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Abstract 

This paper gives a general overview of the implementation aspects of turbo decoders. Although the parallel architecture of the turbo code

is emphasized, the serial concatenated convolutional codes for the turbo decoder are discussed too. Considering the general structure of iter-

ative decoders, the main features of the soft input and soft output algorithm, which are the heart of a turbo decoder, are observed. The effi-

cient parallel architectures of turbo decoders are shown which allow high speed implementation. Apart from these, implementation aspects

like quantization issues and stopping rules to increase the throughput as well as an evaluation of the various turbo decoders are discussed.

Finally, we suggest a number of solutions to overcome the implementation issues as well as the complexities without affecting the high

throughput rate.
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Introduction

The turbo codes first drew the attention of the channel cod-

ing research community in 1993 at a seminar. The perform-

ance claimed in that seminal paper was soon confirmed with

a practical hardware implementation (Communication, Nov.

1993). And the realm of turbo codes began from that very

day. 

The performance of turbo codes and their suitability for

practical implementation led them to be adopted in various

communication standards in the late 90s. They were chosen

in the telemetry coding standard by the Consultative

Committee for Space Data Systems (CCSDS) (CCSDS, Sep.

2003) and for the medium to high data rate transmissions in

the third generation mobile communication 3GPP/UMTS

standard (Jungu et al., 2000). To enable the broadband inter-

active satellite and terrestrial services, they have been adopt-

ed as a part of the Digital Video Broadcast Return Channel

Satellite and Terrestrial (DVB--RCS and DVB-RCT) links

(DVB, 2000 and DVB, 2001). That was not the end, more

recently; they were also selected for the next generation of

3GPP2/cdma2000 wireless communication systems

(3GPP2, Feb. 2004) as well as for the IEEE 802.16 standard

(WiMAX) (IEEE, Nov. 2004) which was intended for

broadband connections over long distances. Besides the

parallel codes a serial turbo code was also adopted in 2003 

by the European Space Agency for the implementation of a

very high speed (1 Gb/s) adaptive coded modulation modem

for satellite applications (Boutillon et al., 2007).

This paper discusses the various implementation methods

and aspects of Turbo Decoders. The high speed implementa-

tion considering the parallel architectures of the turbo

decoders are presented. The implementation issues like stop-

ping rules and quantizations are also discussed. This paper is

organized as following. In section II, the turbo codes in gen-

eral were introduced. Section III discusses the solution to

increase the throughput of the decoder in the parallel archi-

tecture. Section IV discusses the various stopping rules. In

section V, the quantization issues are discussed. Section VI

discusses the complexities faced in iterative decoding. In

Section VII, some additional concepts and suggestions are

discussed. 

BANGLADESH JOURNAL 

OF SCIENTIFIC AND 

INDUSTRIAL RESEARCH

E-mail: bjsir07@gmail.com

*Corresponding author. E-mail: adnan.quaium@ubuntu.com

BCSIR

Fig. 1:  General principle of the turbo decoding in loga-

rithmic domain
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Turbo Codes

Turbo codes are variants of convolutional codes. As stated

by Forney (Boutillon et al., 2007), concatenation is a method

of building long codes out of shorter ones in order to resolve

the problem of decoding complexity by breaking the

required computation into manageable segments according

to the divide and conquer strategy. Turbo codes, also known

as parallel concatenated convolutional codes (PCCC), are

based on a parallel concatenation of two recursive systemat-

ic convolutional codes separated by an interleaver. They are

called turbo in reference to the analogy of their decoding

principle with the turbo principle of a turbo-compressed

engine, which reuses the exhaust gas in order to improve

efficiency. The turbo decoding principle calls for an iterative

algorithm involving two component decoders exchanging

information in order to improve the error correction perform-

ance with the decoding iterations. This iterative decoding

principle was soon applied to other concatenations of codes

separated by interleavers, such as serial concatenated convo-

lutional codes (SCCC), sometimes called serial turbo codes,

or concatenation of block codes, also named block turbo

codes (Boutillon et al., 2007). Fig. 1 shows the general prin-

cipal of the turbo decoding method.

Parallel Architecture of the Turbo Codes

There are three solutions to increase the throughput of the

decoder: increasing the parallelism of the decoder, increas-

ing the clock frequency, and   decreasing the number of iter-

ations. The increase of parallelism can be obtained at all the

levels of the hierarchy of the turbo decoding algorithm first

at the turbo decoder level, second at the SISO level, third at

the half iteration level and finally, at the trellis stage level. 

A. Codeword Pipeline and Parallelization

In this method, the 2nit numbers processors work in a linear

systolic way, while the first one processes the first half iter-

ation of the newest received codeword of index k, the second

one processes the second half iteration of the previous

received codeword (index k - 1), and so on, up to the 2nit th

processor that performs the last iteration of the codeword of

index k - 2nit. Once the processing of half iteration is fin-

ished, all codewords are shifted in the linear processor array

(Boutillon et al., 2007).  

B. Parallel SISO Architecture

In this method, several independent SISO decoders work on

the same codeword. To do so, the frame of size N is sliced

into P slices of size M=N/P and each slice is processed in

parallel by P independent SISO decoders. This technique

implies two types of problems: the problem of data depend-

ency, which is solved by relaxing the constraint of perform-

ing the entire forward (respectively, backward) processing

within a single iteration (Blankenship et al., Jun. 2005 and

Giulietti et al., Feb. 2002); and, the problem of the memory

collisions, which can be solved either in execution stage or

in compilation stage or in design stage. One of the main

issues of parallel architecture is dealing with the efficient

usage of all available computational resources. 

C. Parallel Trellis Stage

As the both the forward and backward recursion contains a

loop, it is not possible to increase the parallelism directly.

However, there is a technique, known as trellis compacting,

in which the conventional trellis is reconstructed by group-

ing two consecutive trellis stages in a single one. This trellis

compaction leads to an equivalent trellis of the trellis of the

double binary code.

D. Increase of Clock Frequency

To increase the clock frequency, the critical path of the turbo

decoder should be reduced. The critical path is in the forward

or backward recursion loop. There are a few solutions to

reduce this path directly, such as, using of a fast adder, reduc-

ing the number of bits to code and, delaying of one cycle if

the log-map algorithm is implemented.

Stopping Rules and Buffering

By introducing some stopping criterion, the throughput of

the decoder can be increased to exploit the randomness of

the number of required iterations (Matache et al., Aug.

2000). The most efficient and simple stopping rules are:

A. Hard Rule 1

The signs of the LLRs at the input and at the output of a con-

stituent SISO module are compared and the iterative decoder

is stopped if all signs agree. 

B. Hard Rule 2

To improve the reliability of the stop rule, the previous check

has to be passed for two successive iterations 

C. Soft Rule 1

The minimum absolute value of all the extrinsic LLR at the

output of a SISO is compared against a threshold. 
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D. Soft Rule 2

The minimum absolute value of the entire total LLR is com-

pared against a threshold.

Quantization Issues in Turbo Decoders

The hardware complexity increases linearly with the internal

bit width representation of the data. For that the minimum bit

width internal representation that leads to an acceptable

degradation of performance need to be formulated. Without

significant degradation of the performance compared to a

classical DSP application, the internal precision of a turbo-

decoder can be very low (Boutillon et al., 2007).

A. Internal Precision of a Turbo Decoder

If x is the received signal and σ is the variance of white

Gaussian noise then LLR λ (cl:I) can be written as follows.

The Quantization value of λ(cl:I) can be given by a

Quantification Function Q, defines as

where sat (a, b) =a, if a belongs to [-b, b] , and sat(a,b) =

sign(a)xb , otherwise; data are quantized between [-A,A]. If

A is very large, most of the input will be quantized by a zero

value, i.e., an erasure, and the decoding process fails. And if

A is too small then saturation happens most of the time and

the soft quantization would thus be equivalent to a hard deci-

sion. So for a given code rate and a given SNR there is an

optimal value of A.

Input values of λ(cl:I) depends on channel observation A, as

well as the noise variance  σ2 (variance of the SNR of the

signal). When the max-log-MAP algorithm is used, the esti-

mation of SNR is not necessary. When the log-MAP algo-

rithm is used, the real standard deviation  σ is replaced by the

maximum value σ so that it produces a Bit Error Rate (BER)

or a Frame Error Rate (FER) acceptable for the application.

The number of bits bext to code the extrinsic message can be

deduced from bLLR. Once bLLR and bext are chosen, the num-

ber of bits bfm to code the forward recursion metrics α and

the backward recursion nodes β can be derived automatical-

ly. In (Gross  et al., Aug 1998)  it is shown  that,  for  for-

ward recursion, if the v is the memory depth and   .is the

function of code, band b then at any time l, It is also shown 

that if the mins(α(s)) is maintained zero then only bfm is suf-

ficient to code the forward metrics. But the problem is to

maintain a zero level, additional hardware is required which

increases the critical paths for forward recursion and com-

plexities. A more efficient solution is to replace those com-

plex systematic operations by the subtraction of a fixed value

when needed. The subtraction is simply realized by setting

all the MSB to zero.

B. Practical Implementation of MAX* Algorithm

A block diagram of the MAX* operator is shown according

to the definition in (Matache et al., Aug. 2000). A lookup

table performs the computation of the correcting factor given

by the following equation.

The maximum value of this function is ln (2) and the func-

tion decreases rapidly toward zero. A working diagram of

MAX* operator is shown in the Fig. 2.

C. Rescaling of Extrinsic Message

The use of the max-log-MAP algorithm leads to an overesti-

mation of the extrinsic message, which in turns decreases the

performances of the turbo decoder. This can be significantly

avoided if the overestimation of the extrinsic message is

compensated, on average, by a systematic scaling down of

the extrinsic message between two consecutive half itera-

tions. This scaling factor is also favorable with respect to the

de-correlation of the extrinsic messages.

D. Method of Optimization 

Various parameters like number of bits of quantization, max-

imum number of iterations, scaling factors of the extrinsic

message, BER and FER, impact both the performance and

the complexity of the turbo decoder. All those parameters

interact in a nonlinear way. So finding a good performance-

complexity trade off is a very complex task. In order to have

an accurate estimation of the BER a CPU extensive Monte

Fig. 2: Block diagram of a MAX* operator
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Carlo simulation is required. To avoid the simulations, the

proposed methods are: 

1. Define the space of the search by defining the range of

search for each parameter of the decoder as well as define a

model of complexity for each parameter along with the max-

imum allowable complexity of the design. 

2. Define the proper worst case configuration.

3. Using this configuration, perform a Monte Carlo simula-

tion at the SNR of interest. Each time a received codeword

fails to be decoded, store the codeword in a set S then stop

the process when the cardinality of the set S is high enough.

4. Perform an optimization in order to find the set of param-

eters that minimize the BER (or the (FER) over the set S.

5. Perform a normal Monte Carlo simulation in order to ver-

ify a posteriori the real performance of the selected parame-

ters.

6. Go to Step 1 with a different scenario of optimization if

needed.

Evaluation of Complexities of Iterative Decoders

For a high level evaluation of the complexity of the decoder,

the architecture is shown in Fig 3. Where the shaded blocks

are processors and white blocks are memories. The summa-

ry of the whole process is:

1. Initialize the inner memory to null messages.

2. Apply the first set of constraints A using the EXT and

LLR, write the updated messages in EXT.

3. Initialize the inner memory to null messages.

4. Apply the first set of constraints A using the EXT and

LLR, write the updated messages in EXT.

5. Apply the second set of constraints B using the EXT and

LLR, write the updated messages in EXT.

6. Iterate until some stopping criterion is satisfied or the

maximum number of iterations is reached. 

To gain control on the trade off between area and throughput

of the decoder the number of elementary operations required

for decoding one information bit per iteration as a function

of the main design parameters of the code is considered to be

focus, which is indicated as C. If Cdep is the number of

deployed operators running at frequency f, and Nit is the

number of required iteration, then the throughput T of the

implemented decoder can be well approximated by 

A. LDPC 

In case of LDPC, each variable node processor with degree

dv requires 2dv sums to compute the updated message. So,

summing up over all possible nodes, the variable node pro-

cessing requires two sums per edge. By summing up, the fol-

lowing complexities are found:

Here R is the rate of the code, and n measures the density of

the LDPC parity check matrix. 

B. PCCC and SCCC 

The complexity of PCCC (parallel concatenated convolu-

tional codes) and SCCC (serial concatenated convolutional

codes) is strictly related to the complexity of their con-

stituent SISO decoders. Here, k/n rate is considered for bina-

ry constituent encoders (Boutillon et al., 2007). Two ver-

sions of SISO has been considered here: 

1. The inner SISO, which is used in PCCC and as the inner

SISO for SCCC, gets messages on information and coded

bits and provides messages on input bits.

2. The outer SISO, which is used as outer SISO in SCCC,

gets messages only on coded bits and provides updated mes-

sages on both information and coded bits.Fig. 3: General architecture of iterative decoder
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After determining the complexity per information bit for the

inner and outer SISO decoders CI and CO, and if the ro is rate

of the outer encoder for SCCC, the complexity of the PCCC

and SCCC can be evaluated as

C. Memory Requirements

The memory requirements of an iterative decoder is the sum

of memory required for the storage of channel messages,

which is N for all types of decoders, and the memory for the

storage of the extrinsic messages, which depends on the

encoding scheme.

D. Nonbinary Decoders

The main consequence of using Nonbinary Decoders is that

messages are no longer scalars but vectors of dimension

equal to the cardinality of the used alphabet minus one. The

dimension of message memory must then be increased

accordingly. So the performance is also different. 

Suggestions for Implementation Issues

The hardware implementation of turbo decoding still faces

some issues. However, theoretically some solutions can be

suggested to overcome these issues. In this section we sug-

gest some solutions to mitigate the implementation issues.

Although these solutions are very much theoretical, they can

be implemented practically.

A. Using SOVA

To avoid the computational complexities (to reduce the hard-

ware complexities as well), Soft Output Viterbi Algorithm

(SOVA) can be applied instead of MAP algorithm. MAP

algorithm tries to minimize the code word error by maximiz-

ing the probability, while SOVA attempts to maximize the a-

posteriori probabilities (APP) of the individual bit

(Hagenauer et al., 1989). MAP algorithm takes all paths into

consideration and generates the sum of probabilities of all

paths in the estimation. On other hand SOVA produces the

soft output by considering only two maximum likelihood

(ML) paths, which eventually shows less complexity.

Though SOVA may not perform as efficient as MAP over the

AWGN or Fading Channel, one can consider the improved

algorithm of SOVA (Chuan Xiu Huang et al., 2004) in that

perspective.

B. Additional Stopping Rules

A part from the Hard Stopping Rules and Soft Stopping

Rules, a rule based on detecting erroneous decoded

sequences using an outer cyclic redundancy check (CRC)

code can be applied to hard decoded bits (Matache et al.,
Aug. 2000). In this rule, a separate error detection code,

(such as a CRC code) can be concatenated as an outer code

with an inner turbo code in order to flag erroneous decoded

sequences. The condition for stopping with this rule is satis-

fied whenever the syndrome of the CRC code is zero. Also a

finite termination condition for all rules can be applied. So

that if the maximum number of iterations is reached before

the stopping rule is satisfied, one may use this condition to

flag detected errors (Rovini et al., 2006).

C. Simplifying the Offset Function

As the Log-MAP algorithm is a logarithmic domain descrip-

tion of the MAP algorithm, neglecting the offset term, we get

the Log_Max algorithm. In interference limited systems like

WCDMA, this approximation may result in a capacity loss

of as much as 10%, and hence we need to include also the

offset term. The drawback of including the offset term is that

it makes the algorithm sensitive towards SNR mismatch.

Since the offset term is a nonlinear function, it is typically

approximated by a set of lookup tables. However, for ASIC

implementation this implies a need of high speed memory.

Instead of this a linear approximation (the Log-Lin algo-

rithm) of the offset term can be used (Jungu et al., 2000). It

has been seen that the Log-Lin algorithm achieves almost the

same performance as the Log-MAP algorithm.

D. Simplified MAX*

Another way can be the most commonly used MAP algo-

rithm in turbo decoding is the BCJR algorithm. The MAP

decoders make optimum symbol-by-symbol decisions, as

well as providing 'soft' reliability information which is nec-

essary in concatenated decoding systems such as turbo

decoders. BCJR algorithm suffers several shortcomings

which make it unsuitable for VLSI implementation, namely

the requirement of multiplications and exponentiations. So a

simplification of the MAX* operation (Gross et al., 1998)

can be introduced for the Log-BCJR algorithm which

replaces the lookup table with a constant value. The simula-

tions (Gross et al., 1998) show that turbo code performance

is not adversely affected by the modification.

E. Rescaling technique

A more elaborated rescaling technique has been shown in

(Hekstra 1989). The rescaling operation can simply be
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avoided by using the modulus arithmetic. In the rescaling

scheme, at each iteration the minimum metric is subtracted

from all metrics. The use of two's complement arithmetic is

proposed as an alternative to the rescaling method, which

surprisingly avoids any kind of rescaling subtractions.

Avoiding the rescaling has its advantages in implementation

such as hardware savings, a speedup inside the metric update

loop (which is critical to the decoder's computational

throughput). As a result, the use of two's complement arith-

metic to accommodate metric overflow in the Vitterbi algo-

rithm offers significant advantages in implementation, in

terms of design simplification and computational through-

put.

Conclusion

In this paper, we have presented an overview of implemen-

tation issues for the design of turbo decoders in the context

of the concatenation of convolutional codes. We discussed

that how the speed of decoding can be increased by raising

the decoder clock frequency, increasing the use of parallel

hardware, and judiciously limiting the number of decoding

iterations. Hardware complexities were discussed and

assessed too. In addition some suggestions to overcome

these issues were also provided. We have focused on the dif-

ferent methods allowing the throughput of a turbo decoder to

be increased. We have particularly investigated parallel

architectures and stopping criteria. Nowadays, either in soft-

ware or hardware, low throughput (below 10 Mb/s) turbo

decoders have been widely implemented. And those are

commercially available too. But some challenges in future

are yet to come, on which further research are widely wel-

comed. Among the main challenges in the years to come,

low energy consumption receiver design will represent a cru-

cial one. To gain a significant progress in this field requires

a real technological breakthrough. 
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