Effects of paeonol on proliferation and collagen synthesis of rat cardiac fibroblasts induced by aldosterone

Keywords: Aldosterone, Paeonol, TGF-β1, Type I collagen, Type III collagen


The aim of this study was to explore the possible molecular mechanisms of paeonol in preventing ventricular remodeling. The cell viability of neonatal rat cardiac fibroblasts was detected by the method of MTT. RT-PCR and Western blot were used to measure the expression of TGF-β1, type I collagen and type III collagen. After treating the cardiac fibroblasts with paeonol, the cell viability decreased (p<0.01), and the expression of TGF-β1, type I collagen and types III collagen was significantly reduced (p<0.01). Thus, paeonol can inhibit the proliferation of fibroblast cells induced by aldosterone. The molecular mechanism is related to the down-regulation of TGF-β1 and type I and III collagen gene expression.


Download data is not yet available.


Agrotis A, Saltis J, Bobik A. Transforming growth factor-β1 gene activation and growth of smooth muscle from hypertension rats. Hypertension 1994; 23: 593-99.

Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol. 2006; 47: 693-700.

Bahuguna A, Khan I, Bajpai VK, Kang SC. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J Pharmacol. 2017, 12: 115-18.

Brandan E, Gutierrez J. Role of proteoglycans in the regulation of the skeletal muscle fibrotic response. FEBS J. 2013; 280: 4109-17.

Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol. 1994; 26: 809-20.

Cao Zheng, Wang Jianing, Yang Guiyuan, Li Jianjun. Aldos-terone promotes collagen synthesis by rat cardiac fibroblasts induced by angiotensin II. Chinese J Arterioscler. 2003; 11: 135-38.

Chen Y, Liu F, Han F, Lv L, Tang CE, Xie Z, Luo F. Omentin-1 is associated with atrial fibrillation in patients with cardiac valve disease. BMC Cardiovasc Disord. 2020; 20: 214.

Dartsch T, Fischer R, Gapelyuk A, Weiergraeber M, Ladage D, Schneider T, Schirdewan A, Reuter H, Mueller-Ehmsen J, Zobel C. Aldosterone induces electrical remodeling independent of hypertension. Int J Cardiol. 2013; 164: 170-78.

Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577-84.

Gao Y, Zhang YM, Qian LJ, Chu M, Hong J, Xu D. ANO1 inhibits cardiac fibrosis after myocardial infraction via TGF-β/smad3 pathway. Sci Rep. 2017; 7: 2355.

Gu Yuanyuan, Zhou Xiaohui , Xu Qian, Zhao Jingyi. Effects of paeonol on RAS occurred on the development of ventricular remodeling after acute myocardial infarction in rats. Tianjin Med, 2015; 43: 470-73.

Han L, Tang Y, Li S, Wu Y, Chen X, Wu Q, Hong K, Li J. Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3. J Cell Mol Med. 2020; 24: 488-510.

Hanatani A, Yoshiyama M, Kim S, Omura T, Ikuno Y, Takeuchi K, Iwao H, Yoshikawa J. Assessment of cardiac function and gene expression at an early phase after myocardial infarction. Jpn Heart J. 1998; 39: 375-88.

Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, Matsui T, Fujii M, Matsumoto T, Yamamoto T, Horie H, Ohnishi M, Kinoshita M. Relationship between transcardiac extraction of aldosterone and left ventricular remodeling in patients with first acute myocardial infarction: Extracting aldosterone through the heart promotes ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 2001; 38: 1375-82.

Hayashi M, Tsutamoto T, Wada A, Tsutsui T, Ishii C, Ohno K, Fujii M, Taniguchi A, Hamatani T, Nozato Y, Kataoka K, Morigami N, Ohnishi M, Kinoshita M, Horie M. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 2003; 107: 2559-65.

Lagarto JL, Dyer BT, Peters NS, French PMW, Dunsby C, Lyon AR. In vivo label-free optical monitoring of structural and metabolic remodeling of myocardium following infarction. Biomed Opt Express. 2019; 10: 3506-21.

Lee CY, Shin S, Lee J, Seo HH, Lim KH, Kim H, Choi JW, Kim SW, Lee S, Lim S, Hwang KC. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart. Int J Mol Sci. 2016; 17: 1752.

Lieu FK, Lin CY, Wang PS, Jian CY, Yeh YH, Chen YA, Wang KL, Lin YC, Chang LL, Wang GJ, Wang SW. Effect of swimming on the production of aldosterone in rats. PLoS One. 2014; 9: e87080.

Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life. 2019; 71: 1729-39.

Meckert PC, Rivello HG, Vigliano C, González P, Favaloro R, Laguens R. Endomitosis and polyploidization of myocardial cells in the periphery of human acute myocardial infarction. Cardiovasc Res. 2005; 67: 116-23.

Prins KW, Thenappan T, Weir EK, Kalra R, Pritzker M, Archer SL. Repurposing medications for treatment of pulmonary arterial hypertension: What's old is new again. J Am Heart Assoc. 2019; 8: e011343.

Rossi G, Boscaro M, Ronconi V, Funder JW. Aldosterone as a cardiovascular risk factor. Trends Endocrinol Metab. 2005; 16: 104-07.

Schmidt K, Tissier R, Ghaleh B, Drogies T, Felix SB, Krieg T. Cardioprotective effects of mineralocorticoid receptor antagonists at reperfusion. Eur Heart J. 2010; 31: 1655-62.

Shintani Y, Ito T, Fields L, Shiraishi M, Ichihara Y, Sato N, Podaru M, Kainuma S, Tanaka H, Suzuki K. IL-4 as a repur-posed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: Proof-of-concept data in mice. Sci Rep. 2017; 7: 6877.

Sun Y, Zhang JQ, Zhang J, Lamparter S. Cardiac remodeling by fibrous tissue after infarction in rats. J Lab Clin Med. 2000; 135: 316-23.

Sunaga H, Koitabashi N, Iso T, Matsui H, Obokata M, Kawakami R, Murakami M, Yokoyama T, Kurabayashi M. Activation of cardiac AMPK-FGF21 feed-forward loop in acute myocardial infarction: Role of adrenergic overdrive and lipolysis byproducts. Sci Rep. 2019; 9: 11841.

Toldo S, Mezzaroma E, McGeough MD, Peña CA, Marchetti C, Sonnino C, Van Tassell BW, Salloum FN, Voelkel NF, Hoffman HM, Abbate A. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res. 2015; 105: 203-12.

Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Matsui T, Kinoshita M. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol. 2001; 37: 1228-33.

Wang W. Effect of EPO on fibrosis of suckling mouse cardiac fibroblasts and the role of TGF-pi-TAKi-p38 MAPK in it. Kunming Medical University, 2013.

Wang Y, Chen J, Wang J, Guo X, Wang N, Yuan J. Antidepressant, neuropharmacological activity and mode of action of theaflavin-3-gallate in in vitro and in vivo models of depression. Bangladesh J Pharmacol. 2018; 13: 340-48.

Wilson EM, Spinale FG. Myocardial remodeling and matrix metallo proteinase in heart failure: Turmoil with in the interstitium. Ann Med. 2001; 33: 623-34.

Xu Q, Cao K, Xiao YH, Du C, Dong XH, Wang Y, Zhou XH. Effects of paeonol on the expression of NF-κB pathways in human umbilical veins endothelial cells induced by homocysteine. Bangladesh J Pharmacol. 2015; 10: 604-11.

Yang T, Zhang GF, Chen XF, Gu HH, Fu SZ, Xu HF, Feng Q, Ni YM. MicroRNA-214 provokes cardiac hypertrophy via repression of EZH2. Biochem Biophys Res Commun. 2013; 436: 578-84.

Zeng ZH, Luo BH, Gao YJ, Su CJ, He CC, Yi JJ, Li N, Lee RM. Control of vascular changes by renin-angiotensin-aldosterone system in salt-sensitive hypertension. Eur J Pharmacol. 2004; 503: 129-33.

Zhang Y, Fan J. Overview of the study on cortex moutan IV overview of the pharmacological action of cortex moutan. Chongqing Chinese Herbal Med Res. 2009; 6: 24-31.

Zhao J, Dong H, Zhou X, Yao Y, Zhang S. Effects of paeonol on ventricular remodeling and expression of NF-κBp65 and IL-1mRNA in rats with acute myocardial infarction. Chinese J Exper Formulae. 2014; 20: 177-80.

Zhao J, Zhang S, Yao Y, Gu Y, Shi Z, Zhou X. Effects of paeonol on nuclear factor-κB p65 pathway after acute myocardial infarction in rats. Chinese J Gerontol. 2017; 37: 22-24.

How to Cite
Xu, Q., L. Wang, J. Zhao, Y. Xiao, and C. Du. “Effects of Paeonol on Proliferation and Collagen Synthesis of Rat Cardiac Fibroblasts Induced by Aldosterone”. Bangladesh Journal of Pharmacology, Vol. 16, no. 2, Apr. 2021, pp. 42-48, doi:10.3329/bjp.v16i2.51605.
Research Articles