

Avaiable online at www.banglajol.info Bangladesh J. Sci. Ind. Res. 43(4), 495-500, 2008 BANGLADESH JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH

E-mail: bjsir07gmail.com

Investigation on the Occurrence of Ochratoxin A in Maize in Bangladesh

M. Dawlatana^a, S. Shahida^a, Matiur Rahim^a and M. Tariqul Hassan^a

^aFood Toxicology Research Section, Institute of Food Science and Technology (IFST), BCSIR, Dhanmondi, Dhaka-1205, Bangladesh.

Abstract

Maize was collected from different markets of Bangladesh for the determination of ochratoxin A. Simultaneously controlled maize samples were analyzed to assess the ochratoxin A level of market samples and that of controlled samples. A total of 120 samples were analyzed to determine ochratoxin A including 70 market samples and 50 controlled samples. Market samples were found containing a high contamination level of ochratoxin A ranged from 1 to 117 μ g/kg and incidence rate was 40% whereas in the controlled samples the contamination rate was found very low ranged from 3 to 9 μ g/kg and the incidence rate was found 10% only.

Key words : Maize, Ochratoxin A, Occurrence, Bangladesh, HPTLC

Introduction

Mycotoxins are secondary metabolites (byproducts) produced by various generations of fungi when they grow on agricultural products before or after harvest or during transportation or storage. In general, they are differentiated between field and storage fungi. Ochratoxin A, a naturally occurring mycotoxin, is produced by certain species of Aspergillus and Penicillium fungi. The natural occurrence of this toxin in grains and other plant products has been widely reported (Herwig and Scott, 1995; Kuiper- and Scott *et al*, 1989; StÆrmer 1992). Feeding experimental diets containing ochratoxin A

Investigation on the Occurrence of Ochratoxin

43(4) 2008

have a deleterious effect on a number of animal species. Biological and biochemical effects associated with ochratoxin A include; teratogenicity, nephropathy, enhancement of lipid peroxidation, partial inhibition of ATPdependent calcium uptake, carcinogenicity and inhibition of cell-mediated immune response (Kuiper-and Scott 1989; StÆrmer FC, 1992).

Human exposure to ochratoxin A can occur directly by consumption of contaminated plant derived food or indirectly by consumption of animal tissues from livestock exposed to contaminated materials (Petkova-Bocharova *et al*, 1988).

Bangladesh is a tropical and rainfull country. Recently, maize has been introduced as a good source of both food and feed. Although primarily produced as an ingredient of poultry feed, maize is increasingly being consumed as a human food.

The aim of this study was to evaluate the level of contamination of ochratoxin A in maize of Bangladesh and find out the ways of remedial measures.

Materials and Methods

Sampling

Samples collected for investigation were mainly of two types. One type was collected from open market while the second type (controlled samples) was taken from the store (under specific condition) of Institute of Food Science & Technology (IFST), BCSIR, Dhaka. Open market samples were collected from different markets of the districts of Rajshahi, Khulna, Comilla and Dinajpur. Controlled samples were mainly the samples stored under required conditions by the IFST, BCSIR, Dhaka. Controlled samples were collected time to time from IFST.

Sample preparation

A 10 kg sample was collected in each lot from time to time from different markets and different stores. Each sample was sub-divided into 1 kg sub-sample in a rotary cascade sample divider and powdered in a sub-sampling mill by simplable variable speed drive to collect 200 g representative sample.

The analytical methods employed solid phase extraction clean-up and quantification using HPTLC procedures specifically developed and validated for use in this study (Soares and Rodrignes, 1989).

Results and Discussion

During the one year study period a total of 120 samples were analyzed for ochratoxin A.

Dawlatana,	Shahida,	Rahin	and	Hassan
------------	----------	-------	-----	--------

Samples collected from the markets of Rajshahi, Khulna, Comilla and Dinajpur districts showed the level of ochratoxin A ranged from 1-15 μ g/kg, 1-103 μ g/kg, and 1-117 μ g/kg respectively (Table I).

tion of ochratoxin A. Only 5 samples out of 50 storage maize samples were found to be contaminated with ochratoxin A ranged between 3-9 μ g/kg. Less moisture content was found in controlled stored samples. As a

	No. of	Level of	No. of	Level of
Collection area	samples	moisture content	positive	total ochratoxin A
	analyzed	(%)	samples	µg/kg
Rajshahi	20	11.51-17.85	8	1-78
Khulna	15	11.35-14.36	3	1-15
Comilla	15	10.15-18.70	6	1-103
Dinajpur	20	10.38-17.15	11	1-117

Table I: Level of ochratoxin A and moisture content of market samples

A total of 70 samples collected from different markets of four districts of Bangladesh showed that 28 samples were contaminated with ochratoxin A and incidence rate of 40% (Table II).

A total of 50 samples taken from different containers were analyzed for the determina

result of that ochratoxin A was not found in controlled stored samples (Table III).

Table IV shows that incidence rate of ochratoxin A of maize samples were found 30% in Tin, 0% in Motka, 0% in Dola, 20% in Jute Bag and 0% in controlled stored sample respectively.

Ochrat		atoxin A	
Collection area	Samples analyzed	Sample	Incidence rate
		contaminated	(%)
Rajshahi	20	8	40
Khulna	15	3	20
Comilla	15	6	40
Dinajpur	20	11	55
Total	70	28	40

Table II: Ochratoxin A incidence rate of market samples

Investigation on the Occurrence of Ochratoxin 43(4) 2008

Container type	No. of sample analyzed	Level of moisture content (%)	No. of positive samples	Level of ochratoxin A (µg/kg)
Tin	10	11.08-16.09	3	4-6-8
Motka	10	10.07-12.05	0	0
Dola	10	11.21-13.05	0	0
Jute Bag	10	12.51-14.05	2	3-9
Controlled stored	10	8.01-9.05	0	0
samples				

Table III : Ochratoxin A level and moisture content of stored samples of maize

Table 4: Incidence rate of Ochratoxin A in	controlled sample	s
--	-------------------	---

	No. of	Ochratoxin A	
Container type	Samples analyzed	Sample	Incidence rate
		contaminated	(%)
Tin	10	3	30
Motka	10	0	0
Dola	10	0	0
Jute Bag	10	2	20
Controlled stored	10	0	0
sample			
Total	50	5	10

It is clear that the instructed material of the stored container has an influence of ochratoxin A contamination. Out of 10 samples taken from the containers only 3 samples were found to contain 4 μ g/kg, 6 μ g/kg and 8 μ g/kg ochratoxin A respectively.

Conclusion

Incidence rate of ochratoxin A in stored sample is very low comparing to market sample.

A total of only 5 samples out of 50 samples were found contaminated by ochratoxin A. The incidence rate of ochratoxin A was found 10% in stored samples whereas the incidence rate of market samples was found to be 40%.

Proper storage is necessary to overcome the contamination of ochratoxin A in maize.

498

Dawlatana, Shahida, Rahim and Hassan

Acknowledgements

Highly acknowledgement to the authority of BCSIR for the reason they have approved this research work. Authority of the IFST is also being acknowledged for their kind cooperation during the project implementation.

References

- Bauer, J. Gareis, M. (1987) Ochratoxin in der Nahrungsmittelkette. J Vet Med (Ser B) 34: 613-27.
- Biacardi, A. Riberzani, A. (1996) Determination of ochratoxin A in cereals and feeds by sax-spe clean up and LC fluorimetric detection. X International IUPAC Symposium on Mycotoxins and Phycotoxins, Roma, 314.
- Dunne, C. Meaney, M. Smyth, M. Tuinstra, LGMT. (1993) Multimycotoxin detection and clean-up method for aflatoxins, ochratoxin and zearalenone in animal feed ingredients using high-performance liquid chromatography and gel permeation chromatography. J Chromatogr 629: 229-35.
- Hald, B. Wood, G.M. Boenke, A. Schurer, B. Finglas, P. (1993) Ochratoxin A in wheat: An intercomparison of procedures. *Food Addit Contam* 10: 185-207.

- Herwig, J. Kuiper-Goodman, T. Scott, PM. (1995) Microbial Food Toxicants: Ochratoxins. In: Rechcig IM (ED.) Handbook of Foodborne Diseases of Biological Origin.Boca Raton, CRC Press, 193-238.
- Hult, K. Hokby, E. Sellyey, G. Rutqvist, L. Gatenbeck, S. (1992) Ochratoxin A occurrence in slaughter-pigs in Sweden and its use as a tool for feed screening programs. *J Environ Pathol Toxicol Oncol* 11: 103-4.
- Kuiper-G. T. Scott, PM. (1989) Risk assessment of the mycotoxin ochratoxin *A. Biomed Environment Sci* **2:** 79-248.
- Nesheim, S. Stack, M.E. Trucksess, M. Eppley, RM. Krogh, P. (1992) Rapid solvent-efficient method for liquid chromatographic determination of ochratoxin A in corn, barley, and kidney: collaborative study. J Amer OAC Int **75**: 481-7.
- Petkova-B. T. Chernozemsky, I.N. Castegnaro, M. (1988) Ochratoxin A in human blood in relation to Balkan endemic nephropathy an urinary system tumors in Bulgaria.Food Addit Contam 5: 299-301.
- Seidal, V. Poglits, E. Schiller, K. Lindner, W. (1993) Simultanius determination of ochratoxin A and zearalenone in maize by reversed-phase high-performance liquid

Investigation on the Occurrence of Ochratoxin

43(4) 2008

chromatography with fluorescence detection and b-cyclodextrin as mobile phase additive. *Journal of Chromatogr* **635**: 227-35.

- Soares LMV, Rodriguez-Amaya DB (1989). "Survey of Aflatoxin, Ochratoxin A, Zearalenone, and Sterigmatocystin in Some Brazilian Foods by Using Multitoxin Thin-Layer Chromatographic Method . J.assoc. Off. Anal. Chem. 72(1): 22-26.
- StÆ rmer, F.C. Ochratoxin, A- (1992) A mycotoxin of concern. In: Bhatnagar D. Lillehoj EB, Arora DK, (Eds.). Handbook of Applied Mycology. Mycotoxins in Ecological Systems. New York, Marcel Dekker Inc, 403-32.
- Trucksess MW. Mycotoxins. *J Am OAC Int* 1995; **78:** 135-41.
- Received : March, 20, 2008; Accepted : August, 06, 2008