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Abstract

We have studied here the electronic structure of pure random disordered alloys formed by Ni with Cu and Au at different ratios by using the
linearized tight-binding muffin-tin Orbital (TB-LMTO) method. We also used the recursion technique together with augmented space for-
malism for increasing the efficiency and the accuracy to calculate the component projected density of states. From the density of state, we
can understand the Fermi energy, magnetic moment and binding energy at different alloy compositions. The band structure can be calculat-
ed from here also. These studies are helpful for experimentalists and metallurgists in designing materials and alloys with specific proper-

ties.
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Introduction

Among the solid materials, metals are of great interest. For
example iron is used in automobiles, copper in electric
wiring, where as gold and silver are used in jewelry. These
and other metals have played a very important role in the
development of our technological world from early historical
time to the present and will continue to do so in the future.
The explanation of characteristic metallic properties is
important to a metallurgist or an engineer who wishes to use
metals for practical purposes and to a physicist who is inter-
ested in understanding the microscopic structure of materi-
als.

The tight-binding or screened version of the linearized muf-
fin-tin-orbitals method (TB-LMTO) has provided an excel-
lent starting point for first principles electronic structure
determination of disordered alloys. The resulting
Hamiltonian is short-ranged and therefore ideally provides
the extension from the traditional adhoc tight-binding ideas
into a fully-self-consistent first principles theory. The basis
of the method has been described in detail (Andersen et al.,
1994) and relevant details necessary for disordered alloys are
given in (Anderson and Japsen et al.,1984).The study of
electronic structure of disordered alloys is of great scientific
and technological importance. Theoretical approaches have
achieved considerable success through the development of
mean-field approximations, the most successful of which is
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the coherent potential approximation (CPA) (Pinski, et al.,
1991). Other techniques include super-cell approaches,
attempted generalizations of the CPA and an alternative
order-N Green's function technique (Abrikosov et al., 1996).
The former is based on the self-consistent determination of a
uniform medium to represent the substitutional alloy. The
corresponding effective Hamiltonian is lattice transitionally
symmetric and its Green function is a good approximation of
the configurational averaged Green function. Of the later, the
super-cell method is based on the study of different selected
ordered structures at various concentrations. In these calcu-
lations a large unit cell is constructed which contains differ-
ent possible configurations and is repeated to generate the
entire lattice. The result of such a method contains the arti-
fact of imposed lattice symmetry, which is OK provided we
concentrate on the local properties at the centre of the super-
cell whose size is rather large. There is no straight-forward
rule for constructing a super-cell and in realistic calculations
it becomes computationally expensive. A large number of
generalizations of the CPA are beset with analytical difficul-
ties and their effective medium is often not translationally
symmetric. The only really successful generalization with
analytical and translational properties is the traveling cluster
approximation of (Kaplan et al., 1981).
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Augmented space theorem and the recursion method [6] car-
ried out in a minimal basis set of the tight-binding linear
muffin-tin orbitals method (TB-LMTO) (Andersen et al.,
1994; Andersen et al., 1984 and Andersen 1971) in which the
Hamiltonian is sparse. The AST states that the configuration
average of a well behaved function of a set of random vari-
ables is a particular matrix element of the operator obtained
by replacing the random variables in the function by the cor-
responding operators, whose spectral densities are the prob-
ability densities of the random variables. The under-lying
space in which the operator is defined is the space of all pos-
sible configurations of the random variables. For example, if
the set of random variables have binary distributions, then
this configuration space is isomorphic to the configuration
space of a set of Ising spin-half objects. The theorem is exact
and approximations are introduced only in the calculation of
matrix element. The recursion method with a terminator
approximation allows us to take into account effects of ran-
dom environments of a site. The size of this environment
depends upon the number of recursion steps we can carry out
exactly and the far environment is approximated by the ter-
minator.

Method

The LMTO method for self-consistent calculations of elec-
tronic structures of solids was introduced by Andersen and
Jepson (Andersen et al., 1984). It has been described in great
detail in a recent monograph (Andersen, 1995]. We shall
indicate here only those points which are of specific impor-
tance for the present work. We stress here that the transfor-
mation of the canonical LMTO into a first principles tight-
binding method with a sparse Hamiltonian representation is
essential for an effective use of the recursion technique
which is the basis of our methodology.

In LMTO representation within atomic sphere approxima-
tion, the basis functions have the form

X (Fr) = g (rg) + Z(&S"L’ (rR)th,R'L'

Where ¢ is the product of spherical harmonic and the solu-
tion @ (\rR ‘) of the radial wave equation inside the sphere
centered at R for a certain energy Epr which is in princi-
ple arbitrary, but in the energy range of interest. The func-
tions @ are linear combinations of the products ¢ and their
energy derivatives q§= . The actual choice of how this linear
combination is made determines the basis. The matrix h is
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given by
hoc =Coc _EV +(Azx)l/28a(Aa)l/2

Where C*and A* are the diagonal potential parameter matri-
ces. They depend on the potentials inside the atomic spheres,
the representation (o) chosen and on the atomic sphere radii.
The S matrix is a structure matrix which depends only on the
representation (¢) and on the geometrical arrangement of the
atomic sites. In term of canonical structure matrix S°, S * is
given by

5% =5°(1-as)*

Where o denotes a diagonal matrix, specifying the represen-
tation.

In recursion calculations it is practical to work with an ortho-
normal sparse representation. For this purpose it is advanta-
geous to work in the y representation. It must be noted, how-
ever, that the structure matrix in the y representation is itself
random in an intrinsic way. It is useful therefore to rewrite
the Hamiltonian in terms of that in the most localized (or j3)
representation. The Hamiltonian in the vy representation,
which is correct up to second order in ( E - E), is given by

H?=E,+h” (1)

The overlap matrix in this representation is a unit, diagonal
matrix and therefore it fulfills the orthogonality condition
required for recursion purposes. Expansion of h”inn terms
of the most localized short-ranged h , is given by

h” =h“ —h%oh* —... )

Where the matrix o is diagonal in RL representation and its
value is determined by the logarithmic derivative of the
function ¢ at the sphere boundary. For a particular choice of
o = B which are independent of crystal structure given by

0.3485 1=0
B =10.0530 =1
0.0107 | =2

The screened structure constant S # becomes particularly
short ranged with a universal exponential decay for different
structures (fcc, bee, hep, etc). Due to the exponential behav-
ior of the structure factor, even for s and p bands it is not nec-
essary to consider interactions beyond second nearest neigh-
bors.
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If the power series given by (2) is truncated after the first-
order term, we obtain a two-centre sparse Hamiltonian. This
Hamiltonian is correct up to first order in ( E - E,), and it has
been shown that it gives satisfactory band structure descrip-
tion for most solids except those with very broad bands.
(Andersen,1985). However, since each term in the second
and subsequent terms in the expansion is themselves two-
centered and sparse, their inclusion in the recursion method
introduces no difficulty. In subsequent sections we will use
the first-order, tight-binding two-centre form of the LMTO
Hamiltonian given by

Hl :Cﬁ +(A,[3)1/28,B(Aﬁ)1/2

Again, both the augmented space formalism and recursion
method have been described in great detail in earlier work
(Andersen,1995; Maan et al.,1982). We shall only empha-
size those points here which are of relevance to the present
work and refer the reader to the articles referenced above for
the details.

In the augmented space formalism, we construct a non-ran-
dom Hamiltonian defined on a new enlarged Hilbert space,
which is a direct product of the Hilbert space spanned by the
original Hamiltonian basis set and the configuration space
which is spanned by the various allowed configuration states
of the disordered Hamiltonian. The augmented space theo-
rem (Mookerjee,1973) then relates the configuration averag-
ing to projection onto a particular subspace: the so-called
sum space (Gray et al., 1976; Mayou et al., 1993 and Julien
and Mayon et al.,1993). This configuration averaging in the
augmented space is exact and does not involve any single-
site approximation as in CPA and treats both diagonal and
off-diagonal disorder on an equal footing.

The whole process can be summarized in the following basic
steps.

(a) Since the probability density p; (n;) of random variable
n; associated with the Hamiltonian is a positive semi-definite
function and if we assume all its moments to be finite, we
may find a self-adjoint operator M® in a configuration space
¢ such that p, (n;) can be expressed as its spectral density.

Vi)

This is the inverse of the well known problem of obtaining a
local density of states starting from a self-adjoint
Hamiltonian H. If p; (n;) can be expressed in continued frac-
tion expansion, then the representation of M@ is tri-diagonal

Py (ny) = =1/ zim({v3|(n, ~M )"

matrix with continued fraction coefficients in diagonal and
off-diagonal positions.

(2) The averaged quantity J f(n;)p;(n;) can be shown
f~(M 0y

to be given by the matrix element (v(') V(i)>where

f is the same functional of M as f was of n; .

(3) For more than one random variable we define a product
of space @ = H®¢(i). This is spanned by states in which
the set of variables n; assumes one of its configurations. The

averaged quantity (f)is now given by <Vo‘ F(M (i))‘vo>

where |V ) =TT%|v, >ispans the so-called sum space, which
is subspace of ®. A little algebra will show us that

‘V0> =117 (ZM \/FM‘ A >) where "Ii > the eigenstates
of M ©and {p,; } are the associated probability weights.

The calculation of {f ) thus reduces to calculating a particu-
lar matrix element in the augmented space. For electronic
structure calculations in a disordered system, f is chosen to
the green function (zI — H ({n,})) ~Lwhere H is the Hamil-
tonian of the system and n; are the random site occupation
variables.

An efficient algorithm for calculating diagonal matrix ele-
ments of the resolvent or the green function is provided by
the recursion method introduced by Haydock and coworkers
etal., 1972. Given the starting vector ‘ ‘1’0> =1V, > in aug-
mented space one generates a discrete chain of vectors ‘ Y, >

through the following set of equations.

ljl‘lP|> = ai‘\Pi>+bi+1‘\}li+l>+bi‘q’i—1>

bo2 = <‘Po ‘\Po>
bi2 = <‘Pi “:"\Pm>
a; =<\Pi“:|‘lPi>

Where ﬁ is the operator defined in the augmented space
which is constructed by substituting the random site occupa-
tion variables {n} by their associated self-adjoint
operator{M®} .
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This prescription essentially transforms the effective
Hamiltonian H to a trigonal form and thus lead directly to a
continued fraction representation for the averaged green
function matrix element <‘I’O ‘G‘ ‘P0> =[G, ]av If the algo-
rithm is stop after L steps, L exact levels of the continued
fractioned are obtained. The recursion algorithm after L
steps contains a contribution only from the central cluster
containing O(L®) sites in the augmented space. For eliminat-
ing such a finite-cluster effect L steps of recursion coeffi-
cients are appended with a terminator which mimics the
asymptotic part of the continued fraction.

Computational Details

The densities of states have been found by the recursion
method with the augmented space Hamiltonian. The aug-
mented space map is generated from a real space cluster of
400 atoms. We have generated a sequence of eight couples of
continued fraction co-efficient for s, p and d states and the
terminating scheme of Lucini and Nex (Lucini et al., 1994)
has been used. Regarding the issue of charge self-consisten-
cy we have followed the approximate yet accurate and con-
sistent scheme of charge self-consistency proposed by
(Andersen et al.,1987). Here the charge neutrality is
achieved by exploiting the flexibility in the choice of sizes of
Wigner-Seitz spheres of constituents in binary alloys. It
involves scaling of the atomic sphere radii of alloy species
with the aid of volume derivative correction in such a way
that the spheres are approximately charge neutral, a fact dis-
cussed in great detail by Kudrnovsky/ and Drchal
(Kudrnovsky and Drchal, 1990).Though the augmented
space formalism has been recognized as a powerful tool for
configuration averaging, its implementation so far has been
restricted to model systems. This was because standard
recursion cannot deal with the large rank of the augmented
space. In particular, the nearest-neighbor map which has to
be initially stored for any recursion is too large for storage
and manipulations on this map are time consuming. We have
reduced this problem to a tractable one by an explicit use of
bit manipulation techniques and reduction of the large aug-
mented space to a manageable irreducible subspace on
which the recursion could be carried out. As these points
have already been described in detail elsewhere (Saha et
al.,1995) we will only mention the salient points. The basis
vectors defined in the configuration space, carrying informa-
tion about the occupation variable at each site, are strings of
zeros and ones. This allows us to extensively borrow the
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Ising computational methodology (Chowdhury et al., 1987)
which involves storage of configuration states leads to large-
scale saving of disk space while the use of logical operations
to describe the action of the augmented space Hamiltonian.
The binary word representation of configuration states leads
to large scale saving of disk space while the use of logical
operations makes the computation faster. The work-load of
augmented space recursion is further reduced by exploiting
the symmetry of the Hamiltonian. The symmetry of the
Hamiltonian arises from that of the underlying lattice and
from homogeneity of disorder. It has been shown by
Gallagher that if the starting state of recursion belongs to the
irreducible representation of the Hamiltonian then the states
generated in the process of recursion belong to the same row
of the same irreducible representation of the Hamiltonian, so
one needs to retain only those states for the purposes of
recursion and get the same resolution as with all of them.
Since the augmented space recursion retains all the proper-
ties of the real space recursion, the confinement of the recur-
sion procedure to the irreducible portion of the Hamiltonian
holds good for augmented space recursion also. The basic
step in the symmetry procedure is to identify the set of non-
equivalent vectors and their weights which can be achieved
in augmented space by applying point point group symmetry
operations to real space and configuration space by applying
point group symmetry operations to real space and configu-
ration space independently. This reduces the rand of the aug-
mented space Hamiltonian drastically, reducing the comput-
er storage and, at the same time, increasing the computer
speed.

Results and Discussion

We have applied our methodology, discussed in earlier sec-
tion to calculating the densities of states of Ni alloys for
10%, 20%, 30%, 40%, 50% and 60% concentration of Cu
and 80%, 88%, 90%, 92%, 93%, 94% 95%, 96%, 97%, 98%,
99% concentration of Au per mole. Densities of states of
NiCu and NiAu alloys with up and down spin configuration
have been put.

Figure 1 to 3 shows the density of states of NiCu alloys with
up and down spin configurations. Here, two separated peaks
due to Ni and very little deviation due to alloying with Cu
are observed. A good deal of variations in the positions and
width of the peak and some significant differences in the up
and down spin configuration are observed. This trend indi-
cates the on set of the magnetic phase of Cu alloys at some
preferred concentrations. There is a broad peak in the density
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dle) and CuygNi;q (bottom)

of states and no deviation due to change in concentration are
observed. These figures show single prominent peak but
with changes in the height and width of the peak due to
change in the concentrations.

Figure 4 shows the magnetic moment of NiCu alloy as a
function of concentration. At first the magnetic moment of
NiCu alloy increases linearly and then decreases sharply. It
is observed that the magnetic moment is increased with
increasing the concentration of Ni.

Figure 5 shows the plot of Fermi energy as function of mag-
netic constituents of Ni and Cu. The exact behavior of Fermi

(top), CusgNisg (middle) and
CugoN,4o (bottom)

(top) and CuCu (bottom)

energy depends sensitively on the exact shapes of the densi-
ty of states and band filling. At first the Fermi energy
decreases from a definite value of about -0.94 Rydberg with
increasing the concentration of Ni. After reaching to a low-
est value of about -0.123 Rydberg, Fermi energy increases
with increasing the concentration of Ni. This happens
because average number of electrons decreases with decreas-
ing concentration of Ni.

Figure 6 shows the plot of binding energy as function of con-
centrations of Ni. The binding energy of a electron in an
alloy can be calculated from the following relation.
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Fig. 4. Magnetic moment at different alloy concentration
of CuNi
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Fig. 5. Fermi energy at different alloy concentration of
CuNi

AE 0 = Egi’ —{XE" +(1-X)EF"}
Er
where, E" = Jn(E)EdE

And ,n(E) = n"(E) +n*(E)

The binding energy of NiCu alloys increases monotonically
with increasing the mole fraction of Ni. It means that the
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3257

Concentration

Fig. 6. Total energy at different alloy concentration
of CuNi

high concentration of Ni is more stable than the low concen-
tration of Ni in NiCu.

In figures 7 to 10, distinct peaks of Ni-system with very lit-
tle deviation due to alloying with Au are observed. A single
prominent peak is observed. The shifting of peaks at differ-
ent concentrations is observed for up and down spin cases.
The first thing to note is that the s-d bands of Ni and Au do
not overlap much.

Consequently in the low concentration regimes of either Ni
or Au we have impurity like peaks of the dilute constituents
are noticed. The densities of states are hardly spin split and
straddle. As concentration of Au increases, the up spin band
almost remains fixed, while the down spin band shifts
upward in energy.

Figure 11 shows the magnetic moment of NiAu alloy as a
function of Ni concentrations. It is observed that the magnet-
ic moment is increased with increasing the concentration of
Au and with decreasing the concentration of Ni. It is notable
that Au carries negligible magnetic moment. When the con-
centration of Ni increases, magnetic moment decreases lin-
early and ends at the point where magnetic moment of AuNi
alloy are zero which is actual value.
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Figure 12 shows the plot of Fermi energy as a function of

concentration of Au and Ni. The exact behavior of the Fermi

energy depends sensitively on the exact shapes of the densi-
ty of states and band filling. Since Au bands lie higher in
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energy than Ni, increasing Au concentration leads to upward
shift in the Fermi energy.

Figure 13 shows the plot of binding energy as a function of
concentrations of Au and Ni. Since Au bands lie higher in
energy than Ni, Increasing Au concentration lead also to
upward shift in the binding energy. The binding energy of
AuNi increases with increasing the concentration of Au. It
means that the high concentration of Au is more stable than
the low concentration of Au in AuNi.

A set of consistent data have been produced by the efficient,
reliable and fast TB-LMTO method on the Ni-based alloys
of Au and Cu. The all have peaks in the density of states and
these are consistent with the previous calculations
(Bratkovsky et al., 1993).

Conclusion

The electronic structure of NiCu and AuNi alloys using fully
self-consistent first principles electronic structure technique
have been calculated and obtained results agrees reasonably-
well with the experimental results (Bratkovsky et al., 1993).
This clearly shows that ASR coupled with TB-LMTO is a
powerful technique in describing electronic structure of
binary alloys. Results clearly show the flaws in the theoreti-
cal results based upon model calculations. The band struc-
ture can be computed from here. These studies are going to
be helpful for experimentalist and metallurgists, who would
design materials and alloys with specific properties.
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