
Introduction

Carbofuran (2, 3-dihydro-2, 2-dimethyl-7-benzofuranyl- 
methylcarbamate) is a pesticide world wide used to control 
soil and leaves-feeding insects and nematodes. It is an active 
acetylcholinesterase inhibitor and is toxic to fish and 
mammals (Katsumata, 2004). It has reported that more than 
five million pounds of carbofuran were applied in the United 
States in the year 1995. The use of carbofuran has received 
intensive concern not only due to its extensive use but also 
due to its high oral toxicity (Tennakone, 1997; Zhong, 1984; 
Ferguson, 1984). Due to its long persistence in water, it is 
increasingly detected in soil surface and wastewater. It 
exhibits refractory character to bio-degradation method 
(Benitez, 2001). Hence an effective and inexpensive 
technique is badly needed for treating such pollutant. 

A verity of effective techniques for aqueous carbofuran has 
been proposed where Fenton has taken a lot of attention 
because of its low expense and easy technology. Among 
them Fe(II) based reagent and its modifications have 
received great attention as means for the degradation of 
pesticides by Fe(II)/H2O2 system. Less attention has been 
paid to similar reactions based on other transition metal 
where also Fenton-type reaction　undergoes and can lead to 
the oxidation of different compound (Sutton, 1989; 
Watanabe, 1998). On this point the interest in transition metal 
–catalyzed oxidation by hydrogen peroxide has been 
increased. In part, this interest stems from the discovery of 

vanadium bromoperoxidase, a vanadium enzyme which 
catalyzes the oxidation of chloride, bromide, and iodide by 
hydrogen peroxide (Vilter et al., 1990). All the halides 
except fluoride can be oxidized by hydrogen peroxide under 
neutral and acidic conditions. Again the catalytic 
hydroxylation also observed in The Milas reagent, which 
consists of V2O5 and aqueous H2O2 (Milas 1937 and The 
Merck Index, 1976), is indeed a very effective catalyst for 
hydroxylation of organic unsaturated substances such as 
benzene and many types of alkenes. Recently, the reactivity 
of vanadium (V) peroxide complexes is receiving renewed 
attention (Butler 1994; Clague, 1995). The formation of the 
red oxoperoxovanadium (V) ion and a variety of net 
two-electron oxidation reactions involving hydroxylation of 
benzene and other arenes and alkanes catalyzed by the 
peroxovanadium (V) complexes have been reviewed (Butler 
1994), Vanadium exists in aqueous solution as 
tetravalent(IV) vanadyl (VO2+) and pentavalent (V) vanadate 
(HVO4

-,VO3
-,and/or H2VO4

-) (djordejevitz et al., 1991). A 
number of monomeric and polymeric tetravalent (V,IV) and 
pentavalent (V,V) vanadium species can be present in 
aqueous solutions, their composition depending upon pH 
and vanadium concentration. In this present study, we have 
investigated the degradation and mineralization of 
carbofuran in water by V (IV)/H2O2 system. Our this current 
work, as far from our knowledge is the first investigation to 
degrade EDC’s like carbofuran by vanadium and hydrogen 
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per oxide in acidic condition. Here we also reported the effect 
of many factors such as pH value, initial concentration of V 
(IV), reaction time and H2O2 concentration on the 
degradation which were evaluated. It has also shown that the 
degradation performance increase when organic acid 
(L-ascorbic acid) added. The progress of mineralization of 
carbofuran was confirmed by the decrease of total organic 
carbon (TOC) content and the formation of inorganic ions. 
Furthermore, the products of carbofuran during this catalytic 
process have been identified by gas chromatography-mass 
spectrometry (GC/MS). Based on the formed intermediates, 
the degradation pathway of carbofuran was proposed. 

Materials and methods

Materials

Carbofuran was purchased from Wako Pure Chemical 
Industries (Osaka, Japan) and was used as received (HPLC 
grade>98%). Analytical grade of hydrogen peroxide solution 
(30%,w/w/)was purchased from Wako Pure Chemical 
Industries (Osaka, Japan ).  V(IV) solution was prepared by 
dissolving VOSO4•nH2O. L-ascorbic acid was obtained from 
Nacali Tesque (Kyoto, Japan). All other chemicals and 
solvents were of the purest grade commercially available and 
were used without further purification. All aqueous solutions 
were prepared with ultra pure water, which was purified by 
an ultra pure water system (Addvantec MFS 
Inc.,Tokyo,Japan ) resulting in a receptivity>18MΩcm.

Degradation procedure

Degradation was conducted in a Pyrex glass cell of 30 mL 
capacity. The reaction mixture inside the cell, consisting of 
20 mL of carbofuran solution and the appropriate 
concentration of V(IV) solution, was continuously stirred 
with a magnetic bar. The pH of the sample solution was 
adjusted with H2SO4 and/or NaOH solution. The initial 
concentration of carbofuran in all experiments was 10 mg L–1 
(4.5 × 10–5 mol L-1). In the majority of the experiments, 
temperature was kept at 25±1 °C in a water bath. 

Analyses

After mixing all reagents the sample solution was filtered 
through a 0.45 μm-membrane filter. The progress in the 
degradation of carbofuran was followed with a HPLC 
(JASCO Co., Tokyo, Japan) equipped with a JASCO 
UVIDEC-100-VI UV detector and a RP-18 GP 150 
separation column (150 mm × 4.6 mm i.d., Kanto Chemicals, 
Tokyo, Japan) . The elution was monitored at 280 nm. The 
mobile phase was a mixture of acetonitrile and water (2/3, 
v/v), and was pumped at a flow rate of 0.7 mL min–1.

The progress of mineralization of carbofuran was monitored 
by measuring the TOC. TOC of the sample solution was 
measured with a Shimadzu TOC analyzer (TOC-VE) based on 
CO2 quantification by non-dispersive infrared analysis after 
high- temperature catalytic combustion.

The intermediate products during degradation of carbofuran 
were extracted by the solid-phase extraction (C18 disk, 3 M 
Empore). A mixture of dichloromethane and ethyl acetate 
(1/1, v/v) was used to elute the intermediate products. This 
solution was concentrated under nitrogen flow for the 
analysis of the by-products. A GC/MS (Shimadzu 
GC-MS–QP5050A) was used for separation and detection of 
the intermediate products. The GC was equipped with a HP-5 
capillary column (30 m × 0.25 mm i.d.) in helium carrier gas 
(1.5 mL min–1) and with spit less injection system. The GC 
oven temperature was programmed to hold 80 °C at a rate of 
10 °C min–1 and from 210 to 310 °C from 5 min. the injector 
and interface temperatures were 220 and 250 °C, respectively. 
Mass spectra were obtained by the electron-impact (EI) mode 
at 70 eV using the full-scan mode.

Results and discussion

Effect of variables on the degradation of carbofuran

The pH influences both the metal chemistry in solution and 
the protonation/deprotonation of the metal oxide/hydroxide 
surface. It was showed that vanadium exists in different 
hydrolyzed forms depending upon its concentration and the 
pH of the system (Baes, 1976). The effect of pH was 
observed by changing the initial pH value of the pesticide 
solution from 2 to 5 and the results are illustrated in Fig.1. 
The degradation percentage of carbofuran was increased at 
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Fig. 1. Effect of pH on the degradation of carbofuran by 
V(IV)/H2O2 system ([H2O2]t=0: 1.0×10-4 M； 
[V(IV)]t=0 : 1.0×10-3 M； Reaction time : 10 min)



low pH range from 2-3 and it gave the highest degradation at 
pH 2.6. After increasing pH from 4 the degradation rate 
decreased. Therefore, the rate of carbofuran disappearance is 
strongly affected by the pH –dependence. 

Fig.2 shows the effect of VO2+ concentration on the 
degradation of carbofuran. The degradation rate of 
carbofuran increased with increasing initial VO2+ 
concentration. About 90% degradation of carbofuran 
obtained at 5 x 10–4M concentration of VO2+ at pH 2.6 within 
10 min and then further increase of vanadium concentration it 
gave a plateau curve of degradation. No further change 
observed in the degradation rate. This plateau assumed the 
stationary equilibrium between VO2+ and VO2

+ that 
regenerates the absorbing species and gives an interesting 
catalytic aspect. That’s why further application of vanadium 
no change occur. Under neutral and alkaline conditions, at 
vanadium concentrations below 0.5 mM, vanadium (V) exists 
primarily as a nonnumeric oxyanion (VO4

3–, HVO4
2–, 

H2VO4
2–) (Peacock, 2004; Naeem, 2007) while under acidic 

condition, the predominant species is cis-VO2
+ (Mustafa, 

2002). Under neutral and basic conditions, coordination of 
hydrogen peroxide to vanadate gives anionic 
peroxovanadates, with one to four coordinated peroxide 
ligands, and peroxodivanadates (Gresser et al., 1985). Effect 
of initial H2O2 concentration on the degradation of carbofuran 
with the use of V (IV)/H2O2 system was investigated in the 
rage of 0 -1.0 × 10–2 M at pH 2.6. The degradation rate of 
carbofuran increased with increasing the initial concentration 
of H2O2 up to 2×10–4 M. After further application of H2O2 the 
degradation rate decreased. 

Therefore, the rate of carbofuran disappearance is dependent 
on the initial concentration of H2O2 in the solution as shown 
in Fig. 3. 

Fig. 4 shows the degradation characteristic of carbofuran in the 
V(IV)/H2O2 system at pH 2.6 because of faster generation of .OH 
radical than the conventional Fenton reaction. About 95% 
degradation has been completed within 40 min. These results 
could be an evidence for the extension of OH radical production 
from H2O2 by using other transition metal, such as V.

Ferdoush, Katsumata, Russel, Kaneco, Suzuki and Ohta 213

 

Fig. 2. Effect of V(IV) concentration on the degradation of 
carbofuran by V(IV)/H2O2 system　（pH : 2.6;　
[H2O2]t=0 : 1.0×10-3 M;　 Reaction time : 10 min）

Fig. 3. Effect of H2O2 concentration on the degradation 
of carbofuran by V(IV)/H2O2 system　(pH :2.6;
　[V(IV)]t=0 : 5.0×10-4 M;  Reaction time :10 min）

Fig. 4. Effect of reaction time on the degradation of 
carbofuran by V(IV)/H2O2 system　（pH  : 2.6;　
[H2O2]t=0 : 2.0×10-3 M;　[V(IV)]t=0 : 5.0×10-4 M

1 2 3

20

40

60

80

100

0
V(Ⅳ) concentration (mM)

D
eg

ra
da

tio
n 

(%
)

2 4 6 8 10

20

40

60

80

100

0
H2O2 concentration (mM)

D
eg

ra
da

tio
n 

(%
)

10 20 30 40

20

40

60

80

100

0

Reaction time (min)

D
eg

ra
da

tio
n 

(%
)



The progress of the mineralization of the carbofuran solution 
was monitored by measuring the TOC. As shown in Fig.5, the 
complete mineralization of carbofuran was not achieved after 
24h, although carbofuran was not present in the solution after 
the degradation time (Fig.4). This indicates that intermediate 
products were produced during the degradation processes 
which contain TOC. However, TOC rapidly decreased with 
decreasing the reaction time up to 3 h, and then decreased 
gradually. TOC remained about 80% after 24 h degradation. 
This result indicates the formation of persistent intermediate 
compounds, which are difficult to degrade by this 
degradation system. The complete mineralization of 
carbofuran was not achieved but AFT (Zhong, 1984) and 
photo-Fenton reaction (Howarth, 1979).).

A metal-mediated site-specific mechanism for free 
radical-induced biological damage has also been proposed 
(Harrison et al., 1985), where OH- is formed site-specifically 
in the vicinity of the target molecule (Biol) and reacts at the 
site of its production.　

Biol + Mn+           Biol-Mn+ ................(1)

Biol-Mn+ + O2
. –          Biol-M(n-1)+ + O2 ................(2)

Biol-M(n-1)+ + H2O2             (Biol-Mn+..HO.)  + OH- ...............(3)

Other reluctant present in cells (such as ascorbate ) might be 
able to replace super oxide in the Haber-Weiss cycle and , 
therefore, promote the toxicity of a metal/hydrogen peroxide 
system. From Fig. 6 it has shown that degradation of 
carbofuran in the system of V(IV)/H2O2/L-ascorbic acid 

(where the initial concentration of [V(IV)]0=1.0×10–4M; 
[H2O2]0= 1.0×10–3M and [L-ascorbic acid]0=5.0×10–4M ). 
With the absent of L-ascorbic acid the degradation rate was 
55% but at the present of L-ascorbic acid the degradation % 
increase up to 20 times more and reached to about 80%. So it 
could assume that with the present of L-ascorbic acid 
production of OH radical increase by the eq.(8)

It has also been previously demonstrated that the combination 
of ascorbate and Cu2+ causes damage to macromolecule 
structures such as polysaccharides and proteins through 
generation of reaction oxygen species (Chevion et al., 1988). 
From Fig.6 it can also assumed that TOC removal of 
carbofuran degradation with L-ascorbic could be more then 
with the absence of L-ascorbic acid.
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Fig. 5. Time evolution of TOC during degradation of 
carbofuran by V(IV)/H2O2 system　（pH  : 2.6; 
[H2O2]t=0 : 2.0×10-3 M; [V(IV)]t=0 : 5.0×10-4 M）

Fig. 6. Effect of L-ascorbic acid on the degradation 
characteristics of carbofuran by V(IV)/H2O2 system 
in the presence (▲) and absence(●) of L-ascorbic 
acid (pH: 2.6;　[H2O2]t=0 : 1.0×10-3 M;　[V(IV)]t=0 : 
1.0×10-4 M; [ L-ascorbic acid]t=0: 0 or 5.0×10-3 M）
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Identification of products and degradation mechanism

A total of 7 major intermediates from the degradation of 
carbofuran by the system of V(IV)/H2O2 in 2-180 min were 
analyzed by GC-MS-EI. The GC-MS-EI results including the 
mass weight and retention time are summarized in table 1, 
where the intermediates were presumably subjected to 
cleavage of the side chains attached to the nitrogen atoms and 
aromatic ring.

Scheme 1 illustrates the proposed degradation mechanism of 
the V(IV)/H2O2 system. The results have been compared to 
those from previous research with analogous degradation 
mechanisms such as carbofuran degradation by hydrolysis 
(Uchida, 1986), photolysis (Shinar, 1983), TiO2 photo 
catalysis (McMurray, 1992) and AFT treatment (Zhong, 
1984), semiconductor oxides (Wang, 2002) and 
photolysis/photo catalysis of a similar herbicide, which 
supported our findings. 

By mass spectrum confirmation and the authentic standard 
comparison, the product no. 7 was found to be carbofuran, the 
parent product. By interpreting the mass spectrum, the 
intermediate product no. 1 was the product due to the 
cleavage of the carbamate group from carbofuran. This 
product was also detected in (Uchida et al., 1986) carbofuran 
degradation. The products no. 4 and 3 were identified as 
2,2-dimethyl-2,3-dihydro-benzofuran-3,7-dioland 
7-hydroxy-2,2-dimethyl-benzofuran-3-one, respectively. 
Both of them were formed by further continuous oxidization 
of 2,2-dimethyl-2,3-dihydro-benzofuran-7-ol (product-1) on 
the furan ring attacking by OH radical. Wang and Lemley 
(Zhong, 1984) also reported these products as intermediates 
of carbofuran by AFT treatment. Product 6 with the name of 
2,2-dimethyl-3-oxo-2,3-dihydro-benzofuran-7-yl ester was 
obtained by the attack of OH radical on the furan ring of 
carbofuran as a primary intermediate product. After 
continuous degradation methyl-carbamic acid (product 5) 
and then product 3 obtained as secondary intermediate 
products. It was also assumed that product 4 could be further 
attacked of product 6 by OH radical after this it goes to 
continuous degradation. It was also assumed that product 1 
was obtained by the cleavage of carbamate group from 
carbofuran (parent product) and further attack by OH radical 
to product 2. In addition to these 7 compounds, other 
degradation products still possibly exist in the degradation 
system but were not detected because of their low sensitivity 
in GC/MS.

Based on the intermediate products listed in Table 1 and 
the results obtained by other researchers (Shinar, 1983;  
Wang, 2002) the possible degradation pathway for 
carbofuran is proposed in Scheme 1. The first step of the 

catalytic reaction of carbofuran in water was similar to its 
base hydrolysis reaction. Namely, the carbonate group 
appeared to be the primary attack site by the hydroxyl radical 
and the group removed during this process. At the same time, 
carbamic acid was formed (Shinar, 1983). The product, 
which is known to be unstable (Mahalakshmi, 2007), rapidly 
degraded to methylamine a carbon dioxide, both of which are 
gases at room temperature. In addition formic acid　2, 
2-dimethyle-2, 3-dihydro-benzofuran-7-yl ester, which 
formed through partial cleavage of the carbamate branch, has 
been found in AFT treatment (Zhong, 1984). After the 
carbamate group removal, the hydroxyl radicals continued 
attack by a substituting a hydroxyl group for one of the H 
atoms at C-3 position of the furan ring. Further oxidation 
eliminated another H atom at C-3 position and a carbonyl 
group was formed. The hydroxyl radicals attack at C-2 
position of the furan ring and further lead to the cleavage of 
the ring and demethylation. The aromatic intermediate was 
presumable further oxidized through ring-rupturing reaction 
into aliphatic compounds (McMurray et al., 1992). Based on 
the decrease of TOC during the degradation process (Fig. 5), 
it could be anticipated that the benzene ring was opened and 
the mineralization reaction to carbon dioxide occurred.

Verification of the proposed degradation pathways and end 
products.

The proposed mechanism was further verified by Fig. 7, 
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which shows the decay and generation of carbofuran, the 7 
identified reaction intermediates and some unidentified 
low-molecular-weight intermediates and/or end products 
during the hydrogen peroxide catalyzed the degradation 
reaction. A study of the evolution profiles offers useful 
information in supporting the proposed mechanism. For 
instance, in Fig.7, the decay of carbofuran leads to the 
generation of primary intermediates such as compounds 2,5 
and 6, whereas the decay of these two primary intermediates 
generates secondary intermediates such as compounds 1, 4, 3 
and 7 respectively. The gradual increases of the small 
molecular weight compounds (i.e. NH4

+, NO3
–, CO2, H2O etc.) 

were probably the polar end products formed after the cleavage 
of the benzene ring. These end products are apparently resistant 
to free radical attack, as their ion intensity was maintained at 
high levels even at an extended reaction time of 20 h.

TOC analysis also carried out simultaneously with 
GC-MS-EI analysis to verify the conversions 
(decay/generation) of different molecular size species (see 
Fig. 5). The degradation of carbofuran could be analysis by 
degradation of carbofuran into high molecular intermediate 
compound and then to low molecular intermediate 
compound. From Fig. 7 it has shown that the relative 
abundance of primary and secondary intermediate products is 
high unto 3 h but the abundance decrease gradually, which 
support Fig. 5 that up to 24 h TOC was remain about 80% 
though carbofuran degraded to 95% within 40 min (Fig. 4).

Conclusion

The degradation of carbofuran in aqueous solution was 
investigated by VO2+ aqua complex. The degradation rate 
was strongly affected by the pH value and the initial 
concentration of V(IV) and H2O2. The almost 95% 
degradation was achieved for carbofuran after 10 min under 
the optimum conditions. It was also showed that at low pH 
(acidic) degradation performed very well. In this process 
optimum pH was taken 2.6. The disappearance of TOC was 
observed during the degradation process about 20 % though 
the degradation was found 95% at 10 min. Maybe 
degradation product contains TOC. By using L-ascorbic acid 
it was also found that at low concentration　degradation rate 
increase 20 times high. Furthermore we have identified 7 
kinds of intermediate products of carbofuran during the 
degradation process. The degradation pathway of carbofuran 
was proposed based on the identified by-produts.
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