-2863.53 (C-H stretching, cycloalkyl),
1453.03-1392.73 (C-H bending, cycloalkyl), 1096.82 (C-C
-O stretching), 736.74 (peroxide, C-O-O- stretching); 1H 
NMR (400 MHz, DMSO-d6, δ in ppm) 1.22-1.43 (m, 6H,
3x>CH2, cyclohexyl), 1.46-1.78 (m, 2H, 2x>CH2, cyclo-
pentyl), 1.81-1.84 (t, 4H, J=12Hz, 2x>CH2, cyclohexyl),
2.50-2.51 (t, 4H, J=4Hz, 2x>CH2, cyclopentyl); 13C NMR
(100 MHz, DMSO-d6, δ in ppm) 24.96, 25.29 (2xC,
cyclohexyl), 27.52, 27.61, 27.79, 27.85, 28.46, 29.26 (2xC,
cyclopentyl), 30.38, 30.84, 32.08, 33.01, 33.11, 33.68, 33.49
(2xC, cyclohexyl), 38.92 (1xC, cyclohexyl), 39.12, 39.33,
39.54, 39.75, 39.96, 40.17 (2xC, cyclopentyl), 53.93, 60.59,

63.16, 63.38, 63.43, 78.42, 78.75, 79.08 (1xC, tetraoxane), 
172.41, 172.54, 174.09, 174.24 (1xC, tetraoxane); mass 
(m/z) calculated 214.26; observed 246.2 (100%), 260.2 
(94.14%), 165.2 (79.03%), 196.2 (73.92%). 

7,8,16,17-tetraoxa-dispiro[5.2.6.2]heptadecane; 5b 

Reddish brown semisolid with a characteristic odor; 
soluble in dichloromethane, DMSO, chloroform; %yield 
15.28; Rf value (petroleum ether: acetone: 1:3) 0.79; 
spectroscopic analysis: λmax (in CHCl3) 242.41 nm; FTIR
(νmax, in cm-1, film) 2933.37-2862.09 (C-H stretching,
cycloalkyl), 1455.48-1349.89 (C-H bending, cycloalkyl), 
1044.19 (C-C-O stretching), 855.70-735.23 (peroxide, C-
O-O- stretching); 1H NMR (400 MHz, CDCl3, δ in ppm)
1.18-1.40 (m, 8H, 4x>CH2, cycloheptyl), 1.48-1.88 (m, 
6H, 3x>CH2, cyclohexyl), 1.97-1.99 (dd, 4H, J=8Hz, 
2x>CH2, cycloheptyl), 2.00-2.02 (t, 4H, J=8Hz, 2x>CH2, 
cyclohexyl); 13C NMR (100 MHz, CDCl3, δ in ppm)
24.35, 24.58 (2xC, cyclohexyl), 25.53, 28.31(2xC, cyclo-
heptyl), 30.44, 34.14, 43.90 (3xC, cyclohexyl), 64.09, 64.18 
(2xC, cycloheptyl), 76.70 (2xC, cycloheptyl), 77.02 (1xC, 
tetraoxane), 77.34 (1xC, tetraoxane). 

6,7,15,16-tetraoxa-dispiro[4.2.6.2]hexadecane, 5c 

Brownish yellow solid with characteristic odor; soluble 
in DMSO, dichloromethane, chloroform; melting range 
96-97ºC; %yield 09.96; Rf value (petroleum ether: 
acetone: 1:2) 0.65; spectroscopic analysis: λmax (in
CHCl3) 269.30 nm; FTIR (νmax, in cm-1, film) 2924.12-
2855.05 (C-H stretching, cycloalkyl), 1491.98-1372.76 (C-
H bending, cycloalkyl), 1027.81 (C-C-O stretching), 
906.12-749.87 (peroxide, C-O-O- stretching); 1H NMR 
(400 MHz, CDCl3, δ in ppm ) 1.18-1.49 (m, 8H, 4x>CH2,
cycloheptyl), 1.67-1.74 (m, 4H, 2x>CH2, cyclopentyl), 
2.32-2.46 (m, 4H, 2x>CH2, cycloheptyl), 2.57-2.60 (t, 4H, 
J=12Hz, 2x>CH2, cyclopentyl); 13C NMR (100 MHz, 
CDCl3, δ in ppm) 25.62 (2xC, cyclopentyl), 28.01, 28.10
(2xC, cycloheptyl), 29.71, 40.40 (2xC, cyclopentyl), 76.72, 
77.04, 77.36 (2xC, cycloheptyl), 125.50, 125.64 (2xC, 
cycloheptyl), 127.65 (1xC, tetraoxane), 127.97 (1xC, 
tetraoxane).

1-methyl-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane;
5d

Creamy semisolid with a characteristic odor; soluble in 
dichloromethane, chloroform; %yield 52.12; Rf value 
(isopropyl alcohol: benzene: 1:1) 0.78; spectroscopic 
analysis: λmax (in CHCl3) 253.48 nm; FTIR (νmax, in cm-1,
film) 2935.02-2861.33 (C-H stretching, methyl and 
cycloalkyl), 1447.56-1344.27 (C-H bending, methyl and 
cycloalkyl), 1064.69-952.83 (C-C-O stretching), 846.91-
758.74 (peroxide, C-O-O- stretching); 1H NMR (400 
MHz, CDCl3, δ in ppm) 0.90-0.93 (dd, 3H, J=12Hz, -
CH3, methylcyclohexyl), 1.02-1.10 (m, 6H, 3x>CH2, 
cyclohexyl), 1.20-1.32 (m, 6H, 3x>CH2, methylcyclo-
hexyl), 1.38-1.48(m, 4H, 2x>CH2, cyclohexyl), 1.52-1.94 
(m, 2H, >CH2, methylcyclohexyl), 2.27-2.40 (m, 2H, 
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>CH2, methylcyclohexyl); 13C NMR (100 MHz, CDCl3, δ 
in ppm) 13.66, 14.88 (1xC, -CH3, methylcyclohexyl),
20.43, 22.59, 22.63 (2xC, cyclohexyl), 22.73, 22.76 (1xC,
methylcyclohexyl), 22.82, 23.15 (1xC, methylcyclo-
hexyl), 24.57, 25.26, 25.39 (1xC, methylcyclohexyl),
25.54, 25.57, 25.62 (1xC, methylcyclohexyl), 28.31, 29.48,
29.84, 30.17, 30.40, 30.48, 30.65, 30.89 (3xC, cyclohexyl),
31.09, 31.92, 32.88, 34.15 (1xC, methylcyclohexyl), 76.70,
77.02, 77.34 (1xC, tetraoxane), 107.53, 107.60, 107.66,
108.04, 108.17, 109.26, 109.72 (1xC, tetraoxane); mass
(m/z) calculated 242.31; observed 129.1 (100%), 411.2
(77.20%), 525.2 (64.55%), 115.1 (60.78%), 539.3 (51.53%),
503.3 (47.94%), 243.1 (47.09%) [M+H]+; elemental
analysis calculated C, 64.44; H, 9.15; O, 26.41; Observed
C, 64.654; H, 9.462; O, 26.620.

9-methyl-6,7,14,15-tetraoxadispiro[4.2.5.2]pentadecane;
5e

Brown semisolid with a characteristic odor; soluble in 
dichloromethane, chloroform; %yield 10.67; Rf value 
(isopropyl alcohol: benzene: 1:1) 0.74; spectroscopic 
analysis: λmax (in CHCl3) 240.51 nm; FTIR (νmax, in cm-1,
Film) 2927.77-2860.43 (C-H stretching, methyl and 
cycloalkyl), 1457.38-1375.93 (C-H bending, methyl and 
cycloalkyl), 1039.11-933.44 (C-C-O stretching), 843.84-
736.33 (peroxide, C-O-O- stretching).

Ethyl 6,7,14,15-tetraoxadispiro[4.2.5.2]pentadecane-1-
carboxylate; 5f 

Orange liquid with a characteristic odor; soluble in 
dichloromethane, chloroform; boiling range 104-105ºC; 
%yield 40.35; Rf value (benzene: carbon tetrachloride: 
2:1) 0.51; spectroscopic analysis: λmax (in CHCl3) 253.48
nm; FTIR (νmax, in cm-1, Film) 2940.15-2869.23 (C-H 
stretching, cycloalkyl), 1721.64 (C=O stretching, 
C2H5COO-), 1455.05-1337.93 (C-H bending, cycloalkyl), 
1234.61-1107.91 (-C-O stretching, C2H5COO-), 1025.47 
(C-C-O stretching), 855.46-735.67 (peroxide, C-O-O- 
stretching); 1H NMR (400 MHz, CDCl3, δ in ppm) 1.20-
1.22 (t, 3H, J=8Hz, -CH3, ethylcarboxylate), 1.25-1.33 (m, 
6H, 3x>CH2, cyclohexyl), 1.35-1.47 (m, 2H, >CH2, 
cyclopentyl), 1.57-1.76 (m, 4H, 2x>CH2, cyclohexyl), 
1.84-1.92 (m, 2H, >CH2, cyclopentyl), 1.96-1.99 (m, 2H, 
>CH2, cyclopentyl), 2.28-2.40 (m, 2H, >CH2, cyclo-
pentyl), 4.09-4.38 (m, 2H, >CH2, ethylcarboxylate); 13C 
NMR (100 MHz, CDCl3, δ in ppm) 14.24 (1xC, -CH3,
ethylcarboxylate), 20.96 (1xC, cyclopentyl), 23.23 (2xC,
cyclohexyl), 24.58 (1xC, cyclopentyl), 25.51, 27.39, 28.33
(3xC, cyclohexyl), 34.18 (1xC, cyclopentyl), 38.08 (1xC,
cyclopentyl), 38.36 (1xC, -C2H5, ethylcarboxylate), 54.80
(1xC, tetraoxane), 76.71 (1xC, tetraoxane), 77.02, 77.34
(1xC, -C=O, ethylcarboxylate); mass (m/z) calculated
286.32; Observed 143.1 (100%), 115.1 (78.27%), 111.0
(52.78%), 157.1 (47.48%), 407.2 (32.10%), 129.1 (26.54%);
elemental analysis calculated C, 58.73; H, 7.74; O, 33.53;
observed C, 58.784; H, 7.746; O, 33.581.

1-chloro-7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecane;

5g 

Yellowish pink semisolid with a characteristic; soluble 
in methanol, dichloromethane, chloroform; %yield 
09.92; Rf value 0.82 (petroleum ether: n-butanol: 2:1); 
spectroscopic analysis: λmax (in CHCl3) 242.72 nm; FTIR
(νmax, in cm-1, film) 2940.10-2866.00 (C-H stretching,
cycloalkyl), 1435.76-1363.54 (C-H bending, cycloalkyl), 
1062.74-961.13 (C-C-O stretching), 809.83-738.60 (per-
oxide, C-O-O- stretching), 706.26 (-C-Cl stretching, 
aliphatic-Cl). 

Antimalarial activity 

All the synthesized compounds were evaluated for in 
vitro antimalarial activity against chloroquine resistant 
strain-RKL-9 of P. falciparum (Pf) using 96 well-micro-
titre plates at the Department of Pharmaceutical 
Sciences, Dibrugarh University, Dibrugarh, Assam, 
India. The laboratory adapted strain of Pf was routinely 
cultured at 37ºC temperature and 5% CO2 environment 
in RPMI 1640 medium supplemented with 25 mM 
HEPES, 1% D-glucose, 0.23% sodium bicarbonate and 
10% heat inactivated human serum. For antimalarial 
testing, the asynchronous parasites of Pf were synchro-
nized to obtain only the ring stage parasitized cells by 
5% D-sorbitol treatment. For carrying out the assay, the 
initial ring stage parasitemia of 0.8–1.5% at 3%
hematocrit in a total volume of 100 mL of medium 
RPMI-1640 was uniformly maintained. A stock solution 
(1 mg/mL) of sample was prepared by dissolving the 
test compounds in DMSO and subsequent dilutions 
were made with the culture medium. Hundred 
microlitres of the test compounds at 100 µg/mL 
concentrations in triplicate was incubated with 
parasitized cell preparation at 37ºC and 5% CO2 in a 
CO2 incubator. After an incubation period of 36–40
hours, blood smears were prepared from each well and 
stained with 3% Giemsa stain. The slides were micros-
copically observed and the percent dead rings and 
schizonts were scored against 200 asexual parasites 
with respect to the control group. Chloroquine was 
used as the standard reference drug (Trager and Jensen, 
1976). 

Molecular docking studies 

The three dimensional (3D) crystal structure of falcipain
-2 (PDB code 3BPF) was retrieved from the protein data
bank (PDB) (Source:www.rcsb.org/pdb). The native
autoinducer and all water molecules were removed.
The CHARMm force field (FF) was used to add atom
types and hydrogens in the proteins. 3D structures of
all synthesized compounds were constructed and
energy minimized using the Discovery Studio 2.5/
Builder module. Docking studies were performed using
the CDOCKER module of Discovery Studio 2.5.
CDOCKER is a grid-based molecular docking method
where the receptor is held rigid while the ligands are
allowed to flex during the refinement. The CHARMm
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force field was used as an energy grid force field for 
docking and scoring function calculations. Random 
ligand conformations were generated from the initial 
structure through high temperature molecular 
dynamics, followed by random rotations which were 
further refined by grid-based (GRID 1) simulated 
annealing and a final grid-based minimization. Of the 
10 best poses, one (conformation) having a highest 
docking score (-CDOCKER energy) was used for the 
binding energy calculations and further analysis. The 
higher negative value of CDOCKER energy represents 
more favorable binding of the complex. This means that 
ligands with high docking scores are able to fit snugly 
in the active site pocket with the minimal steric clashes. 
CDOCKER score (-CDOCKER Energy) includes inter-

nal ligand strain energy and receptor-ligand interaction 
energy, and is used to sort the different conformations 
of each input ligand (Oliveira et al., 2013; Liu et al., 
2012). 

Results 

Chemistry 

The targeted compounds were prepared as outlined in 
Scheme 1 (Steps 1 and 2). The step 1 involved the 
preparation of intermediates dihydroperoxide (3) by the 
acid-catalyzed addition of hydrogen peroxide (2) to 
cyclic carbonyl compounds (1). The step 2 involved the 
preparation of targeted dispiro-1,2,4,5-tetraoxanes (5) 

Scheme 1: Synthesis of targeted compounds 5 (5a to 5g): Reagents and condition (a,b): Step I: Synthesis of dihydroperoxide (3): a; 
CH3CN, CH2CI2, Concentrated HCI, stirring at room temperature; Step II: Synthesis of dispiro–1,2,4,5-tetraoxanes (5): b; CH3CN, 
CH2CI2, Concentrated H2SO4, stirring at 0-10ºC 
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via cyclization between dihydroperoxide (3) and cyclic 
carbonyl compounds (4) in the presence of conc. 
sulfuric acid. The reaction yielded desired pure 
products though the yields were low. 

FT-IR spectra showed the stretching frequency range 
between region 2850–2950 cm-1 due to aliphatic
cycloalkyl –C–H stretching, 1250-1000 cm-1 due to C-C-
O stretching and 900-750 cm-1 due to peroxide, C-O-O- 
stretching. 1H NMR spectra of the compounds showed 
a triplet or multiplet at δ (ppm) 1.00–2.50 due to
cycloalkyl –C-H which further confirmed the formation
of the desired compounds. The analytical and spectral 
data of the compounds were in conformity with the 
structure of the synthesized compounds. 

Antimalarial activity 

Among the seven compounds, four compounds 5b, 5c, 
5d and 5f showed good activity against chloroquine 
resistant Pf strain RKL-9 with MIC 62.5 µg/mL, 62.5 
µg/mL, 15.6 µg/mL, 15.6 µg/mL, respectively and IC50 

3.9 µg/mL compared to chloroquine (MIC 25.0 µg/mL 
and IC50 0.4 µg/mL). Compounds 5d (MIC = 15.6 µg/
mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) 
were observed to be about 1.5 times more potent than 
CQ (MIC = 25.0 µg/mL or 78.3 µM) (Table I).  

Molecular docking studies 

A molecular docking study was undertaken to gain 
insight into the key structural requirements and the 
basis of the distinct activity profile of the test 
compounds in P. falciparum parasite. The docking 
studies of the target compounds were performed into 
the binding pocket of falcipain-2 (PDB code 3BPF). The 
results and docked conformations of the ligands in the 
active site are illustrated in Table II and Figure 1, 
respectively. 

Discussion 

Seven novel dispiro-1,2,4,5-tetraoxane derivatives were 
synthesized and characterized by a number of analy-
tical and spectroscopic techniques. Two compounds, 
namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f 
(MIC = 15.6 µg/mL or 54.6 µM) were found to be about 
1.5 times more potent against chloroquine resistant 
strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/
mL or 78.3 µM) on antimalarial activity screening. 
Molecular docking study results showed that the 
targeted molecules were snugly fitted into the active 
site with considerable and diverse CDOCKER energy (-
1.6870 to -23.1300) with FP-2 along with the formation 
of numerous hydrogen bonds and hydrophobic 
interactions. 

Vennerstrom and co-workers (1992) reported that high 

Table I 

In vitro antimalarial activity of the synthesized dispirotetraoxanes 

Compound code MIC 

(µM) 

MIC 

(µg/mL) 

IC50 

(µg/mL) 

IC90 

(µg/mL) 

5a 1166.6 250.0 3.9 9.1 

5b 257.9 62.5 3.9 6.5 

5c 273.8 62.5 3.9 38.5 

5d 64.5 15.6 3.9 12.0 

5e 547.6 125.0 3.9 88.2 

5f 54.6 15.6 3.9 3.9 

5g 958.7 250.0 4.9 146.8 

78.3 25.0 0.4 1.2 Chloroquine 

*MIC, IC50 and IC90 values were means of three independent experiments

Table II 

Molecular docking interaction results 

Compound code CDOCKER 
energy 

(kcal/mol) 

CDOCKER inter-
action energy 
(kcal/moL) 

5a -1.69 -28.65

5b -14.75 -28.15

5c -23.13 -28.73

5d -11.06 -28.10

5e -2.75 -34.81

5f -12.96 -26.82

-8.56 -37.875g 
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steric hindrance close to the peroxide ring is 
unfavorable for activity in dispirotetraoxanes. Amewu 
and co-workers (Amewu et al., 2013) reported that 
dispirotetraoxane compounds was found to be equally 
potent as artemisinin. 

Antimalarial activity results reflect that the 
dispirotetraoxanes are found to be potent compounds 
against chloroquine resistant Pf strain RKL-9. 
Substitution on dispirocycloalkane-tetraoxane with 
methyl and ethyl carboxylic acid groups make more 
active tetraoxanes than CQ against RKL-9 as observed 
with 5d and 5f, due to desirable lipophilicity to 
tetraoxane. Attachment of higher cycloalkanes e.g. six 
and seven member dispirocycloalkane ring (cyclo-
hexane or cycloheptane) to tetraoxane ring enhanced 
effectiveness of tetraoxanes than that of lower 
cycloalkanes e.g. five member dispirocycloalkane ring 
(cyclopentane) towards their antimalarial activity. Chloro 
group substituted dispirotetraoxane become less active 
than corresponding unsubstituted dispirotetraoxanes.  

Conclusion 

A novel series of compounds with potent antimalarial 
activity has been developed.  Designed molecules have 
the possibility to introduce chemical diversity around 
the core skeleton to generate newer and potent 
molecules.  
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