15,16-Dihydrotanshinone I inhibits the proliferation of MV4-11 by means of apoptosis via antagonizing FLT3-ITD/STAT5/Mcl-1 pathway

Authors

DOI:

https://doi.org/10.3329/bjp.v18i1.62376

Keywords:

Acute myeloid leukemia, Apoptosis, 15,16-Dihydrotanshinone I, FMS-like tyrosine kinase 3, Internal tandem duplication

Abstract

Till now, the medicines approved for acute myeloid leukemia with internal tandem duplication mutation of FMS-like tyrosine kinase 3 (FLT3-ITD) display not ideal efficacy. This study aimed to evaluate the effects of 15,16-dihydrotanshinone I on FLT3-ITD acute myeloid leukemia cells. The inhibitory effect of this compound against MV4-11 was determined using CCK-8 assay. Western blotting detecting caspase-3, PARP, and annexin V-APC/7-AAD was carried out. Activation of FLT3, STAT5, and Mcl-1 expression was analyzed by western blotting. The results showed that MV4-11 was sensitive toward dihydrotanshinone I in a dose-dependent manner (p<0.05). MV4-11 apoptosis was induced notably after dihydrotanshinone I treatment. Western blotting revealed suppressed activation of FLT3, STAT5 and decreased Mcl-1 (p<0.05). This study suggests that dihydrotanshinone I inhibits MV4-11 proliferation by apoptosis via antagonizing FLT3-ITD/STAT5/Mcl-1 path-way, which might provide a novel therapy for acute myeloid leukemia.

Downloads

Download data is not yet available.
Abstract
2
Download
1

References

Burchert A. Maintenance therapy for FLT3-ITD-mutated acute myeloid leukemia. Haematologica 2021; 106: 664-70.

Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther. 2020; 5: 288.

Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B, Ueker A, Böhmer FD, Berdel WE, Müller-Tidow C, Serve H. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 2007; 110: 370-4.

D'Agostino VG, Lal P, Mantelli B, Tiedje C, Zucal C, Thongon N, Gaestel M, Latorre E, Marinelli L, Seneci P, Amadio M, Provenzani A. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci Rep. 2015; 5: 16478.

Debierre-Grockiego F. Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 2004; 9: 717-28.

Duan P, Huang Y, Chen K, Cheng C, Wu Z, Wu Y. 15,16-dihydrotanshinone I inhibits EOMA cells proliferation by interfering in posttranscriptional processing of hypoxia-inducible factor 1. Int J Med Sci. 2021; 18: 3214-23.

Eslami A, Lujan J. Western blotting: Sample preparation to detection. JoVE. 2010; 44: e2359.

Hird AW, Tron AE. Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol Ther. 2019; 198: 59-67.

Hogan FL, Williams V, Knapper S. FLT3 Inhibition in acute myeloid leukaemia: Current knowledge and future prospects. Curr Cancer Drug Targets. 2020; 20: 513-31.

Jeong H, Koh A, Lee J, Park D, Lee JO, Lee MN, Jo KJ, Tran HNK, Kim E, Min BS, Kim HS, Berggren PO, Ryu SH. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci Rep. 2017; 7: 17777.

Kang D, Lee Y, Lee JS. RNA-Binding proteins in cancer: Functional and therapeutic perspectives. Cancers (Basel). 2020; 12: E2699.

Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333-7.

Lal P, Cerofolini L, D'Agostino VG, Zucal C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma V, Preet R, Williams SN, Fairlamb MS, Munk R, Lehrmann E, Abdelmohsen K, Elezgarai SR, Luchinat C, Novellino E, Quattrone A, Biasini E, Manzoni L, Gorospe M, Dixon DA, Seneci P, Marinelli L, Fragai M, Provenzani A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res. 2017; 45: 9514-27.

Lim HS, Jang Y, Moon BC, Park G. NF-κB signaling contributes to the inhibitory effects of Bombyx batryticatus on neuroinflammation caused by MPTP toxicity. Bangladesh J Pharmacol. 2021; 16: 96-102.

Liu JJ, Wu HH, Chen TH, Leung W, Liang YC. 15,16-Dihydrotanshinone I from the functional food Salvia miltiorrhiza exhibits anticancer activity in human HL-60 leukemia cells: In vitro and in vivo studies. Int J Mol Sci. 2015; 16: 19387-400.

Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Böhmer FD, Müller-Tidow C, Berdel WE, Serve H. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164-73.

Müller JP, Schmidt-Arras D. Novel approaches to target mutant FLT3 leukaemia. Cancers (Basel). 2020; 12: E2806.

Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21: 3314-33.

Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat. 2020; 52: 100712.

Shen S, Hou Y, Wu Y. Tongxinluo preserves the renal function in diabetic kidney disease via protecting the HK-2 cells from the patterns of programmed cell death. Bangladesh J Pharmacol. 2021; 16: 52-64.

Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, Mody V, Choo EF, Dail M, Shah NP, Konopleva M, Sampath D, Lasater EA. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica 2021; 106: 1034-46.

Srikantan S, Gorospe M. HuR function in disease. Front Biosci (Landmark Ed). 2012; 17: 189-205.

Takahashi S, Harigae H, Kaku M, Sasaki T, Licht JD. Flt3 mutation activates p21WAF1/CIP1 gene expression through the action of STAT5. Biochem Biophys Res Commun. 2004; 316: 85-92.

Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J Hematol Oncol. 2011; 4: 13.

Wang X, Xu X, Jiang G, Zhang C, Liu L, Kang J, Wang J, Owusu L, Zhou L, Zhang L, Li W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J Cell Mol Med. 2020; 24: 11177-87.

Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y, Mori Y, Shima T, Iwasaki H, Takenaka K, Nagafuji K, Mizuno S, Niiro H, Gilliland GD, Akashi K. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 2009; 114: 5034-43.

Downloads

Published

2023-01-13

How to Cite

Luo, M., Y. . Zeng, and X. Deng. “15,16-Dihydrotanshinone I Inhibits the Proliferation of MV4-11 by Means of Apoptosis via Antagonizing FLT3-ITD/STAT5/Mcl-1 Pathway”. Bangladesh Journal of Pharmacology, vol. 18, no. 1, Jan. 2023, pp. 1-7, doi:10.3329/bjp.v18i1.62376.

Issue

Section

Research Articles