LEAF EPIDERMAL ANATOMY OF CYNODON DACTYLON (L.) PERS. IN RELATION TO ECOTYPIC ADAPTATION

S.K. NITU^{1,2}, H. TARIQUE³ AND S.M.S. ISLAM¹*

Plant Biotechnology and Genetic Engineering Lab., Institute of Biological Sciences, University of Rajshahi, Rajshahi-6205, Bangladesh

Keywords: Anatomy; Cynodon dactylon; Leaf epidermis; Stomatal features.

Abstract

Qualitative and quantitative studies were done on leaf epidermal characteristics with special reference to stomatal features to find out the impact of environmental condition on twenty four accessions of *Cynodon dactylon* (L.) Pers. collected from different ecological habitats of Bangladesh. The foliar epidermal peels from both surfaces of mature leaves were observed under microscope. The leaves were found to be amphistomatic and stomata were paracytic type. The epidermal cells in this study were found to be sinuous. Silica bodies were found to be saddle and cross shaped. Prickles angular were pointed at the tip. Macro-hairs were present in all the accessions, but no micro-hair was found both adaxially or abaxially. Stomatal frequency and stomatal index were found to vary from accession to accession on both adaxial and abaxial surface of leaves, and the differences were statistically significant in most of the cases.

Introduction

Cynodon dactylon (L.) Pers is a typical warm season turfgrass belongs to the family of Poaceae and this grass species is widely adapted to various environments of tropical and subtropical regions around the world. There are some ways for genetic diversity and population structure analysis of *C. dactylon* like interphase nuclear phenotype and chromosomal characterization that are very useful parameters in distinguishing the cytotypes, accessions and even germplasm of a plant species (Nitu *et al.*, 2019 a&b).

The leaf epidermis is generally considered as an important aspect for the classification and delimitation of species and genera, and for sorting out the evolutionary and phylogenetic problems (Stace, 1984; Jones, 1986). Ahmed *et al.* (2011) stated that the leaf epidermal characters have significance in grass systematics and classification of ambiguous groups which are not properly adjusted within grasses, particularly at sub-family and tribe level. Therefore, it is imperative to make any attempt to study the epidermal characters of taxonomic importance. It is evidenced now that leaf epidermal features can help to elucidate many ecological parameters. In Poaceae leaf epidermal anatomy shows variations with a higher degree of specialization than that of any other family and provides extensive features of taxonomic importance. Leaf epidermal anatomical features like stomata and trichomes along with some other qualitative and quantitative characters are very much useful in perspective of morphological, ecological, physiological and taxonomical studies. The morphology and ontogenies of taxa are considered to be more important in case of intra-generic and intra-species systematics due to diversity of stomatal types. On the contrary, the most frequent stomata type is considered as taxonomic character.

^{*}Corresponding author: shahinul68@gmail.com

²Department of Botany, University of Rajshahi, University of Rajshahi, Rajshahi-6205, Bangladesh.

³Department of Agronomy and Agriculture Extension, University of Rajshahi, Bangladesh.

Plant anatomical traits are good indicators of habitat quality, since they manifest variability in relation to microclimatic conditions (Barber et al., 2004). Stomatal traits like stomatal density, stomatal apparatus and guard cell architecture respond to environmental and physiological cues (Nadeu and Sack, 2002; Gitz and Baker, 2009). The present study aims to identify the leaf epidermal features which may focus on stomatal characters because of their importance in many ecological aspects of grass species. Cynodon dactylon has paracytic type of stomata (Abid et al., 2007) and they are arranged in parallel rows in with silica bodies on the epidermal surface. Paracytic type is considered to be primitive and their arrangement reflects the developmental process. In C. dactylon stomata may be present on both side (adaxial and abaxial) of the expanded leaf, but in many grass species they are exclusively abaxial. Leaf epidermal traits i.e.; epidermal cells, stomata and micro-hairs have been proved valuable in identification and differentiation of different taxa (Stenglein et al., 2003). Macro-hairs are also found to vary in size, shape and wall thickness and these are of great value in grass systematic. The shape of silica bodies varies among different grass species from round or oblong to linear, crescent or dumbbell shaped, nodular, sinuous and shaddle or cross shaped (Chaudhary et al., 2001b; Ahmad et al., 2012; Chaudhari et al., 2014). Stomatal parameters like size, number and shape are of great ecological significance (Jian et al., 2012) and extremely important in stress tolerance (Xu and Zhou, 2008; Zheng et al., 2013). Stomatal size and shape regulate water use efficiency. In small stomata less turgour is required for their opening and closing (Tufail et al., 2017). Stomatal frequency improves the photosynthetic efficiency of plant species. The present study is focused on the qualitative and quantitative leaf epidermal characteristics with special reference to stomatal features to find out the impact of environmental conditions on C. dactylon.

Materials and Methods

A total of 24 accessions of *Cynodon dactylon* (L.) Pers. was collected from different ecological habitats in Bangladesh. Selections were based on environmental conditions of the collection site. All the accessions were planted in $1.5 \text{ m} \times 1.4 \text{ m}$ plots of the research field of the Institute of Biological Sciences, University of Rajshahi, Bangladesh. The site has an annual average rainfall of 661.2 mm of which the majority falls during the rainy season (July-September 2019). No fertilizers were used in the experimentation field. The soil at the research field is loamy soil.

Both abaxial and adaxial surface of the leaves of *C. dactylon* were studied qualitative and quantitatively which have been mentioned in Tables 1-9. The foliar epidermal peels were stained with 1% safranin and observed under microscope (SWIFT- S.A No.760090) for detailed obtaining feature as it is done usually. The photomicrographs of the mounted materials were taken using a digital camera (Model: C-B5, Brand: Optica) fitted on the electrical light microscope (Model: XSZ-107T, Brand: Novel) with total magnification of 10X in Laboratory of Phycology and Limnology, University of Rajshahi, Bangladesh. These photomicrographs were useful for identification and differentiation based on the features of epidermal cells. In case of some quantitative characters ocular micrometer was used for measurement and the values were converted into micron (μ) with the help of stage micrometer.

Observations for number of stomata present in microscopic view field was made for recording and for calculating the stomatal frequency and thereafter, expressed in terms of stomata/mm². At a given magnification the total number of stomata was counted as visible by square grid scale under microscope. The square grid was composed of 100 identical small squares. The diameter of view field was calculated by ocular scale. The stomatal index (SI) was calculated using the formula SI = $(S/S + E) \times 100$ where, S and E are the number of stomata per unit area and number of epidermal cells per unit area, respectively in microscopic view field and the values were expressed in percentage (%). Morphometric measurements for different cells (long cells, stomatal cells, epidermal cells) were taken under suitable magnification by using calibrated ocular micrometer. *Statistical analysis*

A statistical comparison of means of different accessions and leaf epidermal quantitative characters was carried out by analysis of variance (ANOVA) followed by Duncun's Multiple Range Test (DMRT). Significance level was set at p<0.05. The data analysis was done using SPSS version 20.0 for Windows. Graphs were drawn by Microsoft Office Excel software.

Results and Discussion

Qualitative leaf epidermal characters

Under this sub-head the findings are described and discussed based on Table 1, Figs. 1A-C (a-x), and 2A-C (a-x). The leaves were found to be amphistomatic. The stomata were paracytic type, dumbbell shaped with two subsidiary cells placed parallel to the pore. Two guard cells were found with two subsidiary cells lateral to the guard cells. Subsidiary cells in *C. dactylon* were found to be dome shaped at both abaxial and adaxial surface of the leaves. Hepworth *et al.* (2018) reported, amphistomatic leaves with dumbbell-like, aligned stomata as usual in grass species. Like almost all grasses stomata in *C. dactylon* are paracytic type earlier proved by Abid *et al.* (2007). Due to disposition of the subsidiary cells, the stomata were markedly paracytic, which is also typical of Poaceae family (Rudall *et al.*, 2017). Stomatal shape was more responsive to salt stress in the salt range population where elliptic stomatal complex transform to rhomboid and smaller ones under high salt stress (Hameed *et al.*, 2014), supports the present findings in case of the accessions collected from three coastal areas (Barguna, Cox's Bazar and St. Martin's Island) of Bangladesh.

The epidermal cells were elongated and arranged in vertical rows parallel to the long axis of the leaf. All epidermal cells in *C. dactylon* were found to be sinuous. Almost all epidermal cells in *C. dactylon* are found sinuous or wavy similar to the findings of Ahmed *et al.* (2010). *Cynodon dactylon* accessions had epidermal cells with sinuous cell walls, a common feature among species belonging to the Poaceae family (Khan *et al.*, 2017) and which is related to the increase of the surface for higher light uptake (De Castro *et al.*, 2009).

Length and width of long cells are significant parameters which help in identification and classification of grasses (Elahi and Ashraf, 2002). The long cell margins were found to show sinuous almost in all the accessions. But, in case of the accessions of Barguna, Cox's Bazar and St. Martin's Island, the long cell margins were found to be slightly sinuous. Silica bodies were saddle shaped and found in the materials collected from Rangpur, Lalmonirhat, Dinajpur, Thakurgaon, Panchagarh, Gaibandha, Rajshahi, Naogaon, Gazipur, Jhenaidah. Cross shaped silica bodies were found in materials of Pabna, Sherpur, Mymensingh, Khulna, Shariatpur, Khagrachari, Bandarban and Rangamati. Both saddle and cross shaped silica bodies were found in case of Narsingdi, Jessore and Faridpur. Horizontally elongated shaped silica bodies were found in case of samples collected from Barguna, Cox's Bazar and St. Martin's Island. Silica bodies are a type of phytolith in specialized epidermal cells of grass leaves. Various workers have considered silica bodies to be diagnostic for the family Poaceae (Twiss et al., 1969; Brown, 1984; Mulholland, 1989). Piperno and Pearsall (1998) studied the silica bodies of Tropical American grasses and discussed their taxonomic implications. Thomasson et al. (1986) noted that micro-morphological characters of the leaf provided information on the fossils phylogeny and taxonomic relationships. According to Metclafe (1960), Chaudhary et al. (2001a), and Ahmed (2009) silica bodies in C. dactylon are saddle shaped, which were again confirmed by the present research.

Sl. No.	Habitats	Stomata type	Shape of subsidiary cells	Long cell margins	Types of silica bodies	Macro hair	Micro hair	Prickle angular	Hook
1	Rangpur	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
2	Lalmonirhat	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
3	Dinajpur	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
4	Thakurgaon	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
5	Panchagarh	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
6	Gaibandha	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
7	Rajshahi	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
8	Naogaon	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
9	Pabna	Paracytic	Dome	Sinuous	Cross	+	-	+	+
10	Gazipur	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
11	Narsingdi	Paracytic	Dome	Sinuous	Saddle, Cross	+	-	+	+
12	Sherpur	Paracytic	Dome	Sinuous	Cross	+	-	+	+
13	Mymensingh	Paracytic	Dome	Sinuous	Cross	+	-	+	+
14	Khulna	Paracytic	Dome	Sinuous	Cross	+	-	+	+
15	Jessore	Paracytic	Dome	Sinuous	Saddle, Cross	+	-	+	+
16	Jhenaidah	Paracytic	Dome	Sinuous	Saddle	+	-	+	+
17	Faridpur	Paracytic	Dome	Sinuous	Saddle, Cross	+	-	+	+
18	Shariatpur	Paracytic	Dome	Sinuous	Cross	+	-	+	+
19	Barguna	Paracytic	Dome	Slightly sinuous	Horizontally elongated	+	-	-	-
20	Khagrachari	Paracytic	Dome	Sinuous	Cross	+	-	+	+
21	Bandarban	Paracytic	Dome	Sinuous	Cross	+	-	+	+
22	Rangamati	Paracytic	Dome	Sinuous	Cross	+	-	+	+
23	Cox's Bazar	Paracytic	Dome	Slightly sinuous	Horizontally elongated	+	-	-	-
24	St. Martin's Island	Paracytic	Dome	Slightly sinuous	Horizontally elongated	+	-	-	-

 Table 1. Qualitative leaf epidermal characteristics on both abaxial and adaxial surfaces of Cynodon dactylon (L.) Pers. collected from different habitats of Bangladesh.

+ = Present, - = Absent.

Prickles angular were pointed at the tip and they were present in almost all accessions except those from Barguna, Cox's Bazar and St. Martin's Island. Hooks were also present in almost all the accessions except from those materials of Barguna, Cox's Bazar and St. Martin's Island. Macro-hairs were present in all accessions. No micro-hair was found in adaxially or abaxially in this present study. Chaudhary *et al.* (2001b) found that in *C. dactylon*, stomata were with triangular subsidiary cells, silica bodies were saddle shaped, and micro-hairs with hemispherical distal cells, while macro-hairs were absent. Freire *et al.* (2005) observed the presence of micro hairs in *C. dactylon*. In the current study, an opposite result has been observes, macro hair was present but micro hair was absent. These features were similar to the results of Prat (1934, 1961), Metcalfe (1960), Ahmad (2009), and Khan *et al.* (2017). It may be due to environmental variations as *C. dactylon* is a wide spreading grass, which varies considerably in habit. Ishtiaq *et al.* (2018) also found that micro-hair was absent in *C. dactylon*. In the present in *C. dactylon*. In the present in *C. dactylon*. In the present and the study of the present of the leaves.

Fig. 1A (a-h): Foliar epidermal structure on abaxial surface of *C. dactylon* accessions collected from different habitats; a) Rangpur, b) Lalmonirhat, c) Dinajpur, d) Thakurgaon, e) Panchagarh, f) Gaibandha, g) Rajshahi, h) Naogaon.

Fig. 1B (i-p): Foliar epidermal structure on abaxial surface of *C. dactylon* accessions collected from different habitats; i) Pabna, j) Gazipur, k) Narsingdi, l) Sherpur, m) Mymensingh, n) Khulna, o) Jessore, p) Jhenaidah.

Fig. 1C (q-x): Foliar epidermal structure on abaxial surface of *C. dactylon* accessions collected from different habitats; q) Faridpur, r) Shariatpur, s) Barguna, t) Khagrachari, u) Bandarban, v) Rangamati, w) Cox's Bazar, x) Saint Martin's Island.

Quantitative leaf epidermal characters

Under this subhead the findings are described and discussed based on the Figs. 1A-C (a-x) and 2A-C (a-x) and the values are shown in Tables 2-9. For abaxial surface of the leaves, highest mean value for long cell numbers per mm² was found in sample collected from Khulna (7.72) and lowest value was found in case of St. Martin's Island (2.14) (Table 2). In adaxial surface of the leaves highest mean value for long cell numbers per mm² was found in sample collected from Shariatpur (9.65) and lowest value was found in Barguna (3.31) (Table 6). The mean value of long cell length was highest in case of samples collected from St. Martin's Island (110.26 μ m) and lowest in case of Cox's Bazar (32.20 μ m) in abaxial surface of the leaves (Table 2). Long cell length was highest in case of Barguna (90.76 μ m) and lowest in case of Shariatpur (31.39 μ m) in adaxial surface of the leaves (Table 6). The mean long cell width was found to be highest in sample of St. Martin's Island (8.82 μ m) and lowest in sample of Cox's Bazar (4.03 μ m) in abaxial surface the leaves (Table 2). Long cell width was highest in Cox's Bazar (12.33 μ m) and lowest in Rangamati (3.40 μ m) in adaxial surface of the leaves of the leaves (Table 6). The variations regarding different parameters in case of long cells might be due to variations of environmental behavior such as water stress and changes in temperature.

Stomatal frequency was highest in sample of Gazipur (5.56 mm⁻²) and lowest in sample of St. Martin's Island (1.78 mm⁻²) in abaxial surfaces of the leaves (Table 3). Stomatal frequency was highest in case of Shariatpur (6.61 mm⁻²) and lowest in case of Barguna (3.02 mm⁻²) in adaxial surfaces of the leaves (Table 7). Leaf morphological characters like stomatal frequency, distribution, and epidermal features may affect gas exchange quite remarkably and their relationships with key environmental factors such as light, water status, and CO_2 levels have been found to respond to changing environmental variables of temperature, rainfall, irradiance and CO_2 (Beeling, 1995; Royer et al., 2001). Therefore, they mainly contribute to the ability of plants to control their water relations and to gain carbon (Hetherington and Woodward, 2003). It has been shown that environmental signals such as light intensity, carbon dioxide concentration and water availability may affect stomatal development by modifying their size and frequency (Knapp et al., 1994; Dyki et al., 1998). Therefore, it is possible that variations in stomatal characteristics may influence plant growth and productivity (Kundu and Tigerstedt, 1998). Reduction in stomatal frequency and size might also be an efficient feature of checking under water loss via transpiration during limited water availability and under high salinities as reported by different researchers (Walsh, 1990; Bray and Reid, 2002). The salt range ecotype showed decreased stomatal area and frequency under saline conditions on the adaxial leaf surface, so due to this it can be regarded as the best adapted ecotype against highly saline environments.

Intrinsic variation is a factor that may obscure the potential use of stomatal frequency as a paleoclimatalogical tool (Wagner *et al.*, 2005). In terms of stomatal frequency intrinsic variation is the variability in stomatal distribution across a leaf surfaces (Poole and Kurshner, 1999) and has the potential to be large in angiosperms (Uhl and Kerp, 2005). The reality of reduced stomatal conductance as a response to increased CO_2 has been inferred from measurements of transpiration rates during CO_2 -doubling experiments with agricultural species as well as tree seedlings. An increasing CO_2 concentration often leads to a significant decrease in leaf conductance corresponding with an increase in water-use efficiency (Eamus, 1991). These parameters are helpful to differentiate the species. However, the stomatal features may prove to be a little taxonomic value unless the developments of different stomata types were studied. A greater number of information on taxa will be helpful to understand the taxonomic value of stomata type and distribution. Beerling (1995), and McElwain and Chaloner (1995) have provided evidence that stomata frequency decline in response to increasing CO_2 and may have occurred over geological

Fig. 2A (a-h): Foliar epidermal structure on adaxial surface of *C. dactylon* accessions collected from different habitats; a) Rangpur, b) Lalmonirhat, c) Dinajpur, d) Thakurgaon, e) Panchagarh, f) Gaibandha, g) Rajshahi, h) Naogaon.

Fig. 2B (i-p): Foliar epidermal structure on adaxial surface of *C. dactylon* accessions collected from different habitats; i) Pabna, j) Gazipur, k) Narsingdi, l) Sherpur, m) Mymensingh, n) Khulna, o) Jessore, p) Jhenaidah.

Fig. 2C (q-x): Foliar epidermal structure on adaxial surface of *C. dactylon* accessions collected from different habitats;q) Faridpur, r) Shariatpur, s) Barguna, t) Khagrachari, u) Bandarban, v) Rangamati, w) Cox's Bazar, x) Saint Martin's Island.

time. Stomatal frequency in present day can be estimated by growing them at different CO_2 concentration (Vesque, 1989).

Epidermal cell number per mm² was highest in case of Gaibandha (23.89) and lowest in case of St. Martin's Island (4.5) in abaxial surface of the leaves (Table 3). Epidermal cell number per mm² was highest in case of Shariatpur (19.99) and lowest in case of Barguna (9.28) in adaxial surface of the leaves (Table 7). Fernandez and Mujica (1973) determined that an increase in light intensity decreased the epidermal cell number and increased the stomatal number index and size. Schoch *et al.* (1984) reported that blue and far-red light reduced the stomatal index while red light increased this stomatal index. Kim *et al.* (2004) showed that blue and red light increased the stomatal number and size, while blue light reduced the mentioned parameters.

Table 2. Quantitative epidermal characteristics on abaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

Sl.	Habitats	Long cells/mm ²	Long cell length	Long cell width
No.			(µm)	(µm)
1	Rangpur	$7.66 \pm 0.15 cd$	$33.91 \pm 2.39 \text{hi}$	$6.43 \pm 0.26 abcd$
2	Lalmonirhat	$5.69 \pm 0.13 hijk$	$42.95\pm2.39~efg$	$6.42 \pm 0.17 abcd$
3	Dinajpur	$5.76\pm0.10 ghij$	$32.29 \pm 2.26 \mathrm{i}$	$8.02\pm0.17ab$
4	Thakurgaon	$4.75\pm0.08m$	$40.29 \pm 2.30 efgh$	$8.02\pm0.22a$
5	Panchagarh	$5.17 \pm 0.13 jklm$	$42.29 \pm 2.26 efg$	$8.03 \pm 0.26 ab$
6	Gaibandha	$6.19 \pm 0.08 efghi$	39.94 ± 1.61efgh	$8.02\pm0.13abc$
7	Rajshahi	$5.16 \pm 0.10 jklm$	$39.86 \pm 2.00 efgh$	$6.69 \pm 0.13 abcd$
8	Naogaon	$7.07 \pm \ 0.08 bc$	40.20±1.56efgh	6.42±0.17abcd
9	Pabna	5.56±0.10ijkl	38.88±1.65fghi	8.03±0.26abcd
10	Gazipur	7.09±0.13bc	44.29±2.30def	4.43±0.22cd
11	Narsingdi	5.01±0.13lm	40.23±1.78efgh	8.02±0.17abc
12	Sherpur	6.37±0.13defg	40.37±1.61efgh	7.02±0.13abcd
13	Mymensingh	5.10±0.15klm	32.95±2.21i	7.70±0.13abcd
14	Khulna	7.72±0.10a	58.90±2.00c	6.82±0.13abcd
15	Jessore	6.09±0.13fghi	49.63±2.30d	7.22±0.13abcd
16	Jhenaidah	6.61±0.13cdef	37.64±2.34ghi	4.83±0.22d
17	Faridpur	5.04±0.10klm	37.02±1.74ghi	6.17±0.26abcd
18	Shariatpur	6.01±0.13fghi	45.87±2.08de	8.03±0.26a
19	Barguna	2.57±0.13n	96.28±2.17b	8.43±0.26ab
20	Khagrachari	7.62±0.15ab	33.59±2.00hi	7.48±0.13abcd
21	Bandarban	6.32±0.10efgh	34.31±2.43hi	6.68±0.13abcd
22	Rangamati	6.81±0.13cde	34.22±1.69hi	6.70±0.26bcd
23	Cox's Bazar	$2.47{\pm}0.08n$	32.20±1.56i	4.03±0.22cd
24	St. Martin's Island	2.14±0.15n	110.26±2.00a	8.82±0.17a

SE = Standard error, n = 24. In the column, mean values bearing similar letter(s) or without letter are identical and those having dissimilar letters are differed significantly as per Duncan's Multiple Range Test.

S1.	Habitats	Stomatal	Epidermal cell no.	Stomatal index	
No.		frequency	/mm ²		
1	Rangpur	4.52±0.10fghi	11.92±0.95cdef	26.36±0.49ab	
2	Lalmonirhat	4.59±0.08efgh	13.28±0.91bcdef	26.34±0.62ab	
3	Dinajpur	4.82±0.15cdef	12.61±1.30cdef	26.47±0.36ab	
4	Thakurgaon	3.71±0.08k	10.81±1.30ef	25.46±0.32ab	
5	Panchagarh	4.26±0.15hij	9.60±1.21f	28.00±0.91ab	
6	Gaibandha	4.29±0.13hij	23.89±0.69a	25.40±0.82ab	
7	Rajshahi	4.03±0.08jk	12.37±1.30cdef	$25.61 \pm 0.88ab$	
8	Naogaon	4.93±0.13cde	12.59±1.48cdef	26.40±0.61ab	
9	Pabna	4.82±0.15cdef	13.78±0.78bcde	25.78±0.52ab	
10	Gazipur	5.56±0.10a	16.21±1.04b	25.80±0.61ab	
11	Narsingdi	4.19±0.08ij	11.33±1.35def	26.25±0.30ab	
12	Sherpur	4.32±0.10ghij	13.29±1.30bcdef	25.67±0.96ab	
13	Mymensingh	4.77±0.13cdef	10.61±1.04ef	27.42±1.40ab	
14	Khulna	5.40±0.10ab	15.53±1.04bc	27.78±1.31ab	
15	Jessore	5.06±0.15bcd	10.48±0.65ef	28.43±1.55a	
16	Jhenaidah	4.83±0.08cdef	13.63±1.17bcde	25.36±0.30b	
17	Faridpur	4.68±0.10defg	10.32±0.91ef	27.64±1.51ab	
18	Shariatpur	4.69±0.13cdefg	11.06±1.08ef	27.36±1.78ab	
19	Barguna	2.13±0.131	5.54±1.39g	26.26±0.43ab	
20	Khagrachari	4.56±0.10efghi	12.3±0.78cdef	25.98±0.29ab	
21	Bandarban	5.07±0.08bc	14.86±1.08bcd	26.13±0.71ab	
22	Rangamati	4.52±0.10fghi	12.98±1.39bcdef	26.17±0.56ab	
23	Cox's Bazar	2.13±0.131	5.56±1.56g	26.31±0.30ab	
24	St. Martin's Island	1.78±0.15m	4.5±0.78g	26.59±0.78ab	

 Table 3. Quantitative epidermal characteristics on abaxial surface of leaves of Cynodon dactylon collected from different habitats of Bangladesh.

Stomatal index was highest in Jessore (28.43%) and lowest in Jhenaidah (25.36%) for abaxial surface of the leaves (Table 3). Stomatal index was highest in Khulna (28.76%) and lowest in Jhenaidah (24.97%) in adaxial surface of the leaves (Table 7). Stomatal length with guard cell was highest in sample of Cox's Bazar (21.50 μ m) and lowest in case of Mymensingh (11.50 μ m) in abaxial surface of the leaves (Table 4). Stomatal length with guard cell was highest in case of St. Martin's Island (17.59 μ m) and lowest in case of Mymensingh (11.56 μ m) in adaxial surface of the leaves (Table 8). Stomatal breadth with guard cell was highest in sample of St. Martin's Island (13.71 μ m) and lowest in Khulna (8.11 μ m) in abaxial surface of the leaves (Table 4). Stomatal surface of the leaves (Table 4). Stomatal surface of the leaves (Table 4). Stomatal surface of the leaves (Table 8). Tufail *et al.* (2017) observed stomata with small dimensions in ecotype of *C. dactylon*, which could be related to a more efficient physiological regulation since less turgor is required for the opening and closing of the ostiole. It reinforces what

had been previously reported in fossils of species belonging to several families, including Poaceae (Franks and Beerling, 2009) along with different plant species in which higher stomatal densities mediated by small sized stomata provide enhanced conductivity and higher photosynthesis rates (Franks *et al.* 2009; Drake *et al.* 2013; Vrablova *et al.*, 2017). Nevertheless, Hetherington and Woodward (2003) pointed out that when the environmental alterations are unfavorable the conductance of small stomata is quickly reduced. Carpenter and Smith (1975) had established such a relationship involving stomata size and growth habit. Xerophytic species have much smaller stomata than mesophytic species. It may be compensating for the presence of larger stomata and it may be associated with adaptive success of polyploids (Van De Peer *et al.*, 2017), mainly regarding water stress and changes in temperature (Simonneau *et al.*, 2017).

Sl. No.	Habitats	Stomata length with guard cell (µm)	Stomata breadth with guard cell (µm)	Epidermal cell length (µm)	Epidermal cell breadth (µm)
1	Rangpur	12.82±0.66f	9.11±0.87cd	32.12±0.95h	8.14±1.13cd
2	Lalmonirhat	16.39±0.33cd	9.48±1.13bcd	35.06±0.95fg	8.41±1.13cd
3	Dinajpur	16.75±0.38c	8.26±0.43d	38.12±0.95de	8.09±0.74cd
4	Thakurgaon	15.75±0.28cde	9.07±0.87cd	32.13±1.00h	8.10±0.78cd
5	Panchagarh	16.12±0.59cde	9.38±0.78bcd	39.29±0.74d	10.12±0.95c
6	Gaibandha	15.60±0.51cde	9.02±0.48cd	36.10±0.78ef	9.73±1.04cd
7	Rajshahi	15.86±0.66e	8.22±0.43d	24.06±0.43k	8.06±0.43cd
8	Naogaon	16.05±0.64cde	9.37±0.69bcd	36.07±0.56ef	8.10±0.78cd
9	Pabna	15.95±0.38cde	9.58±1.13bcd	36.07±0.52ef	8.07±0.56cd
10	Gazipur	15.70±0.66e	10.66±0.43bcd	38.75±0.87d	7.79±0.43cd
11	Narsingdi	16.30±0.56cde	11.81±0.61ab	29.41±0.56i	8.06±0.43cd
12	Sherpur	12.57±0.53f	8.61±1.00cd	34.85±1.04fg	8.23±0.52cd
13	Mymensingh	11.50±0.46f	10.40±1.04bcd	33.32 ± 0.95 gh	8.14±1.13cd
14	Khulna	14.95±0.28e	8.11±0.87d	27.00±0.48j	7.31±0.82d
15	Jessore	12.23±0.28f	8.14±1.08d	36.11±0.82ef	8.14±1.08cd
16	Jhenaidah	15.35±0.59e	10.21±1.04bcd	29.40±0.48i	7.73±1.04cd
17	Faridpur	15.87±0.59de	8.14±1.08d	$23.07\pm0.52k$	8.46±0.43cd
18	Shariatpur	15.30±0.36de	12.07±0.56ab	28.12±0.91ij	8.78±1.08cd
19	Barguna	19.53±0.33b	9.83±0.56bcd	72.25±0.61b	10.26±1.00c
20	Khagrachari	16.2±0.51cde	8.86±0.48cd	40.08±0.61d	8.07±0.52cd
21	Bandarban	14.79±0.33e	8.12±0.91d	32.12±0.91h	8.09±0.69cd
22	Rangamati	15.74±0.36cde	8.93±1.04cd	26.07±0.52j	8.67±1.04cd
23	Cox's Bazar	21.5±0.36a	11.29±0.74abc	70.09±0.69c	21.74±1.13a
24	St. Martin's Island	20.63±0.48ab	13.71±0.87a	80.06±0.43a	16.25±0.91b

Table 4. Quantitative epidermal characteristics on abaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

SE = Standard error, n = 24. In the column, mean values bearing similar letter(s) or without letter are identical and those having dissimilar letters are differed significantly as per Duncan's Multiple Range Test.

_

_

Sl. No.	Habitats	Silica bodies /mm ²	Prickles angular /mm ²	Hooks/mm ²	Macro hair/mm ²
1	Rangpur	7.05±0.53cdefgh	0.22±0.02bcd	0.15±0.03fgh	0.04±0.00fg
2	Lalmonirhat	5.28±0.31gh	0.23±0.03bcd	0.26±0.02 de	0.15±0.03bcd
3	Dinajpur	7.61±0.33bc	0.26±0.02abcd	0.18 ± 0.02 fg	0.14±0.02bcde
4	Thakurgaon	5.79±0.38gh	0.22±0.02bcd	0.02±0.02jk	0.09±0.01cdefg
5	Panchagarh	5.01±0.33h	0.29±0.01ab	0.28±0.04cd	0.07±0.03defg
6	Gaibandha	6.66±0.46efgh	0.32±0.04a	0.04 ± 0.00 ijk	0.14±0.02bcde
7	Rajshahi	6.45±0.43fgh	0.26±0.02abcd	0.96±0.04a	$0.10\pm0.02bcdefg$
8	Naogaon	8.29±0.43bcd	0.30±0.02ab	0.43±0.03b	0.12±0.04bcdef
9	Pabna	7.24±0.61bcdefg	0.22±0.02bcd	0.29±0.01cd	$0.10\pm0.02bcdefg$
10	Gazipur	7.66±0.46bcde	0.31±0.03a	0.47±0.03b	0.06±0.02efg
11	Narsingdi	5.92±0.51gh	0.26±0.02abcd	0.31±0.03cd	0.10 ± 0.02 cdefg
12	Sherpur	7.01±0.64efgh	0.23±0.03bcd	0.02±0.02jk	0.07±0.03defg
13	Mymensingh	6.39±0.38cdefgh	0.19±0.03d	0.35±0.03c	$0.11 \pm 0.03 bcdefg$
14	Khulna	8.46±0.46ab	0.31±0.03a	0.29±0.01cd	0.14±0.02bcde
15	Jessore	7.36±0.51bcdef	0.23±0.03bcd	0.16±0.00fg	$0.11 \pm 0.03 bcdefg$
16	Jhenaidah	7.17±0.64defgh	0.28±0.00abc	0.30±0.02cd	0.12±0.04bcdef
17	Faridpur	5.16±0.41h	0.23±0.03bcd	0.11±0.03ghi	0.09 ± 0.01 cdefg
18	Shariatpur	8.10±0.56bcdef	0.20±0.00cd	0.18 ± 0.02 fg	$0.18\pm0.02b$
19	Barguna	2.57±0.64i	0.00±0.00e	0.03±0.03jk	0.10 ± 0.02 cdefg
20	Khagrachari	9.75±0.28a	0.24±0.00abcd	0.09±0.01hij	$0.02\pm0.02g$
21	Bandarban	10.26±0.66a	0.27±0.03abc	0.19±0.03ef	0.07±0.03defg
22	Rangamati	8.87±0.59ab	0.20±0.00cd	0.08±0.04hijk	0.05 ± 0.01 fg
23	Cox's Bazar	2.92±0.61i	0.00±0.00e	0.00±0.00k	0.26±0.02a
24	St. Martin's Island	2.13±0.53i	0.00±0.00e	0.02±0.02jk	0.16±0.04bc

Table 5. Quantitative epidermal characteristics on abaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

SE = Standard error, n = 24. In the column, mean values bearing similar letter(s) or without letter are identical and those having dissimilar letters are differed significantly as per Duncan's Multiple Range Test.

Epidermal cell length was highest in St. Martin's Island (80.06 μ m) and lowest in Faridpur (23.07 μ m) in abaxial surface of the leaves (Table 4). Epidermal cell length was highest in Barguna (72.06 μ m) and lowest in Khulna (28.76 μ m) in adaxial surface of the leaves (Table 8). Epidermal cell breadth was highest in case of Cox's Bazar (21.74 μ m) and lowest in case of Khulna (7.31 μ m) in abaxial surface of the leaves (Table 4). Epidermal cell breadth was highest in case of Cox's Bazar (21.74 μ m) and lowest in case of Khulna (7.31 μ m) in abaxial surface of the leaves (Table 4). Epidermal cell breadth was highest in case of Cox's Bazar (12.20 μ m) and lowest in case of Faridpur (7.10 μ m) in adaxial surface of the leaves (Table 8). The epidermis consists of various types of functionally specialized cells play vital role in restricting water loss, regulate gaseous exchange, defense, attract pollinators, photosynthesis, transpiration, respiration, mechanical strength and flexibility. Palmer and Tucker (1981) also observed that foliar epidermal features were useful in the systematics and

characterization within sub families and tribes. Many leaf epidermal characters such as length and shape of epidermal cells, stomata, stomatal type, papillae, prickle angular, macro and micro hair, hooks, margins and silica bodies are taxonomically informative and can be used as an important tool in the delimitation of grasses (Prat, 1932; Metcalfe, 1960; Ellis, 1979; Petronela and Nevana, 2010). Watson and Dallwitz (1992) reported detailed description of the leaf epidermis in numerous taxa, pointing out the significance of these characters in the systematics of the Poaceae.

Sl. No.	Habitats	Long cells/mm ²	Long cell length (µm)	Long cell width (µm)
1	Rangpur	5.88±0.50efghij	37.72±0.82mn	6.63±0.42cd
2	Lalmonirhat	5.33±0.52hij	50.12±0.70g	7.73±0.24bc
3	Dinajpur	5.15±0.20ij	48.85±0.76g	7.39±0.34bc
4	Thakurgaon	9.20±0.44a	72.69±0.61b	7.68±0.44bc
5	Panchagarh	9.01±0.30a	41.98±0.87jk	6.53±0.24cd
6	Gaibandha	8.46±0.32ab	41.16±0.67kl	7.40±0.36bc
7	Rajshahi	6.81±0.60cdef	36.05±0.76n	7.51±0.56bc
8	Naogaon	7.50±0.40bc	44.09±0.79hi	6.95±0.56bc
9	Pabna	7.43±0.42bc	55.46±0.73ef	6.72±0.58cd
10	Gazipur	6.32±0.58cdefghi	33.06±0.580	7.73±0.24bc
11	Narsingdi	7.17±0.52bcde	43.55±0.79hij	6.61±0.38cd
12	Sherpur	4.61±0.38j	$54.26 \pm 0.82 f$	5.39±0.34de
13	Mymensingh	5.75±0.20fghij	49.95±0.84g	7.10±0.54bc
14	Khulna	6.75±0.34cdefg	64.69±0.61c	4.62±0.40ef
15	Jessore	6.34±0.54cdefghi	56.66±0.58e	6.63±0.42cd
16	Jhenaidah	6.60 ± 0.28 cdefgh	59.53±0.79d	6.94±0.26bc
17	Faridpur	5.92±0.36defghij	42.03±0.61ijk	6.64±0.44cd
18	Shariatpur	9.65±0.52a	31.39±0.64p	4.92±0.22e
19	Barguna	3.31±0.20k	90.76±0.67a	8.28±0.50b
20	Khagrachari	5.43±0.42ghij	$54.45 \pm 0.76 f$	7.92±0.58bc
21	Bandarban	6.92±0.36cdef	44.98±0.87h	7.02±0.40bc
22	Rangamati	6.62 ± 0.40 cdefgh	39.32±0.581m	3.40±0.36f
23	Cox's Bazar	3.33±0.24k	72.95±0.84b	12.33±0.60a
24	St. Martin's Island	7.28±0.44bcd	58.98±0.87d	7.85±0.60bc

Table 6. Quantitative epidermal characteristics on adaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

SE = Standard error, n = 24. In the column, mean values bearing similar letter(s) or without letter are identical and those having dissimilar letters are differed significantly as per Duncan's Multiple Range Test.

S1.	Habitats	Stomatal	Epidermal cell/mm ²	Stomatal index
No.		frequency		
1	Rangpur	5.21±0.24bcde	16.06±0.73cdef	25.77±0.59bc
2	Lalmonirhat	4.59±0.42defg	13.20±0.82hi	26.67±0.36b
3	Dinajpur	5.15±0.56bcde	14.95±0.70efgh	26.07±0.46bc
4	Thakurgaon	6.29±0.38ab	19.03±0.70ab	25.43±0.33bc
5	Panchagarh	5.44±0.22abcde	16.05±0.79cdef	26.81±0.64b
6	Gaibandha	6.31±0.56ab	18.85±0.76ab	25.73±0.56bc
7	Rajshahi	5.29±0.38bcde	15.98±0.73cdef	25.93±0.64bc
8	Naogaon	5.76±0.28abcd	17.69±0.79bcd	25.60±0.46bc
9	Pabna	4.61±0.38cdefg	13.57±0.76ghi	26.07±0.28bc
10	Gazipur	3.85±0.24fghi	11.85±0.61ij	25.80±0.61bc
11	Narsingdi	5.92±0.22abc	17.92±0.82abc	25.87±0.33bc
12	Sherpur	4.36±0.22efgh	13.04±0.64hi	26.24±0.48bc
13	Mymensingh	4.86±0.26cdefg	14.89±0.79efgh	25.78±0.43bc
14	Khulna	5.23±0.20bcde	13.89±0.76fghi	28.76±0.43a
15	Jessore	5.10±0.54bcdef	14.76±0.82efgh	26.55±0.61bc
16	Jhenaidah	6.40±0.44ab	19.57±0.61ab	24.97±0.28c
17	Faridpur	4.96±0.22cdef	15.14±0.55efgh	25.80±0.61bc
18	Shariatpur	6.61±0.38a	19.99±0.70a	25.40±0.31bc
19	Barguna	3.02±0.32i	9.28±0.82k	26.05±0.53bc
20	Khagrachari	5.37±0.60abcde	15.38±0.58defgh	25.61±0.31bc
21	Bandarban	5.58±0.32abcde	16.49±0.61cde	26.27±0.61bc
22	Rangamati	5.57±0.60abcde	15.66±0.55cdefg	26.37±0.41bc
23	Cox's Bazar	3.34±0.40hi	9.72±0.67k	26.26±0.33bc
24	St. Martin's Island	3.70±0.32ghi	10.48±0.64jk	27.04±0.41b

Table 7. Quantitative epidermal characteristics on adaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

Number of silica bodies per mm² was highest in sample of Bandarban (10.26) and lowest in sample of St. Martin's Island (2.13) in abaxial surface of the leaves (Table 5). Number of silica bodies per mm² was highest in case of Naogaon (7.95) and lowest in case of Cox's Bazar (2.00) in adaxial surface of the leaves (Table 9). Prickles angular number per mm² was highest in case of Gaibandha (0.32) and lowest in case of Mymensingh (0.19) and no prickles angular was found in case of Barguna, Cox's Bazar and St. Martin's Island in abaxial surface of the leaves (Table 5). Prickles angular number per mm² was highest in case of Thakurgaon (0.42) and lowest in case of both Pabna and Rangamati (0.18) and no prickles angular was found in case of Barguna, Cox's Bazar and St. Martin's Island in adaxial surface of the leaves (Table 9). Number of hooks per mm² was highest in case of Thakurgaon (0.02), Sherpur (0.02)

Sl. No.	Habitats	Stomata length with guard cell (µm)	Stomata breadth with guard cell (µm)	Epidermal cell length (µm)	Epidermal cell breadth (µm)
1	Rangpur	12.42±0.73ef	8.77±0.30fgh	38.79±0.70i	8.33±0.60defgh
2	Lalmonirhat	14.02±0.87cde	10.73±0.24c	34.16±0.73k	8.43±0.42defgh
3	Dinajpur	12.50±0.84ef	9.81±0.38cdef	38.22±0.79ij	7.53±0.60gh
4	Thakurgaon	13.69±0.55cdef	9.35±0.52defgh	42.69±0.61gh	8.19±0.34efgh
5	Panchagarh	15.41±0.76abcd	9.77±0.60cdef	47.29±0.55e	8.17±0.30efgh
6	Gaibandha	13.42±0.73def	9.79±0.34cdef	37.45±0.70ij	8.11±0.56efgh
7	Rajshahi	15.29±0.61abcd	8.83±0.30efgh	33.15±0.84k	9.11±0.56bcdef
8	Naogaon	15.66±0.58abcd	12.19±0.34b	37.72±0.82ij	10.18±0.56bc
9	Pabna	12.66±0.73ef	9.83±0.42cdef	29.52±0.64m	8.33±0.60defgh
10	Gazipur	14.09±0.67cde	8.80±0.28fgh	38.62±0.55i	9.81±0.38bcd
11	Narsingdi	14.29±0.61cde	8.37±0.38gh	33.85±0.76k	8.38±0.20defgh
12	Sherpur	15.57±0.61abcd	9.38±0.32defgh	40.85±0.76h	8.74±0.46cdefg
13	Mymensingh	11.56±0.67f	8.78±0.32fgh	51.79±0.70d	7.99±0.34fgh
14	Khulna	12.62±0.55ef	8.11±0.20h	28.76±0.67m	8.11±0.20efgh
15	Jessore	13.42±0.73def	9.41±0.38defgh	54.69±0.61c	8.31±0.56defgh
16	Jhenaidah	14.22±0.73cde	8.70±0.30fgh	44.95±0.84f	8.59±0.58defgh
17	Faridpur	15.96±0.82abc	10.12±0.58cde	36.36±0.67j	7.10±0.40h
18	Shariatpur	14.65±0.76bcde	9.50±0.54cdefg	30.72±0.641m	8.12±0.22efgh
19	Barguna	16.72±0.64ab	15.62±0.28a	72.06±0.64A	8.31±0.56defgh
20	Khagrachari	15.34±0.55abcd	9.50±0.30cdefg	32.66±0.58kl	9.60±0.36bcde
21	Bandarban	12.57±0.79ef	9.42±0.40defgh	36.72±0.64ij	8.61±0.52defgh
22	Rangamati	12.86±0.58ef	8.54±0.26fgh	32.66±0.58kl	8.20±0.36efgh
23	Cox's Bazar	17.14±0.87a	14.93±0.60a	58.96±0.67B	12.20±0.36a
24	St. Martin's Island	17.59±0.70a	10.40±0.36cd	43.96±0.67fg	10.39±0.42b

Table 8. Quantitative epidermal characteristics on adaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

and St. Martin's Island (0.02) in abaxial surface of the leaves (Table 5). Number of hooks per mm² was highest in case of Lalmonirhat (1.69) and lowest in case of Barguna (0.02) in adaxial surface of the leaves (Table 9). In case of Cox's Bazar, hook was absent both abaxial and adaxial surfaces of the leaves (Table 5 & 9). Macro hair number per mm² was highest in case of Cox's Bazar (0.26) and lowest in case of Khagrachari (0.02) in abaxial surface of the leaves (Table 5). Macro hair number per mm² was highest in case of Gazipur (0.02) in abaxial surface of the leaves (Table 5). Macro hair number per mm² was highest in case of Gazipur (0.02) in adaxial surface of the leaves (Table 5). Macro hair number per mm² was highest in case of Cox's Bazar (0.52) and lowest in in case of Gazipur (0.02) in adaxial surface of the leaves. No macro hair was found in the sample of Pabna (Table 9). However, all these characters were found to be highest and lowest both abaxially and adaxially, which indicates the taxonomic importance of the foliar characters. The foliar epidermis offers a

Sl. No.	Habitats	Silica bodies no./mm ²	Prickles angular/mm ²	Hooks no./mm ²	Macro hair no./mm ²
1	Rangpur	5.69±0.30cd	0.30±0.02cdef	0.52±0.00f	0.11±0.03de
2	Lalmonirhat	4.89±0.52d	0.39±0.03ab	1.69±0.01a	0.24±0.04bc
3	Dinajpur	5.73±0.30cd	0.22 ± 0.02 fg	0.98±0.02d	0.16±0.04cd
4	Thakurgaon	6.77±0.60abc	0.42±0.02a	1.54±0.02b	0.11±0.03de
5	Panchagarh	5.09±0.52d	0.24 ± 0.04 defg	0.32±0.04j	0.06±0.02efg
6	Gaibandha	6.48±0.44bc	0.28±0.04cdef	0.48±0.04fgh	0.04±0.00efg
7	Rajshahi	5.69±0.38cd	0.24±0.04defg	1.62±0.02a	0.25±0.01b
8	Naogaon	7.95±0.20a	0.30±0.02cde	0.79±0.03e	0.09±0.01defg
9	Pabna	5.89±0.38cd	0.18±0.02g	0.42±0.02ghi	0.00±0.00g
10	Gazipur	5.86±0.46cd	0.27±0.03cdef	1.08±0.00c	0.02±0.02fg
11	Narsingdi	6.68±0.44abc	0.26±0.02defg	0.75±0.03e	0.08±0.04defg
12	Sherpur	4.83±0.34d	0.32±0.00bcd	0.36±0.04ij	0.06±0.02efg
13	Mymensingh	5.65±0.24cd	0.30±0.02cdef	1.11±0.03c	0.11±0.03def
14	Khulna	6.87±0.20abc	0.22±0.02efg	0.46±0.02fgh	0.05±0.01efg
15	Jessore	5.75±0.42cd	0.35±0.03abc	1.11±0.03c	0.13±0.01de
16	Jhenaidah	6.56±0.58bc	0.39±0.03ab	1.05±0.01cd	0.10±0.02def
17	Faridpur	5.79±0.34cd	0.35±0.03abc	0.42±0.02ghi	0.12±0.00de
18	Shariatpur	6.88±0.28abc	0.26±0.02defg	0.43±0.03ghi	0.03±0.03efg
19	Barguna	2.38±0.32e	$0.00\pm0.00h$	0.02±0.02k	0.08±0.04defg
20	Khagrachari	6.89±0.30abc	0.41±0.01a	1.52±0.04b	0.16±0.04cd
21	Bandarban	6.15±0.34cd	0.26±0.02defg	0.50±0.02fg	0.07±0.03defg
22	Rangamati	7.67±0.20ab	0.18±0.02g	0.40±0.04hi	0.11±0.03de
23	Cox's Bazar	2.00±0.58e	$0.00\pm0.00h$	0.00±0.00k	0.52±0.04a
24	St. Martin's Island	2.55±0.56e	$0.00\pm0.00h$	0.04±0.04k	0.24±0.04bc

Table 9. Quantitative epidermal characteristics on adaxial surface of leaves of *Cynodon dactylon* collected from different habitats of Bangladesh.

Number of noteworthy taxonomic characters. The biosystematic and taxonomic studies of a number of families established the importance of leaf epidermis (Baranova, 1972; Raju, 1981; Stace, 1984). Although the taxonomists realized lately the importance of micromorphology of the epidermis and thus, the taxonomic monographs are now considered incomplete without it (Rejdali, 1991). The diversity and distributional pattern of the above mentioned characters can be viewed from different perspectives and used as a model system for investigations into developmental biology, ecology, physiology, morphology and evolution.

Conclusion

Different parameters of leaf epidermal anatomy like long cells, silica bodies, prickles angular and hook might be helpful in identification of the accessions of *C. dactylon* particularly in case of the grasses collected from hilly regions of Bangladesh. This study mainly focused on qualitative and quantitative characters of twenty four habitats of *C. dactydon* and all of them were amphistomatus. Stomatal parameters like size and number were found to show great ecological importance especially in case of stress tolerance. The stomatal index and stomatal frequency were of vital value in the delimitation of close relation of accessions when their variations were found to be statistically significant in most of the cases. The present findings have indicated that attempts can be made in future using stomatal characters along with few other epidermal features as the aid in identification and classification of *Cynodon dactylon* at different ecological zones of Bangladesh.

Acknowledgement

The anatomical part of this research work has been carried out in Plant Ecology Laboratory, and Phycology and Limnology Laboratory of the Department of Botany, University of Rajshahi, Bangladesh and Chairman of the said Department is gratefully acknowledged for providing laboratory support regarding this work.

References

- Abid, R., Sharmeen, S. and Parveen, A. 2007. Stomatal types of monocots within Flora of Karachi, Pakistan. Pak. J. Bot. **39**(1): 15–21.
- Ahmad, F. 2009. Taxonomic studies of grasses of Salt Range of Pakistan. Department of Plant Sciences Quaid-i-Azam University Islamabad Pakistan. Unpublished thesis, pp. 1–358.
- Ahmed, F., Khan, M.A., Ahmed, M., Zafar, M., Nazir, A. and Marwat, S.K. 2010. Ethnomedicinal uses of grasses in Salt Range Region of Northern Pakistan. J. Medicinal Plants Res. 4(5): 362–369.
- Ahmed, F., Khan, M.A., Ahmed, M., Arshad, M., Khan, A., Raja, N.I. and Rehman, Z. 2011. Foliar epidermal anatomy as an aid to the identification of grasses in tribe Aveneae (subfamily Pooideae, Poaceae) from salt range of Pakistan. J. Medicinal Plants Res. 5(1): 81–87.
- Ahmed, F., Hameed, M., Ashraf, M., Ahmad, M., Khan, A., Nawaz, T., Ahmad K.S. and Zafar, M. 2012. Role of leaf epidermis in identification and differentiation of grasses in tribe Chlorideae (Poaceae) from Pakistan. J. Medicinal Plants Res. 6(10): 1955–1960.
- Baranova, M. 1972. Systematic anatomy of the leaf epidermis in the Magnoliaceae and some related families. Taxon **21**: 447–469.
- Barber, J.L., Thomas, G.O., Kerstiens, G. and Jones, K.C. 2004. Current issues and uncertainties in the measurement and modelling of air-vegetation exchanged within plant processing of POPs. Environmental Pollution, 128: 99–138.
- Beerling, D.J. 1995. Stomatal responses to variegated leaves to CO₂ enrichment. Annals Bot. 75: 507-511.
- Bray, S. and Reid, D.M. 2002. The effect of salinity and CO₂ enrichment on the growth and anatomy of the second trifoliate leaf of *Phaseolus vulgaris*. Canadian J. Bot. **80**: 349–359.
- Brown, D. 1984. Prospects and limits of phytolith key for grasses in central United States. J. Arch. Sci. 11: 221–243.
- Carpenter, S.B. and Smith, N.D. 1975. Stomatal distribution and size in southern Appalachian hard woods. Canadian J. Bot. 53: 1153–1156.
- Chaudhari, S.K., Arshad M., Mustafa, G., Fatima, S., Amjad, M.S. and Yasmeen, F. 2014. Foliar epidermal anatomy of grasses from Thal desert, district Khushab, Pakistan. International Journal of Biosciences. 4(8): 62–70.

190

- Chaudhary, A.A., Hameed, M., Ahmad, R. and Hussain, A. 2001a. Phytosociological studies in Chhumbi Surala Wild life sanctuary, Chakwal, Pakistan. Species Diversity 1. International Journal of Agriculture & Biology 3(4): 369–374.
- Chaudhary, M.I., Mumtaz, A.S. and Khan, M.A. 2001b. Leaf epidermal anatomy of medicinal grasses of Islamabad, Attock and Mirpur (Azad Kashmir). Pakistan Journal of Biological Sciences, **4**(12): 1466–1469.
- De Castro, E.M., Pereira, F.J. and Paiva, R. 2009. Histologia vegetal: estrutura e funcao de orgaos vegetativos. Lavras: UFLA, v.9, n.4.
- Drake, P.L., Froend, R.H. and Franks, P.J. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Exp. Botany **64**: 495–505.
- Dyki, B., Borkowski, J. and Kowalczyk, W. 1998. Wplyw niedoboru miedzi I stresu wodnego na mikrostrukture powierzchni liscia (*Lycopersicon esculentum* L.) Acta Agrob, 51:119–125.
- Eamus, D. 1991. The interaction of rising CO_2 and temperatures with water use efficiency. Plant Cell Environ. 14: 843–852.
- Elahi, N.N. and Ashraf, M. 2002. A comparative study of stem epidermis of six sugarcane varieties. Biol. Pak. 48(1&2):175–184.
- Ellis, R.P. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae II: the epidermis as seen in surface view. Bothalia, **12**(4): 641–671.
- Fernandez, O.A. and Mujica, B. 1973. Effects of some environmental factors on the differentiation of stomata in *Spirodela intermedia*. Bot. Gaz. **134**: 117–121.
- Franks, P.J. and Beerling, D.J. 2009. Maximum leaf conductance driven by CO₂ effects on stomatal size and density over geologic time. Proc. Natl. Acad. Sci., USA, **106**: 10343–10347.
- Franks, P.J., Drake, P.L. and Beerling, D.J. 2009. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using *Eucalyptus globulus*. Plant Cell Environ. **32**: 1737–1748.
- Freire, S.E., Arambarri, A.M., Bayon, N.D., Sancho, G., Urtubey, E., Monti, C., Novoa, M.C. and Colares, M.N. 2005. Epidermal characteristics of toxic plants for cattle from the Salado River basin (Buenos Aires, Argentina). Boil. Soc. Argent. Bot. 40(3-4): 1–28.
- Gitz, D.C. and Baker, J.T. 2009. Methods for creating stomatal impressions directly onto archivable slides. Agronomy Journal, 101: 232–236.
- Hammed, M., Ashraf, M., Naz, N., Nawaz, T., Batool, R., Fatima, S. and Ahmad, F. 2014. Physiological adaptative characteristics of *Imperata cylindrica* for salinity tolerance. Biologia, 69(9): 1148-1156.
- Hepworth, C., Caine, R.S., Harrison, E.L., Sloan, J. and Gray, J.E. 2018. Stomatal development: focusing on the grasses. Current Opinion in Plant Biology **41**: 1–7.
- Hetherington, A.M. and Woodward, F.I. 2003. The role of stomata in sensing and driving environmental change. Nature **424**(6951): 901–908.
- Ishtiaq, M., Maqbool, M., Hussain, T., Bhatti, K.H., Mushtaq, W. and Nadeem, A. 2018. Application of leaf epidermal anatomical technique for identification of some grass species from district Bhimber of Azad Jammu and Kashmir, Pakistan. Pak. J. Bot., 50(5): 1853–1863.
- Jian, Z., An-Guo, Z., Yi-Chuan, Shu-Wen, W. and Pei, Q. 2012. Adventitious root growth and relative physiological responses to waterlogging in the seedlings of seashore mallow (*Kosteletzkya virginica*), a biodiesel plant. Aust. J. Crop Sci. 6: 73–80.
- Jones, J.H. 1986. Evolution of the Fagaceae: the implications of foliar features. Annual Missouri Botanical Garden **73**: 228–275.
- Khan, R., Ahmad, M., Zafar, M. and Ullah, A. 2017. Scanning electron and light microscopy of foliar epidermal characters: a tool for plant taxonomists in the identification of grasses. Microsc. Res. Tech. 80(10): 1123–1140.
- Kim, S.J., Hahn, E.J., Heo, J.W. and Paek, K.Y. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of *Chrysantemum* plantlets *in vitro*. Sci. Hort. **101**: 143–151.

- Knapp, A.K., Cocke, M., Hamerlynck, E.P. and Owensby, C.E. 1994. Effect of elevated CO₂ on stomatal density and distribution in a C₄ grass and a C₄ forb under field conditions. Ann. Bot. **74**: 595–599.
- Kundu, S.K. and Tigerstedt, P.M.A. 1998. Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (*Azadirachta indica*). Tree Physiol. **19**: 47–52.
- Lee, S.H., Tewari, R.K., Hahn, E.J. and Paek, K.Y. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis plantlets. Plant Cell Tissue and Organ Culture 90(2): 141–151.
- McElwain, J.C. and Chaloner, W.G. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Annals of Botany, **76**: 389–395.
- Metcalfe, C.R. 1960. Anatomy of Monocotyledons. 1. Gramineae, Clarendon Press, Oxford at the Series 13: 389.
- Mulholland, S.C. 1989. Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. J. Arch. Sci. 16: 489–511.
- Nadeau, J.A. and Sack, F.D. 2002. Control of stomatal distribution on the *Arabidopsis* leaf surface. Science 296: 1697–1700.
- Nitu, S.K. and Islam, S.M.S. and Tarique, M.H. 2019b. Morphological characteristics of different accessions of *Cynodon dactylon* (L.) Pers. and physico-chemical properties of soil of their growing region in Bangladesh. Int. J. Biosciences, 15(5): 350–369.
- Nitu, S.K., Islam, S.M.S. and Tarique, M.H. 2019a. Interphase nuclear phenotype and chromosomal variation in *Cynodon dactylon* (L.) Pers. J. Bio-Sci. 27: 133–141.
- Palmer, P.G. and Tucker, A.E. 1981. A scanning electron microscope survey of the epidermis of East African Grasses. 1. Smith. Contrib. Bot. 49: 1–84.
- Petronela, C. and Nevena, K. 2010. Characterization of leaf epidermis of two Sesleria species. J. Plant Dev. 17: 23–28.
- Piperno, D.R. and Peasall, D.M. 1998. The silica bodies of tropical American grasses: Morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contrib. Bot. 85: 1–40.
- Poole, I. and Kurschner, M. 1999. Stomatal density and index: the practice. *In*: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. The Geological Society, London. pp. 257–260.
- Prat, H. 1932. The Epidermis of Gramineae. Ann. Sci. Nat. Bot. 14: 117-324.
- Prat, H. 1934. Contribution al etude systematique et histologique de Chloridees. Bull. Soc. Bot. Fr. 81: 475-491.
- Prat, H. 1961. Emploi des characters epidermiques dans la classification des graminees. pp. 99–102 in recent advances in botany, vol. 1. Toronto Univ. Toronto Press.
- Raju, V.S. 1981. Leaf Architecture as an Aid to the systematics of the order euphorbiales. Ph.D. Thesis. Nagarjuna University, Nagarjunanagar, Guntur, India.
- Rejdali, M. 1991. Leaf micromorphology and taxonomy of North African species of *Sideritis* L. (Lamiaceae). Bot J. Linn. Soc. **107**: 67–77.
- Royer, D.L., Berner, R.A. and Beerling, D.J. 2001. Phanerozoic atmospheric CO₂ change: evaluating geochemical and paleobiological approaches. Earth-Science Reviews **54**(4): 349-392.
- Rudall, P.J., Chen, E.D. and Cullen, E. 2017. Evolution and development of monocot stomata. American Journal Botany 104(8): 1122–1141.
- Schoch, P.G., Jacques, R., Lecharny, A. and Sibi, M. 1984. Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of *Vigna sinensis* L. II. Effect of different light quality. J. Exp. Bot. 35: 1405–1409.
- Simonneau, T., Lebon, E., Coupel-Ledru, A., Margueriti, E., Rossdeutsch, L. and Ollat, N. 2017. Adapting plant material to face water stress in veneyards: which physiological targets for an optimal control of plant water status? OENO One 51(2): 167–179.

- Stace, C.A. 1984. The taxonomic importance of the leaf surface. *In*: Herwood, V.H. and Moore, D.M., Eds., Current Concepts in Plant Taxonomy, Academy Press, London, pp. 67–94.
- Stenglein, S.A., Colares, M.N., Arambarri, A.M., Novoa, M.C., Vizcaino, C.E. and Katinas, L. 2003. Leaf epidermal microcharacters of the old world species of Lotus (Leguminoseae: Loteae) and their systematic significance. Austr. J. Bot. 51: 459–469.
- Thomasson, J.R., Nelson, M.E. and Zakrzawski, R.J. 1986. A fossil grass (Gramineae-Chloridoideae) from the Miocene, with Krantz Anatomy Science **233**: 876-878.
- Tufail, A., Ahmad, F., Hameed, M. and Ahmad, R. 2017. Growth performance and stomatal behavior in relation to ecotypic adaptations in *Cynodon dactylon* (L.) Pers. Pak. J. Bot. 49: 1395–1403.
- Twiss, P.C., Suess, E. and Smith, R.M. 1969. Morphological classification of grass phytoliths. Soil Science of America, Proceedings 33: 109–115.
- Uhl, D. and Kerp, H. 2005. Variability of stomatal density and index in the upper *Permian conifer* Quadracladus Madler-a taphonomic case study. Paleogeography, Palaeoclimatology, palaeoecology. 218(3-4): 203–213.
- Van De Peer, Y., Mizrachi, E. and Marchal, K. 2017. The evolutionary significance of polyploidy. Nat Rev Genet. 18(7): 411–424.
- Vesque, M.J. 1989. Empoly of characters anatomiques dans classification plant. Bull Soc. Bot., France. **36**: 41–77.
- Vrablova, M., Vrabl, D., Hronkova, M., Kubasek, J. and Santrucek, J. 2017. Stomatal function, density and pattern, and CO₂ assimilation in *Arabidopsis thaliana tmm1* and *sdd1-1* mutants. Plant Biol. **19**: 689– 701.
- Wagner, F., Dilcher, D.L. and Visscher, H. 2005. Stomatal frequency responses in hardwood swamp vegetation from Florida during a 60-year continuous CO₂ increase. American Journal of Botany **92**(4): 162–168.
- Walsh, G.E. 1990. Anatomy of the seed and seedling of *Spartina alterniflora* Lois. (Poaceae). Aquat. Bot. 38: 177–193.
- Watson, L. and Dallwitz, M.J. 1992. The Grass Genera of the World. CAB International. Wallingford, UK. 1038 pp.
- Xu, Z. and Zhou, G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Exp. Bot. **59**(12): 3317–3325.
- Zheng, Y., Xu, M., Hou, R., Shen, R., Qiu, S. and Ouyang, Z. 2013. Effects of experimental warming on stomatal traits in leaves of maize (*Zea mays L.*). Ecol. Evol. 3(9): 3095–3111.

(Manuscript received on 02 July, 2020; revised on 12 November, 2020)