Fractionation and anti-inflammatory effects of polyphenol-enriched extracts from apple pomace
DOI:
https://doi.org/10.3329/bjp.v7i1.10194Keywords:
apple pomace, polyphenols, fractionation, anti-inflammationAbstract
Bioactive polyphenols are the predominant ingredients in apple pomace, an agro-industrial byproduct in apple juice processing. The present work focused on fractionation of ethanol extract of apple pomace using macroporous absorbent resin chromatography and HPLC analysis of all fractions recovered from polyphenol-enriched extract and their inhibitory effects on cyclooxygenase-2 (COX-2) expression in lipo-polysaccharides (LPS) -induced mouse RAW 264.7 cell line. Six fractions API-VI were achieved through fractionation eluting with aqueous alcohol. HPLC analysis indicated that APIII eluted by 40% ethanol had the highest content of total phenolics, which was 148.1 ± 3.11 mg gallic acid equivalents per 100 g of dry apple pomace. Anti-inflammatory assays showed that APIII had the strongest activity against COX-2 expression at 5 ?g mL-1 and procyanidin B2 and quercetin exhibited positive correlation with their anti-inflammatory effects. Our data suggested that phenolics could be prepared from apple pomace and applied in the management of inflammatory diseases.
Downloads
287
186 Read
3
References
Attri D, Joshi VK. Optimization of apple pomace based pigment production medium and fermentation conditions for by Chromobacter sp. J Food Sci Technol. 2006; 43: 48487.
Bai XL, Yue TL, Yuan YH, Zhang HW. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J Sep Sci. 2010; 33: 375158.
Bhushan S, Kalia K, Sharma M, Singh B, Ahuja PS. Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol. 2008; 28: 28596.
Burnett BP, Jia Q, Zhao Y, Levy RM. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 2007; 10: 44251.
García YD, Valles BS, Lobo AP. Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem. 2009; 117: 73138.
Kim HG, Yoon DH, Kim CH, Shrestha B, Chang WC, Lim SY, Lee WH, Han SG, Lee JO, Lim MH, Kim GY, Choi S, Song WO, Sung JM, Hwang KC, Kim TW. Ethanol extract of Inonotus obliquus inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J Med Food 2007; 10: 8089.
Kumar D, Verma R, Bhalla TC. Citric acid production by Aspergillus niger van. Tieghem MTCC 281 using waste apple pomace as a substrate. J Food Sci Technol. 2010; 47: 45860.
Lee JH, Kim GH. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J Food Sci. 2010; 75: H21217.
McCann MJ, Gill CIR, O`Brien G, Rao JR, McRoberts WC, Hughes P, McEntee R, Rowland IR. Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem Toxicol. 2007; 45: 122430.
Pastene E, Speisky H, Troncoso M, Alarcon J, Figueroa G. In vitro inhibitory effect of apple peel extract on the growth of Helicobacter pylori and respiratory burst induced on human neutrophils. J Agric Food Chem. 2009; 57: 774349.
Shalini R, Gupta DK. Utilization of pomace from apple processing industries: A review. J Food Sci Technol. 2010; 47: 36571.
Suarez B, Alvarez AL, García YD, del Barrio G, Lobo AP, Parra F. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem. 2010; 120: 33942.
Vendruscolo F, Albuquerque PCM, Streit F, Esposito E, Ninow JL. Apple pomace: A versatile substrate for biotechnological applications. Crit Rev Biotechnol. 2008; 28: 112.
Wijngaard HH, Brunton N. The optimisation of solid-liquid extraction of antioxidants from apple pomace by response surface methodology. J Food Eng. 2010; 96: 134-40.
Ying C, Zhang HW. Preparation of procyanidin B2 from apple pomace and its inhibitory effect on the expression of cyclooxygenase-2 in lipopolysaccharide-treated RAW264.7 macrophages. Bangladesh J Pharmacol. 2011; 6: 10610.
Zessner H, Pan L, Will F, Klimo K, Knauft J, Niewohner R, Hummer W, Owen R, Richling E, Frank N, Schreler P, Becker H, Gerhauser C. Fractionation of polyphenol-enriched apple juice extracts to identify constituents with cancer chemopreventive potential. Mol Nutr Food Res. 2008; 52: S2844.
Zhang WY, Liu HQ, Xie KQ, Yin LL, Yi LI, Kwik-Uribe CL, Zhu XZ. Procyanidin dimer B2 [epicatechin-(4?-8)-epicatechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochem Biophys Res Commun. 2006; 345: 50815.
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).