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Abstract

In this paper we study one dimensional linear and non-linear maps and its dynamical behavior. We study measure theoretical dynamical

behavior of the maps. We study ergodic measure and Birkhoff ergodic theorem. Also, we study some problems using Birkhoff's ergodic the-

orem.
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Introduction

We study dynamical systems of ergodic theory and the basic
theory of measure theoretic dynamical systems, ergodic
measure and ergodic theory.

A measure on a mathematical space is a way of assigning
weights to different parts of the space, volume is a measure
on ordinary three-dimensional Euclidean space. Probability
distributions are measures, such that the largest measure of
any set is 1 (and some other restrictions). We are interested
in a dynamical system, a transformation that maps a space
into itself. The set of points applying the transformation
repeatedly to a point is called its trajectory or orbit. Some
dynamical systems are measure preserving, meaning that the
measure of a set is always the same as the measure of the set
of points which map to it. Some sets may be invariant; they
are the same as their images. An ergodic dynamical system
is one in which, with respect to some probability distribu-
tion, all invariant sets either have measure 0 or measure 1.

Ergodic theory have been studied by many authors, notable
amongst them are Pollicott and Yuri (1998), Billingseley
(1965), Walters (2000), Parry (1981). In general the ergodic
theorems of Birkhoff and Von Neumam are used in all
aspects of dynamical systems and many problems in mathe-
matical physics. Jakobson (2000) discussed ergodic theory
of one-dimensional mappings. Jason Preszler (2003) applies
ergodic theory in the study of the qualitative actions of a
group on a space.

Central aspect of ergodic theory is the behavior of a dynam-
ical system when it is allowed to run for a long period of
time. This is expressed through ergodic theorems (Pollicott

and Yuri 1998) which assert that, under certain conditions,
the time average of a function along the trajectories exists
almost everywhere and is related to the space average. If we
take any well-behaved (integrable) function of our space,
pick a point in the space at random (according to the ergod-
ic distribution) and calculate the average of the function
along the point's orbit, the time-average. Then, with proba-
bility 1, in the limit as the time goes to infinity (i) the time-
average converges to a limit and (ii) that limit is equal to the
weighted average of the value of the function at all points in
the space (with the weights given by the same distribution),
the space-average (Walters 2000).

We study the dynamics in a measure space is traditionally
called ergodic theory (even when no ergodicity is involved),
since the earliest work in this area countered around the
problem of understanding the concept of ergodicity. Now we
will give some of the basic definitions and easier results. The
present analysis is shown that the measure of tent map is
ergodic. Using this we solve some problems in this paper.

Basic Measure Theory

Definition 2.1. (0 -Algebra) A family S of subsets of
X iscalled an O -algebra (Royden 1987) if and only if
Nif B,e florn=123 KKK then

I B, €8,
n=1

2)forany B € fthen X/Be g,
3) the empty set ¢ belongs to .
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The elements of £ are usually referred to as measurable
sets.

Definition 2.2. (Measure) A findion z: S > is
called measure (Royden 1987) on £ if and only if
Du(B)=0VRBe B,
D ulg)=0,

3) for any sequence {B" }of disjoint measurable

YBH)_Z!J(BH)
n=1 n=1
Defimition 2.3. (Measurable space) A measurable space is
aset X with collection of subsets £ of X such that
DXep,
if Be fthen X —Be S,

3) Bneﬁ:>§8n ep.
n=1

The pair (X,ﬂ) is then called a measurable space.
Definition 2.4. The triple (X, 8,12} is then called a
fimite measure space. We will usually normalize a finite
measure by assuming that (X )=1. With this
normalization, /i is called a probabilily measare on
(X,ﬁ) and (X,ﬁ,,u) is called a probability space.
For a probability measure, note
thatQ < z(B)}<1 VBe 8.

Defimition 2.5. (Invariant measures) Let (X B p)bea
measure space. Assume that # is a probability measure,
that s, #X)=1.A messurble map
T:X—}X(ﬁlatis,T_lﬁCﬁ)issaidtnprmrve
the measwre 4 if for any Be f we haw
[J(B):ﬂ(T_IB)_ Aliematively, we say that u# s 7-

Invariant.

Proposition 2.1 (Existence of invariant measures) Let X
be a compact metric space and f be the Borel o -
algebra. Given any homeomorphism 7 : X > X (or
more generally, a continuous map) there exists af least
one probability measure £z preserving T
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Measure preserving transformation

The measure preserving iransformations are functions on
a measure space that preserve the given measure.
Consider a measurable transformation 7 from (X, )
to itsclf. Also, T is a measure preservimg if
T,([J) = iz, or in other words, if [J(B) = ;J(T_l(B))
forevery Be f3.

We say that T is an inveriblc measmre preservimg
tramsformatiom if T is bijective and both Tand T '
are measure preserving.

We use the notation
T:(X,ﬁ,,u)%(X,ﬁ,,u) to denote a measure
preserving transformation of a probability space to itself.
For mstance, if X is a topological structure, then £ is
always the Borel o -algebra (that is, the o -algebra
generated by open sets).

Definition  3.1.  Suppose (X, f,,4,) and
(Xz,ﬁz,,uz) are two probability spaces.
() A transformation 7:X, > X, is
measurable if Tﬁl(ﬂz)gﬂl(i-e_ T is
surjedive).
(1) A transformation T:X, > X, s
measure-preserving if Tis measurable and
-1
ﬂl(T (Bz)): 1,(B,) VB, € p,.
(i) A transformation T: X, > X, is an
mnvertible mEasure-preserving
transformation if 7 1is measure-
preserving, bijective, and 7' is also
measure-preserving.
Exerdse 3.1. Verfy that if 7, : X, > X, and
T, : X, > X; arc measure preserving transformation
then 7, of, : X, — X, is also a measure preserving
transformafions.
In ergodic theory, we are interested in long term behavior,
so we will focus on measure preserving transformations
from a measure space onto itself, then 7 : X, - X .
Common examples of such measure preserving
transformations are the identify transformation (which
PICSEIVE any measure).
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Theorem 3.1. Let (X,ﬁ,,u) be a normalized measure
space and let 7: X — X be measurable. Let P be a
7r —system (A family P of subsets of X is called a
7 —system if and only if for any A,Bin P their
intersection A B is also in P) that generates f. If
ﬂ(T_lA)=ﬂ(A) for any A€ P, then T is measure

preserving.

Example 3.1. Let X = [0,]], J =Borel o —algebra
of [0,]] and A =Lebesgue measure on [O,I]. Let
T:X — X be defined by T(x)z rx(mod l), where

r is a positive integer greater than or equal to 2. Then 7’
is measure preserving.

First, we would like to determine when two measure pre-
serving transformations are isomorphic and other associated
problems. The second type of problem is more external, how
can we use results about measure preserving transformations
to solve problems in other areas of mathematics or even out-
side of mathematics? The remainder of this paper will focus
on the first type of problems, or the so called isomorphism
problem.

Ergodic Measure

Definition 4.1. Given a probability space (X, B, p), a
transformation 7 : X — X is called ergodic if for
evay se¢ Bepf with T'B=B then either
p(B): 0 or p(B): 1. Aliernatively we say that u
is T —ergodic.

The following lemma gives a simple characterization in
terms of functions.

Lemma 4.1. T is ergodic with respect to # if and only
if whenever f € L'(X, B, u)} satisfies f = foTl
then f is a constant function.

Definition 4.2. (Ergodicity and transitivity) Let # bea
measure on (X , B ) A measurable transformation
T:(X,8)> (X, B) is said to be ergodic, with
respect to the measure class of # , if it is not possible to

express X as the union of two disjoint set of positive
measure, X =S U S, with SNS; =¢, u(S)>0,
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and /J(Sl)>0, where T_I(S):S or equivalently
T7(8,)=S8,, so that S and S, are T — invarint
closely related 1s the concept of measare transitivity. By
defmition, I is measnre fransitive if forany S, S, € §
with £2(S) > 0 and (S, )> O there exists 72> 0 such

that  f7(S)NS,#4, or  equivalently
SAT™(S5,)2é.

A completely equivalent formmlation would be that if
ﬂ(Sl)>0 then the nnion

TS )uT (S )T (S, VA AA
is a set of full m easmre, so that i must intersect every set
of positive measnre.

Corollary 4.1. A measnre preserving transformation on a
finite measore space is ergodic if and only if #
tramsitive.

Theorem 4.1. (Poincare Recurrence Theorem) Let T be
a measnre-preserving transformation on a normalized

measure space(X,ﬁ,ﬂ). Let E€ f such that
#(E)> 0. Then almost all points of £ retnm infinitely
often to K under iterations of T".

Definition 43. We call a measnre preserving
transformation 7 : (X, i ﬂ)—)-(X, B, _ﬂ) ergodic if
for any Be pf, such that
T'B=RB,u(B)=0 or u#(X\B)=0. since
ergodicity (Pollicott and Yun 1998) is a property of the
pair (', 41) we often say that (T, 21) is ergodic.

As for example Tent map
T(x)=2x (mod 1), x € [0, 1] is ergodic.

Lemma 4.2. The extremal points in the convex set M
are ergodic measures (that is, g€ M . ergodic if
whenever dpy, p, €M  and O<a<l with
M = a i +(1-a)p, then ity = i),

The symbol A denotes the symm etric differen ce of sets:
AAB =(4\B)u(B\ 4).

Definition 44. Let (X,5,7,T) be a dymamical
system. A set Be ff 5 called T —imvariant if
T'(B)=B and almost T —imvariant i
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(T (B)AB) =0 _ Similarly, a measurable function i
called 7 —invariant ¥ foF7 =f and almost
T —invaniant if f o = f & i —almost everywhere.

Theorem 4.2. The following statements are eqnivalent for

the transformation T :(X,fB,u)— (X,B, 1)
preserving a normahzed measare 1 :

@ T i ergodic.

G) s{T'BAB)=0,Be p= p(B)=0 or 1.

(i) Forany 4, B € f with pu(4)>0, u(B)>0,
there exists 71> 0 snchthat (T "4 ~B)>0.

Now we write some important lemmas which are related
with invariant and ergodic measure.

Lemma 4.3. If a normalized measure g & I" — invariant
(Billingseley 1965) and 7 'B C B, then there exists a

set B, C B, p(B\ B,)=0and T7'(B,)= B,.

Lemma 4.4. If a normalized measure g s T — invariant
and 2{T(B)A B)= 0, then there exists a set B, such
that #(BAB,)=0,and T7'(B,)= B,.

Lemma 4.5. If a normalized T — invariant measnre H B
ergodic, then for any set B snch that T_I(B)C B, we
have ﬂ(B) equalto O or 1.

Lemma 4.6 If a normalized T — invariant measnre # is
ergodic and /J(A) > (), then ;{YT_"(A)) =1.
-1

Theorem 4.3. Let T:(X,8,u)—(X,B,1) be
measnre preserving. Then the following statements are

equivalent:

() T i ergodic.

() If f is measurable and (f o7 }{x)= f(x) almost
everywhere, then f is constant almost everywhere.

Gi) B feI*(u) ad (fol)(x)= f(x) almost
everywhere, then f is constant almost everywhere.

Proposition 4.1. Let X be a compact metric space and
let i be a Borel normalized measure on X , which gives
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positive measnre to every non-emply opem sets. If
T : X — X is continnons and ergodic with respect to ft,

then ,u{x: {T"x:nzo}isdensein X}=1

Definition 4.5. A system 7 : (X, 8)— (X, B) i chaofic
if and only if #t has am ergodic measmre and exhibits
the measnre.

Theorem 4.4. If the topological entropy of a map T is
positive, then there exists an ergodic measnre such that the

measurable entropy is positive.
Ergodic Theorem

Let { be a fanction which is an observable for a physical
quantity. One of the main themes in ergodic theory s to
stndy the asymptofic behavior of ther time evolstion

{fOTk}kEz+ -Under the ergodic hypothesis, their averages
1 N1 " .
E;fof’ convergetothespaoeavemgelfdﬂ This
property also implies the well-known law of large nmmbers,
which 1s a key concept in statistics (that is the distnbution of
the long term average converges to the Dirac measnre

supported on _[fd#)-

Let (X,ﬁ,p) be a probability space, and assnme that the

transformation 7 : X —> X preserves 1. The Birkhofff
“mdividnal” ergodic theorem gives a strong type of ergodic
theorem in that it describes the average of functions along
indiviinal “typical” orbits. We prove the theorem under the

Theorem 5.1. (Birtkhoff’s Theorem (Ergodic Version))
Consider f € LI(X,ﬁ,p). If the measnre A is ergodic
then for almost all x € X we have that the averages

%zf(f'"x)%jlfdpas N>t

) i 1 N1 n
thatlS,ﬂ{xeX.Ll_l)l;ng(T x)i.[fdp}_().
Clearlly if T i ergodic thea [ is constant almost
everywhere and if HX)< o then

= L emore 1 s a
I —(#(X) fdm. Furth if (X,8,4)
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probability space and T is ergodic V f € L'(#) then

tim{ L £ = [ £ dm
(yPsam=[sdn ae

N

The Birkhoff erpodic thecorems are uses in stafistical
mechanics, but also to mumber theory and dynamical
systems.

The following corollary is due to Von Neumann.
Corollary 5.1. ( I” FErgodic Theorem of Von Neumann)
Let 1<p<o and let T be a measure-preserving

transformation of the probability space (X, S5, u). If

feIf(u) there exist f eIf(u) with
fror=f" ae. and
(i rtrne)- f'(x)L o,

Interestingly enough the theorem of Von Neumann was
published a year before Birkhoff’s result.
Next corollary provides another criteria for erpodicity.

Corollary 52. Let (X, £, ) be a probability space and
let 7:X —> X be a measure preserving transformation.
Then T is ergodic if and only if V 4, B € £ then

lNl

- Z_; M1 AB) > p(4) x(B)

Problem 51. Let f(x)=ax(l — x) be the Logistic map.
Let 7:]0,1] > [0,1] be the doubling map. Usc Birkhof’s
ergodic theorem to show that

13 ; a
im=Y" f(r'x)=2
lim > A=
for Lebesgue almost every x € [0,1]
Solution: We know that, by Birkhoff’s erpodic theorem,

igf(’rix)—)j'fdp as 71> 440
that s, ,u{xe X:H%Ef('r"x)i[fdx}zo-
f(x):ax(l—:)n, O<a<4.
ft e =2

L] 6 -

Here, Now,
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Therefore, %Z::f(’fix)—) %.So we write
. 1 r1

lim— ) f(ﬁ)-;%.

H—)mnl_=n

. ln—l

lim=

n—@D g

Hence

frs)-2.
o 6
When @ =4 then this map is chaotic and

1
lim 3 f(Tix)= %

Hmﬂf:ﬂ

Problem 52 Let f:[0]] >R be defined by

f(x)=x%1et T:[0,1]]>[0,]] be the doubling map.
Use Birkhoff’s ergodic theorem to show that

im . n_lf(Tix):

lim —
for Lebesgue almost every x € [0,1]

) |

Solution: We know that, by Birkhoff"s ergodic theorem,
1 _

lZf(T!x)—)Ifdﬂas n—> +oo

H;g

lrrl

3 fTx) ;ej fd,u} —0.

7y

that is, ,u{xe X : lim

1
Here f(x): x2. Now, Ixztfx = % .
0

1 _
Therefore, 1z:f(T!x)—)1
no 3
) . ln—l : 1
So, we write ]Jm—Zf(T x)—)g Hence,
R (P
1

i 3 7(r'x)=

Corollary 53. Let (X, B, ,u) be a probability space, and
assume that the transformation T : X — X preserves f.
The proportion of time spent by almost all points in a subset
Be B is given by it measure p(B), that is,
.1 n
Hicard{osnsjv—lzr x€ B}= u(B)

for almost all points x € X .
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Example 5.1. (Lack of convergence on a set of zero
measure) Consider the map 7': R/Z — R/Z defined by
T(x) =2x mod(l) and the usual Haar-Lebesgue measure
M.

Consider any continuous function f :R/Z — R such

that f(0) # [ f du . Clearly,

%Nz;: £(r70)= £(0).

T"0=0, for all n>0 . But
f (0) # If dp we see that at the point 0 the sequence

Since since

does not converge to the integral.
Conclusion

Ergodic measures are closely related to invariant measure.
The collection of invariant probability measures for a given
map form a convex subset of the set of all probability meas-
ures on the space X. The ergodic probability measures are
precisely the extremal points of the set of invariant probabil-
ity measures. In this paper, we discuss Birkhoff theorem for
ergodic version. We try to solve some problems using this
theorem. We explain some of the important examples of
measure preserving transformation.

Applications of ergodic theory to other parts of mathematics
usually involve establishing ergodicity properties for sys-
tems of special kind. In geometry, methods of ergodic theo-
ry have been used to study the geodesic flow on Riemannian
manifolds, starting with the results of Eberhard Hopf for
Riemann surfaces of negative curvature. Ergodic theory has
fruitful connections with, harmonic analysis, Lie theory
(representation theory, lattices in algebraic groups), and
number theory.
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