Hexonic derivatives as human GABA-AT inhibitors: A molecular docking approach
DOI:
https://doi.org/10.3329/bjp.v10i1.20642Keywords:
?-Aminobutyric acid aminotransferase, Epilepsy, Molecular dockingAbstract
Human ?-aminobutyric acid aminotransferase (GABA-AT), a pyridoxal phosphate dependent enzyme is responsible for the degradation of the inhibitory neurotransmitter GABA. Currently, GABA-AT is a potential drug target for epilepsy due to the selective inhibition in brain. In this computational study, we mainly focus on screening of novel lead candidates against GABA-AT using hexonic derivatives. Structure based virtual screening is performed in Vina that screened top hits based on least binding affinity. Further re-docking on hits is performed in AutoDock results in identification of leads with favorable binding energy and hydrogen bond interactions confirmed the effective inhibition. In conclusion, leads 3-aminohex-5-enoic acid and AG-E-60842 can acts as specific leads for GABA-AT and assist in discovery of novel anti-epileptic drugs.
Downloads
350
222 Read
204
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).