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Abstract
Ethyl esters of 2-cyano-3-arylacrylic acid 1a-b ( a = 3- Br- C

6
H

4
, b= 4- OH- C

6
H

4
 ) reacted with 5, 5-dimethyl-1, 3-cyclohexane (2b, R = 

CH
3
) and 1c-d (c= 3- OH- C

6
H

4
,  d= 3- NO

2
- C

6
H

4
 ) reacted with 1, 3-cyclohexanedione (2a, R = H) and 5, 5-dimethyl-1, 3-cyclohexanedione 

(2b, R=CH3) in the presence of alcoholic sodium ethoxide to give the corresponding ethyl esters of 2- amino- 7, 7- dimethyl-5-oxo-4-aryl-5, 

6, 7, 8-tetrahydro- 4H- chromenes-3-carboxylic acid 3a-c, 3f and 2- amino-5-oxo-4-aryl-5, 6, 7, 8-tetrahydro- 4H- chromenes-3-carboxilic 

acid ethyl esters 3d-e. The structures of the compounds 3a-f were confirmed by their ultraviolet (UV), infrared (IR), 1H NMR, 13C NMR, 

mass spectra and elemental analyses.
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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Scheme 1. The structure of tetrahydro-4H-chromenes (3a-f).

The formation of 4H- chromenes (3a-f) may be explained by the initial formation of a 1:1 adduct which subsequently underwent 

cyclization (Scheme 2).
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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Introduction

Syntheses of essential bio-active compounds have recently 

been attracting tremendous attention in the field of organic 

synthesis. Specially chromene and its derivatives have 

attracted increasing attention from synthetic chemists due to 

their miscellaneous biological activities, including antitumor 

(Raj et al., 2010), antibacterial (Mungra et al., 2011), 

antiviral (Conti et al., 2014), antioxidative (Mori et al., 

2006), antidepressant (He et al., 2014), antihypertensive 

(Charles et al., 1998), antidiabetic (Rapposelli et al., 2011), 

fungicidal (Meepagala et al., 2010), and insecticidal 

properties (Smetanina et al., 2012). Among the various 

chromene  derivatives, 2-amino-4H chromenes have been 

reported to exhibit highly useful pro-apoptotic properties for 

the treatment of a wide range of cancer ailments (Kumar et 

al., 2010; Zhang et al., 2012). For variety oriented synthesis, 

the structure of these bioactive molecules could provide 

chances for drug design in three important regions (the 

aromatic ring of the benzopyran, substitution at C2-amine, 

and the substituted group at C4 position). Therefore, 

substantial efforts have been made over the past decades for 

the synthesis of 2 amino- 4H-chromenes (Dong et al., 2011, 

Gao et al., 2008; Neelakandan et al., 2011; Ding et al., 2010; 

Gao et al., 2013), which is accomplished using various 

catalysts including diethylamine (Kulakarni et al., 2012), 

ethylenediamine diacetate (Kolla et al., 2012), I
2
 (Rajaskhar 

et al., 2012), PEG (Das et al., 2011), β-cyclodextrin (Murthy 

et al., 2010), InCl
3 

(Jayashree et al., 2009, Shanthi et al., 

2008, Yin et al., 2013), guanidine (Kalla et al., 2013), 

ammonium acetate (Fujimoto et al., 1977), Al
2
O

3
 (Roudier 

and Foucaud 1984), Zr (KPO
4
)
2
 (Massimo et al., 2005), 

molecular sieves (Yu et al., 2000), aminosilane- modified 

Fe
3
O

4
 nanoparticles (Safari et al., 2014) and silica-bonded 

2-hydroxyethylammonium acetate (HEAA) (Sobhani et al., 

2013). However, some of these protocols require complex 

and expensive catalytic systems, prolonged reaction times 

and complicated operations. Therefore, the introduction of 

milder, faster and more eco-friendly methods, accompanied 

with higher yields is needed. A designed Michael addition 

reaction of active methylene with Knoevenagel adducts 

generated from benzaldehyde and nucleophiles was tested 

(Scheme 1, this work). Thus, in continuation of our interest in 

synthetic tactics for the preparation of heterocyclic 

compounds, a new sodium ethoxide catalyst methodology for 

the synthesis of diverse 4-substituted-2-amino- 3-carboxylic 

acid ethyl ester -4H-chromenes bearing various substituent 

groups at the C4 position was developed. This methodology 

differs from the previous classical methods in its simplicity 

and ready availability of the catalyst. For the synthesis of 

biologically active compounds and natural products (Dong et 

al., 2011) as key synthons in planning the synthesis of 

therapeutic agents and exhibiting diverse pharmaceutical 

activities substituents are the most intensively studied 

structural motifs, and crucial building blocks.

α, β-Unsaturated cyanoesters 1a–d were prepared via 

Knoevenagel condensation of the corresponding aldehydes 

with ethyl cyanoacetate in the presence of a base catalyst as 

reported in the literature (Jaman et al., 2013). Compounds 

1a–d were reacted with dimedone/1, 3-cyclohexanedione 

2a–b in the presence of sodium ethoxide in ethanol to give 

tetrahydro-4H-chromenes 3a–f (Scheme 1). In addition, the 

synthesized compounds’ structures (3a–f) were characterized 

and confirmed with the help of their ultraviolet (UV), 

Infrared (IR), 1H NMR, 13C NMR, Mass spectra and 

elemental analyses. 

Materials and methods

Melting points were determined on an Electrothermal micro 

melting-point apparatus and uncorrected. The 

Ultraviolet-Visible spectra of the samples were recorded on a 

SHIMADZU-UV-160A ultraviolet spectrometer with a 

scanning range of 800-200 nm using methanol as solvent. IR 

spectra were recorded with FT-IR 8400S Shimadzu 

spectrometer in the range 4000-400 cm-1. The 1H NMR and 

13C NMR spectra of the samples were recorded on a JEOL 

ECA-600 operating at 400.17 MHz spectrometer using 

CDCl
3
 as solvent with Tetramethylsilane (TMS) as an 

internal standard.

General procedure

A mixture of α, β -unsaturated cyanoester1a-d (5 mmol), 1, 

3-cyclohexanedione 2a ordimedone 2b (5 mmol), 5% sodium 

ethoxide in dry ethanol (1.5 mmol), and dry ethanol (25 mL) 

was refluxed for 15-18 hrs. The progress of the reaction was 

followed by thin-layer chromatography (TLC) on SiO2 plate 

using appropriate eluting solvents. After completion of the 

reaction the mixture was cooled to room temperature and the 

volume was reduced to one-fourth by evaporation. It was 

then neutralized with 0.1 M HCl solution, extracted with 

ether (330 mL) and dried over anhydrous Na2SO4. The 

extracted organic layer was evaporated in a rotary vacuum 

evaporator, a solid mass obtained which was recrystallized 

from absolute alcohol.

2-Amino-4-(3/-bromo-phenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3a: 
Yield 94%; white crystalline solid; mp 188°C-190°C; Rf 

value in TLC 0.52 (Chloroform 1: Pet Ether 4); IR (KBr) 

(υmaxcm-1): 3340, 3310 (N-H), 1677, 1630 (C=O), 1575, 

1475 (C=C stretching of phenyl), 1357 (C-N stretching), 

1235, 1200, 1161 (C-O stretching), 1070 (C-Br, aromatic); 

1H NMR δ (in ppm): 7.07 (m, ArH, 4H), 4.701 (s, C4 –H, 

1H), 3.94 (q, J= 2.5, -COOCH2CH3  at C-3 , 2H),2.461 (m, 

methylene protons at C-6, 2H), 2.208 (d, J=16.4, C-8, 2H), 

1.575 (s, NH2 protons at C-2, 2H), 1.12 (t, J=5.0 Hz, 

–COOCH2CH3 at C-3, 3H), 1.093 (s, CH3  at C-7, 3H), 0.998 

(s, another CH3  at C-7, 3H); 13C NMR δ (in ppm): 196.25 

(C=O), 162.55 (C-2), 146.38 (C-9), 131.17, 129.58, 127.57, 

122.19 (aromatic C-1, C-4, C-5, C-3), 115.11 (C-10), 50.72 

(C-3), 40.88 (C-6), 32.24 (C-8), 29.24 (CH3 at C-7), 27.34 

(another CH3 at C-7). Mass: Calculated 420.30, 

Experimental m/z: 419.07 (100%), 421.07 (97.4%), 420.08 

(22.7%), 422.07 (22.0%), 421.08 (3.3%), 423.08 (3.2%). 

Anal. Found: C, 57.10; H, 5.22; N, 3.23; Calc. for 

C20H22BrNO4: C, 57.15; H, 5.28; N, 3.33%. 

2-Amino-4-(4/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3b: 

Yield 89%; white crystalline solid; mp 193°C-195°C; Rf 

value in TLC 0.68 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3423 (O-H stretching), 3315, 2960 (N-H 

stretching), 1650 (C=O), 1440 (C=C stretching of phenyl), 

1371 (C-N stretching), 1039, 1168 (C-O stretching); 1H 

NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.43 (s, NH2 protons 

at C-2, 2H), 6.91 (d, J=8.4 Hz, ArH, 2H), 6.58 (d, J=8 Hz, 

ArH, 2H),  4.40 (s, C4 –H, 1H), 3.95 (q, J=6.8, 

-COOCH2CH3 at C-3 , 2H), 2.47 (dd, C-8, 2H), 2.14 (dd, 

C-6, 2H), 1.09 (t, J=7.2 Hz, –COOCH2CH3 at C-3, 3H), 1.02 

(s, CH3 at C-7, 3H), 0.89 (s, another CH3 at C-7, 3H): 13C 

NMR δ (in ppm): 196.04 (C=O), 168.25 (C-2), 161.91 

(COOCH2CH3), 159.14 (C-9), 156.82, 147.86, 128.55, 

118.27, 114.62, 112.75 (6C-aromatic), 116.04 (C-10), 78.51 

(C-3), 58.8 (COOCH2CH3), 50.13 (C-6), 40.12 (C-8), 32.33 

(C-4), 31.94 (C-7), 28.75 (CH3 at C-7), 26.54 ( another CH3 

at C-7), 14.33 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.41; N, 3.88; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2-Amino-4-(3/-hydroxyphenyl)-7, 7-dimethyl-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3c: 

Yield 82%; Off white crystalline solid; mp 179°C-181°C; Rf 

value in TLC 0.62 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3410 (O-H stretching), 3250, 2956 (N-H 

stretching), 1650 (C=O), 1452 (C=C stretching of phenyl), 

1365 (C-N stretching), 1037, 1100 , 1150 (C-O stretching); 

1H NMR δ (in ppm): 9.13 (s, ArOH, 1H), 7.51 (s, NH2 

protons at C-2, 2H), 6.456-6.984 (m, ArH, 4H), 4.42 (s, C4 

–H, 1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.48 

(dd, C-8, 2H), 2.16 (dd, C-6, 2H), 1.11 (t, J=7.2 Hz, 

–-COOCH2CH3 at C-3, 3H), 1.03 (s, CH3 at C-7, 3H), 0.90 

(s, another CH3 at C-7, 3H): 13C NMR δ (in ppm): 195.78 

(C=O), 168.02 (C-2), 162.05 COOCH2CH3), 159.18 (C-9), 

156.80 , 147.69, 128.48, 114.75, 112.75 , 111.28 

(6C-aromatic), 115.70 (C-10), 77.88 (C-3), 58.75 

(COOCH2CH3), 50.00 (C-6), 40.13 (C-8), 32.97  (C-4), 

31.87 (C-7), 28.65 (CH3 at C-7), 26.50 ( another CH3 at C-7), 

14.24 (-COOCH2CH3). Mass: Calculated 357.40, 

Experimental m/z: 357.16 (100%), 358.16 (22.8.%), 359.16 

(3.4%). Anal. Found: C, 67.10; H, 6.38; N, 3.90; Calc. for 

C20H23NO5: C, 67.21; H, 6.49; N, 3.92%. 

2 - A m i n o - 4 - ( 3 / - h y d r o x y p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3d: 

Yield 93%; Off white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.57 (Ethyl acetate 1: Chloroform 4); IR (KBr) 

(υmaxcm-1): 3415 (O-H stretching), 3307, 2941 (N-H 

stretching), 1687 (C=O), 1456 (C=C stretching of phenyl), 

1369 (C-N stretching), 1068, 1150, 1200 (C-O stretching); 
1

H NMR δ (in ppm):  9.13 (s, ArOH, 1H), 7.50 (s, NH
2
 

protons at C-2, 2H), 6.46-6.98 (m, ArH, 4H), 4.46 (s, C4 –H, 

1H), 3.96 (q, J= 2.4, -COOCH2CH3 at C-3 , 2H), 2.59 (t, C-8, 

2H), 2.26 (m, C-6, 2H), 1.95 (m, C-7, 2H), 1.10 (t, J=4.9 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.99 

(C=O), 168.00 (C-2), 163.90 (COOCH2CH3), 159.22 

(C-9), 156.82, 147.86, 128.55, 118.27, 114.62, 112.75 

(6C-aromatic), 116.94 (C-10), 77.84 (C-3), 58.72 

(COOCH2CH3), 36.32  (C-6), 32.80 (C-8), 26.30 (C-4), 

19.86  (C-7), 14.24 (-COOCH2CH3). Mass: Calculated 

329.35, Experimentalm/z: 329.13 (100%), 330.13 (20.5.%), 

331.13 (3.0%). Anal. Found: C, 65.60; H, 5.79; N, 4.19; 

Calc. for C
18

H
19

NO
5
: C, 65.64; H, 5.81; N, 4.25%. 

2 - A m i n o - 4 - ( 3 / - n i t r o - p h e n y l ) - 5 - o x o - 5 , 6 , 7 , 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3e: 

Yield 90%; white crystalline solid; mp 182°C-184°C;  Rf 

value in TLC 0.53 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3395, 3280 (N-H stretching), 1695 (C=O), 1528 (C=C 

stretching of phenyl), 1344 (C-N stretching), 1285, 1183 , 

1094 (C-O stretching); 1H NMR δ (in ppm):  8.0726 (s, ArH, 

1H)), 7.959 (d, J=8.1 Hz, ArH, 1H), 7.637 (d, J=7.6 Hz0, 

ArH, 1H), 7.349 (t, J=7.9 Hz, ArH, 1H), 6.303 (s, NH2 

protons at C-2, 2H), 4.786 (s, C
4
 –H, 1H), 4.006 (q, J= 7.2, 

-COOCH2CH3 at C-3 , 2H), 2.661-2.571 (m, C-6, 2H), 2.323 

(t, J=5.8 Hz, C-8, 2H), 1.95 (m, C-7, 2H), 1.105 (t, J=7.2 Hz, 

–COOCH2CH3 at C-3, 3H); 13C NMR δ (in ppm): 196.421 

(C=O), 168.555 (C-2), 163.706 (COOCH2CH3), 158. 323 

(C-9), 148.272, 148.092, 134.908, 128.442, 123.131, 

121.260 (6C-aromatic), 116.776 (C-10), 79.388 (C-3), 

59.795 (COOCH2CH3), 36.690 (C-6), 34.112 (C-8), 26.906 

(C-4), 20.128 (C-7), 14.135 (-COOCH2CH3). Mass: 

Calculated 358.35, Experimental m/z: 358.12 (100%), 

359.12 (20.5%), 360.12 (3.3%). Anal. Found: C, 60.20; H, 

5.00; N, 7.79; Calc. for C18H18N2O6: C, 60.33; H, 5.06; N, 

7.82%. 

2-Amino-7, 7-dimethyl-4-(3/-nitro-phenyl)-5-oxo-5, 6, 7, 

8-tetrahydro-4H-chromene-3-carboxylic acid ethyl ester, 3f: 

Yield 85%; white crystalline solid; mp 174°C-176°C;  Rf 

value in TLC 0.52 (neat chloroform ); IR (KBr) (υmaxcm-1): 

3441, 3303 (N-H stretching), 1691 (C=O), 1521.86 (C=C 

stretching of phenyl), 1345 (C-N stretching), 1250, 1203, 

1164 (C-O stretching); 1H NMR δ (in ppm):  8.069 (t, J=1.8 

Hz, ArH, 1H)), 7.945(m, ArH, 1H), 7.612 (m, ArH, 1H), 

7.337 (t, J=7.9 Hz, ArH, 1H), 6.423 (s, NH
2
 protons at C-2, 

2H), 4.749 (s, C4 –H, 1H), 4.014 (q, J= 7.2, -COOCH2CH3 at 

C-3 , 2H), 2.433 (s, C-6, 2H), 2.211 (d, J=16.3 Hz, C-8, 

1Hax), 2.143 (d, J=16.3 Hz, 1Heq), 1.102 (t, J=7.1 Hz, 

–COOCH2CH3 at C-3, 3H), 1.065 (s, C-7, 3H), 0.935 (s, 

another CH
3
 at C-7, 3H); 13C NMR δ (in ppm): 196.311 

(C=O), 168.894 (C-2), 162.141 (COOCH2CH3), 158.590 

(C-9), 148.181, 148.012, 134.779, 128.578, 123.148, 

121.225 (6C-aromatic), 115.569 (C-10), 79.309 (C-3), 

59.776 (COOCH2CH3), 50.938 (C-6), 40.524 (C-8), 34.124 

(C-4), 32.207(C-7), 28.983 (CH
3
 at C-7), 27.268 ( another 

CH
3
 at C-7), 14.138 (-COOCH2CH3). Mass: Calculated 

386.40, Experimental m/z: 386.15 (100%), 387.15 (22.8%), 

388.15 (3.7%). Anal. Found: C, 61.99; H, 5.70; N, 7.19; 

Calc. for C20H22N2O6: C, 62.17; H, 5.74; N, 7.25%. 

Results and discussion

Compounds 3a-f were synthesized from 1a-d and the 

corresponding 2a-b in presence of sodium ethoxide in 

ethanol under refluxing conditions in an analogous manner 

reported previously. The assignment to the structures of the 

compounds 3a-f was made on the basis of their UV, IR, 1H 

NMR, 13C NMR, mass spectra and elemental analyses.

The observed λ max values of compounds 3a-f agree well to 

the expected values in their UV spectra. The absorption 

bands in the range 304-290 nm may be assigned to the π→π* 

of C=O in these compounds. The weak n→π* absorption 

bands in the cases of these compounds due to C=O were 

probably masked within the π→π* absorption range.

The IR data of the compounds 3a-f showed sharp as well as 

broad bands in the range (υmax) 3440-3250 cm-1 indicating 

the presence of N-H group. The absorption bands at 

1700-1650 cm-1 indicate the presence of non-conjugated 

C=O stretching including the cyclohexanedione moieties. 

The bands at 1580-1440 cm-1 were assigned to C=C of 

aromatic rings and 1370-1345 cm-1 for C-N stretching. 

Additional bands were observed at 1235-1030 cm-1 due to 

these structural units (Bojarski et al., 1985).

The N-H protons at ring in the compounds 3a-f were 

relatively deshielded (δ 7.52-6.43) and appeared as singlet in 

their 1H NMR spectra due to anisotropy and presence of 

electronegative oxygen atom attached to this group. In Some 

compounds (3d, 3e) the proton at position 6 and 7 appeared 

as a multiplet due to the coupling with the proton at position 

6, 7 and 8. The chemical shifts were observed at (δ 

2.66-1.95) and the chemical shifts at position 8 observed at (δ 

2.59-2.23 appeared as triplet) and other compounds (3a, 3b, 

3c, 3f) the proton at position 6 and 8 appeared as a doublet of 

doublet (δ 2.48-2.14). The C
4
-H in these compounds gave 

signals at (δ 4.78-4.40) as broad singlet. The chemical shifts 

for the aromatic protons in 3a-f were found in good 

agreement with the literature values (Silverstein et al., 1991, 

Kemp 1991).

The structures of the compounds 3a-f were further confirmed 

by their 13C NMR spectra. The chemical shifts of carbonyl 

carbon at 5-C were found to be deshielded in the range of δ 

196.99-195.78. The chemical shifts of 2-C were also 

deshielded (δ 168.51-162.91). The chemical shift values for 

(COOCH2CH3) in these compounds were observed at (δ 

163.70-161.91). The chemical shifts of 9-C were similarly 

deshielded (δ 159.22-158.59). The 10-C of the compounds 

showed chemical shift values at δ 116.77-115.11. The 

chemical shift values for 3-C in these compounds were 

observed at δ 79.38-77.84. The chemical shift values for 7-C 

in the compounds (3a, 3b, 3c & 3f) were observed at δ 

32.20-31.87 and in the compounds (3d & 3e) were observed 

at δ 20.12-19.86 due to less deshielded. The chemical shift 

values for 8-C and 6-C in the compounds (3a, 3b, 3c & 3f) 

were observed at δ 40.10-40.15 and δ 50.00-50.95 

respectively and for (3d & 3e) at 32.80-34.15 and δ 

36.32-36.69 respectively due to less deshielded. The 

chemical shift values for 4-C in these compounds were 

observed at δ 34.52-32.33.

The 13C NMR chemical shifts for the carbons of aromatic 

rings were assigned on the basis of a correlation chart 

available in the literature (Levy and Nelson, 1972).
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