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Abstract

A new approach of  finding a Jacobi field equation with the relation between curvature and geodesics
of a Riemanian manifold M has been  derived. Using this derivation we have made an attempt to find
a standard form of this equation involving sectional  curvature   K and other related objects.
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Introduction

The concept of differentiating a vector field
is not an "intrinsic" geometric notion on M.
To remedy this state of affairs we consider,
instead of usual derivative  dV

dt , the orthog-
onal projection  dV

dt of  on Tc(t) M. This orthog-
onal projected vector we call the covariant
derivative and it is denoted by  dV

dt . Jacobi
fields are vector fields which is defined by
the way of  a  differential  equation  which  is
developed  in the study of the exponential
mapping (Gauss 1965, Klingenberg 1959 ).
The curvature κ (p, σ), σ⊂ TpM determines
the fastness of the Geodesics. Some aspects
of exponential  mapping, symmetry property
for symmetric connection on a parametrized
surface,  parametrized surface related with
exponential mapping, curvature R of a 

Riemannian  manifold  M, sectional curva-
ture, constant sectional curvature, relation
between trilinear mapping R © and the curva-
ture R will be treated in this  present  paper
(Riemann  1959, Rauch  1953, Myers 1941).
Finally we shall find a standard Jacobi equa-
tion with a solution.

Preliminaries

Definition 2.1 An inner product of a mani-
fold M at a point p∈ M is a symmetric, bilin-
ear and positive definite form and is denoted
by  <,>p.

If ψ :U⊆[R”→M is a system of coordinates
around p with (x1, x2......,xn) = q∈ψ (U) ⊆ M

and                                   ..       ..       then   
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is a 

differentiable function on U . We can delete
the index  p in the function <, >p if  there is
no confusion.

Definition 2.2 A parametrized curve γ : I →

M is a geodesic at             if                         

at the  point  t0, if  γ is a geodesic at t, for all,
t ∈ I, we say that γ is a geodesic. If  [a, b]
⊂ I and γ : I → M is a geodesic then the
restriction of  γ to  [a, b] is called a geodes-
ic segment joining  γ (a)  to γ (b).

The tangent bundle TM is  the set of pairs (q,
v), q ∈ M, v∈ TqM. If  (U, x) is a system of
coordinates on M, then any vector in TqM, q
∈ x(U), can  be written as                      .

Taking (x1,....xn, y1,...yn) as coordinates of (q,
v)  in TU, it is  easy to obtain a differential
structure for TM. The tangent bundle  TU =U
×[Rn is locally a product. The canonical pro-
jection π : ΤΜ→Μ given by π (q, v) = q is
differentiable.

Theorem 2.3 If  X is a C∞ vector  field  on
the  open  set  V in  the manifold  M and p∈V
then there exist an open set Vo⊂ V, p∈V, a
number δ> 0 and a C∞ mapping φ : (-δ,δ) ×Vo

→  V such that the curve t → φ (t, q), t (-δ,δ)
is the unique trajectory of X which at the
instant t = 0 passes through the point q, for
every q ∈ Vo ( do Carmo 1976 ).

The  mapping φ t: V0→ V given by φt (q) =
φ (t, q)  is called the flow of  X on  V.

Definition 2.4 The vector field G on TM
whose trajectories are of the form t→(γ (t), γ’
(t)) is called the geodesic field on TM and its
flow is called the geodesic flow on TM.

Proposition 2.5 Given p∈ M, there exist an
open set V⊂ M, p∈ V, number  δ > 0 and  ∈1

> 0 and a  C∞ mapping  

γ : (-δ,δ)×U→ M, U ={(q,v)⏐q ∈ V, v∈ TqM,
⏐v⏐<∈1 },

such that the curve t→ γ (t, q,v), t ∈ (-δ,δ)
is the unique  geodesic of  M which at the
instant  t = 0,  passes through q with  veloci-
ty  v,  for each q ∈ V and for each v∈ TqM
with  |v| < ∈1 .

Lemma 2.6 (Rauch  1953) (Homogeneity of
a geodesic) If the geodesic γ (t,q,v) is
defined on the interval (-δ, δ) then the geo-
desic γ (t, q, av) a∈[R a>0, is  defined  on  the 

interval                and  γ (t,q,av)= γ (at, q, v)

Definition 2.7 Let p ∈ M and let U ⊂ TM
be an open set  given by  U = {(q, v) ∈ TM |
q ∈ V,  v ∈ TqM, |v| < ∈ }.  Then the  map
exp :  U → M given  by  

exp (q,v) =γ (1, q,v)=                     , (q,v)∈U

is called the exponential map on U .

Clearly,  exp is differentiable. In the applica-
tion  we  shall  use  the  restriction of  exp to 
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an open subset of the tangent space TqM
and we define 

expq : B∈ (0) ⊂ TqM → M

by expq (v)= exp (q, v),  where  B∈ (0)   is an
open ball with center at the origin O of  TqM
and of radius  ∈ . We can  prove that  expq is
differentiable and  expq (0) q. 

Proposition 2.8 Given q ∈ M, there exists an
∈ > 0, such that expq : B∈ (0) ⊂ TqM → M
is a diffeomorphism of  B∈ (0) onto an open
subset of  M.

Minimizing Properties of Geodesics

Definition 3.1 A piecewise differentiable
curve is a continuous mapping  c : [a, b] →
M of a closed interval [a, b] ⊂ [R into M sat-
isfying the following condition : there exists
a partition  a = t0<t1<...tk-1<tk=b of [a, b]
such that the restrictions c⏐[t1.t1+1], i =
0,...,k-1 are  differentiable. We say that c
joins  the  points  c(a) and c(b).  c(t1) is
called a vertex of c and the angle formed by
lim t→ t1+c′(t)   with lim t→ t1

+c′(t) is called the
vertex angle at c(t1).

Lemma 3.2 ( do Carmo 1976 ) (Symmetry)
If M is a differentiable manifold with a sym-
metric connection and  S : A ⊂ [R2 → M   is
a parametrized surface then

Lemma 3.3 ( Rauch 1953 ) (Gauss) Let p∈
M and let v∈TpM such that exppv is defined.

Let   w∈TpM ∼ Tv (Tp M). Then

< (dexpp)v (v), (dexpp)v (w) > = < v, w    (1)   

Proof. Let w=wT+wN where wT is parallel to
v and wN is normal to v. Since dexpp is linear
and by the definition of expp, it suffices to
prove (1) for w=wN It is clear that we can
assume wN ≠ 0.  

Since exppv is defined, there exists ∈> 0 such
taht exppu is defined for

where v(s) is a curve in TpM with v(0) = v,
v'(0) =wN and ⏐v(s)⏐constant. Now, we can
consider the parametrized surface (Ahmed
2004 )

f:A→M, A={t,s)⏐0≤  t ≤ 1, -∈< s<∈}
given by      f(t,s)=expptv(s). 

Observe that the curve t→f(t,s0) are geodesics.

To prove (1) for w=wN observe first that by
putting  t= 1, s = 0

(2)

In addition, for all (t, s), we have

The last term of the above expression is zero,
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since   is the tangent vector of a geodes-

ic. From the symmetry of the connection, the

first term of the sum is transformed into 

<

It follows that   is independent of t.
Since 

we conclude that  which
together with (2) proves the lemma. 

The Derivation of Jacobi Field Equation

Let M.. be a Riemannian manifold and let
p∈M In Gauss Lemma we saw that if expp

is defined at v∈TpM and if w∈Tv(TpM) then

where f is a parametrized surface given by

and v(s) is a curve in TpM with v(0) = v,
v'(0) = w.

It is convenient to extend our object slightly
and study the field

(d expp) tv (t w) =  

along the geodesic

The remark is that      satisfies a differential

equation.  Since  γ is  a geodesic,  we  have  

for all (t, s). 

Lemma 4.1 Let f : A ⊂ [R2 → M be param-
etrized surface and let (t, s) be the usual
coordinates of [R2 Let V =V (t, s) be a vector
field along f. For each (t, s), it is possible to 

define                    in an obvious following
manner: 

Proof.  Consider a system ( U,  x ) based at
p ∈M  Let 

(3)

where vi = vi (s, t)and                  Then

and

(4)  

By interchanging the coordinates s and t in
the above expression, we obtain                    

(5)
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Now, subtracting (5) from (4), we obtain

(6)

since,   

Next,  we need to calculate  

Put  

Then                           and                           

(7)

where                   and                        Thus 

we calculate

and

(8)

In the similar way, we obtain

(9)

Subtracting (9) from (8), we obtain

[using def. of  curvature [1]]  

[using (3) and (7)]

Hence, (6) implies that

Now, the lemma 4.1 gives
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Putting                          , we  obtain that J 

satisfies the equation

(10)

and the equation (10) is known as the Jacobi
equation with the relation between curvature
and geodesics of a Riemanian manifold M.

Definition 4.2 Let γ :[0,a] → M  be a geo-
desic in M ( Kulkarni 1970 ). A vector field
J along γ is said to be a Jacobi field if it sat-
isfies the Jacobi equation (10), for all  t ∈
[0,a].

A Jacobi field  is  determined  by  its initial

conditions J(0),           . Let e1(t) e2(t),..,en(t)

be parallel, orthonormal fields along γ , we

shall write ( Ahmed  2004 ) 

(11) 

i,j = 1,2,...,n =  dim M.

Then  

and 

[since        ]

= 

Therefore, the equation (10) is equivalent to
the system

which is a linear system of the second order.
For the given initial conditions J(0),           , 

there exists a C∞ solution of the system
defined on [0,a] and 2nd linearly independ-
ent Jacobi fields along γ .

Remark 4.3 We  observe that  γ © (t)   and t
γ © (t) are Jacobi fields along γ . The first field
has derivative zero and vanishes and the sec-
ond field is zero if and only if t = 0. For these
reason, we shall consider Jacobi fields along
γ that are normal to  γ © .

Lemma 4.4 Let M be a Riemannian mani-
fold and p be a point of M. Define a tri-lin-
ear mapping (Ahmed 2003) R' : TpM × TpM´
× TpM → × TpM by

< R ' ( X , Y , W ) , Z > = < X , W > < Y, Z > -
<Y,W><X,Z>,

for all X, Y, W, Z∈ TpM. Then M has constant
sectional curvature equal to K if and only if
R=KR', where R is the curvature of  M.

Using the lemma 4.4, we have for all vectors
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T along γ

[since <γ’,γ’>= 1 and <γ’,T>=0]

Hence,  

As a result, the Jacobi equation can be writ-
ten as

,(12)

which is the standard form of  Jacobi  equa-
tion with a  Jacobi field  J and a constant
sectional curvature K.

Let w(t) be a parallel field along γ with <γ'(t),
w(t) >=0 and |w(t)| = 1.It is easy to verify that

is a solution of (12) with initial conditions
J(0) = 0, J'(0) = w(0).

Conclusion

A new approach of Jacobi field equation and
its solution have been derived in Riemannian
manifolds  by using exponential mapping,
geodesics, Gauss lemma. Using this Jacobi
field equation and its solution along geodes-
ic γ , one can find expansion of  |J(t)|2 = <J(t),
J (t)> about t=0, the value of  <J(t), γ’(t)> and
other results which are involved with
Riemannian curvature R .
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