
Mathematical modeling and simulation of control strategies for continuous     
stirrer tank reactor

H. G. Ibrahim

Marine Mechanical Engineering Department, Faculty of Marine Resources, Alasmarya Islamic University, Zliten city, Libya

Abstract

This study aims to establish a mathematical model for the Continuous Stirred Tank Reactor 
(CSTR) reactor that exhibits highly nonlinear dynamics and was carried out implemented by 
model-based conventional and non-conventional controllers for temperature control. The 
developed controllers were Proportional, Proportional-Integral, Proportional-Derivative, 
Proportional-Integral-Derivative, Two Degrees of Freedom, and Model Predictive Controller. 
Then, the controllers were simulated, tuning, and optimized using Matlab®/Simulink®. The 
response results were compared and the analysis performed. The results indicated that the 
performance of 2-DOF-PID and MPC controllers is better than other conventional controllers 
for nonlinear systems such as the CSTR process.
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Introduction

A primary aim of control theory is to respond in a certain 
way to the output of the dynamic operation. At some point, 
nearly every control system is subject to severe constraints 
in its operating space. State constraints are also the most 
critical challenges in the design, protection, and operation 
of control systems during process control. Requirements 
to steadily improve process system's economic efficiency, 
force process engineers to operate control systems at the 
boundaries of safe and feasible regions to achieve maxi-
mum efficiency. Such an operation practice carries the risk 
that important constraints may eventually be breached due 
to disturbances, with potentially severe safety-related 
consequences. Control systems must be designed to 
expressly respect these constraints (Bayer et al., 2011). 

Continuous stirred tank reactors (CSTRs) have broad 
industrial applications and embody many characteristics 
of other reactor types. It is preferred use for highly 

exothermic reactions. The CSTR process is normally very 
complicated and deals with multiple aspects of the industry 
(Kishore et al., 2012). It consists of more than one 
process variable and manipulated variables, and shows 
very nonlinear dynamic behavior offering a variety of 
research in this area. Under such conditions, the 
nonlinearities may be complex and the performance of 
conventional control techniques suffers. All variables are 
correlated in that process, any changes in a single variable 
lead to undesirable behavior within the system (Åström 
and Hägglund, 1995). So, for controlling the system at the 
desired value, the control of all the variables is based on 
their relationship. For this process, a cascade controller is 
used in industries to get a more accurate control action 
(Rahmat et al., 2011). It is very complicated and a big 
challenge for engineers to design a controller for this 
process (Allwin et al., 2014).

The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.
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      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 1. Propylene Glycol production in a CSTR

Due to the reaction in liquid phase thus, 

 Cps is a specific heat of solution. So, Eqn. (5) becomes;

∑ NiCpi = NPOoCps and ∑ FioCpi

= FPOo Cps; whereas
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Table I. Calculated values of NLE variables at different
               coolant temperature

T cs.s. (R)  xs.s.(%)  T s.s. (R)  
545  36.4  563.7  

550  49.4  574.4  

555  60.3  583.5  

560  66.2  588.8  
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 2. Simulink model for CSTR with set-point
a) Open system, and b) Closed system

(a)

(a)

By substitution in Eqn. (28) to gets;
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 3. Unity feedback control system of a process

Fig. 4. Simulink model for CSTR with P controller

Fig. 5. Simulink model for CSTR with PI controller

Fig. 6. Simulink model for CSTR with PD controller
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 7. Simulink model for CSTR with PID controller

Fig. 8. Simulink model for CSTR with 2DOF-PID controller

Fig. 9. Simulink model for CSTR with MPC controller
Fig. 10. The model verification of Simulink design
        optimization for a CSTR control system
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)
Fig. 11. CSTR temperature response of uncontrolled
systems a) Open-loop system, and b) Closed-loop system

a

b

Fig. 12. Temperature responses of CSTR with P
              controller; a) Block and b) Tuned

Fig. 13. Temperature responses of CSTR with PI
              controller; a) Block and b) Tuned



The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.
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      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 14. Temperature responses of CSTR with PD
              controller; a) Block and b) Tuned

Fig. 15. Temperature responses of CSTR with PID
              controller; a) Block and b) Tuned



The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.
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      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Fig. 16. Temperature responses of CSTR with  2 DOF
       -PID controller; a) Block and b) Tuned

Fig. 17. Temperature response of CSTR with
              MPC controller



The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.
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      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Table II. Comparative Analysis of CSTR using various Controllers with default parameters

Data  Unit  Open  Closed P PI  PD PID 2DOF MPC  
Rise time sec 0.3375 0.2167 0.2299 2.918 0.0113 3.0859 3.2805 0.383 
Overshoot % 10.649 15.112 14.147 0 36.731 0.09 0 4 
Peak value oF 1.0853 0.57 0.5019 0.998 0.6012 0.9991 0.999 1.04 
Peak time sec 0.7902 0.484 0.5376 10 0.2049 10 9.95 0.7 
Settling 

time
 

sec 1.1368 0.7678 0.8199 5.655 1.0987 5.3737 5.3737 0.919 

Final value oF 0.981 0.495 0.44 0.998 0.44 1 0.999 1 
Offset oF 0.019 0.505 0.56 0.002 0.56 0 0.001 0 

T oF 124.481 123.995 123.94 124.498 123.94 124.5 124.499 124.5 

Table III. Comparative analysis of CSTR temperature response with various tuned controllers by using Simulink Tuner

Data  Unit  Open  Closed  P PI  PD PID  2DOF MPC  
Rise time sec 0.3375 0.2167 0.153 0.214 0.0471 0.207 0.253 0.383 
Overshoot % 10.649 15.112 16.4 4.58 10.9 6.44 0 4 
Peak value oF 1.0853 0.57 0.783 1.05 1.04 1.06 1 1.04 
Peak time sec 0.7902 0.484 0.346 0.384 0.118 0.384 2.56 0.7 

Settling time sec 1.1368 0.7678 0.596 1.12 0.259 1.06 1 0.919 
Final value oF 0.981 0.495 0.673 1 0.937 1 1 1 

Offset oF 0.019 0.505 0.327 0 0.063 0 0 0 
T oF 124.481 123.995 124.173 124.5 124.437 124.5 124.5 124.5 

Table IV. Comparison between the final values of gains of the tuned and optimized responses of the used controllers

Controller Type 

Parameter

 

P PI PD PID 2-DOF-PID 

Tuned Optimiz
ed 

Tuned Optimi
zed 

Tuned Optimi
zed 

Tune
d 

Optimi
zed 

Tuned Optimi
zed 

KP 2.0945 55.54 1.942 0.8 15.291 61.549 1.819 0.8 1.819 0.8 
KI - - 6.1337 1 - - 7.272 1 7.272 1 
KD - - - - 100 3.508 0.018 0.4 0.0318 0.4 
n - - - - - 749.75 9.298 100 9.298 100 
c - - - - - - - - 0.83 0.83 
b - - - - - - - - 1 1 



The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.
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      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)

Table V. Comparative analysis of CSTR temperature response with various tuned controllers by using
               constraints optimization

Data Unit P PI PD PID 2DOF MPC 
Rise time sec 0.0172 2.918 0.0047 3.0859 3.2805 0.383 
Overshoot % 5.21 0 0.716 0.09 0 4 
Peak value oF 1.03 0.998 0.991 0.9991 0.999 1.04 
Peak time sec 0.0509 10 0.115 10 9.95 0.7 

Settling time sec 0.131 5.655 0.0562 5.3737 5.3737 0.919 
Final value oF 0.982 1 1 1 1 1 

Offset oF 0.018 0 0.016 0 0 0 
T oF 124.482 124.5 124.484 124.5 124.5 124.5 

 

 

Fig. 18. The optimization progression of the temperature response of the CSTR control system with; a) P, 
b) PI, c), PD, d) PID, and e) 2-DOF-PID controllers
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)
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Also, the results presented in Table V clearly show that the 
method of tuning with constraints optimization of 
controllers efficiently provides temperature control for 
CSTR more than a Simulink tuner (presented in Table III) 
with small overshoot, good rise and settling times, and 
achieves the set-point without offset. It can be verified 
that due to imposed restriction the process presented a 
slower closed-loop response and a variation in the varia-
ble manipulated softer.

Conclusion

The CSTR process was extremely nonlinear and the 
modeling of the CSTR process was defined and applied. 
The model has been determined by empirically determin-
ing the method that extracts the actual process from the 
data. In the event of an uncontrolled process response, an 
enormous amount of steady-state error is made. To 
control the temperature inside the reactor different 
controllers (P, PI, PD, PID, 2-DOF-PID, and MPC) were 
implemented in this study. To monitor the servo response, 
the simulations had implemented, and the results are 
plotted. It has been found that MPC performs are best on 
the system with default gain parameters in terms of rising 
time, settling time, and offset. 

Optimization of controller parameters by using Simulink 
Tuner and tuning with a method of optimizing constraints 
to get quick responses. The design having a 2-DOF-PID 
control has far-ranging implications as seen from the tests 
and study. Under two-DOF PID control, the system 
performs better with a very low percentage overshoot and 
good load disturbance rejection with a minimum settling 
time, both compared to traditional controllers. Also, as it 
is compared to other conventional controllers used in this 
study, the MPC controller has an overshoot of 4 percent 
and the minimum rise and settling times. It is found that 
the performance of 2-DOF-PID and MPC controllers is 
better than other conventional controllers for nonlinear 
systems such as the CSTR process. Besides, it must be 
pointed out that no issues in the convergence of the tuning 
method were faced, even though using a weak initial 
estimate. In this case, the use of tuning with constraints 
optimization method is strongly recommended to improve 
the time domain output stability of the controlled variable 
and to get quick responses.
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The main aim of this paper is the design a robustly stabilizing 
controller for the CSTR with the cooling in the jacket. So the 
novelty of this study is represented in the design of an 
algorithm of scheme controller based on Two Degrees of 
Freedom proportional- integral- derivative controller 
(2-DOF-PID) and Model Predictive Control (MPC) as 
alternative usage algorithm models for traditional controllers 
which are difficult to meet the requirements of temperature 
control for the system when using them. The comparison was 
done to find out which controllers will give a suitable control 
action for this process of CSTR temperature control by using 
Matlab®/Simulink®. The analysis of the final result was 
based on the performance index and time domain specifica-
tions by comparing the performance of controllers with one 
another.

Case study

An irreversible chemical reaction of propylene oxide (PO) 
reacts with water (W) to produce propylene glycol (PG) 
according to hydrolysis reaction with the presence of sulfuric 
acid and ethanol used as a case study. The reaction takes 
place readily at room temperature when catalyzed by sulfuric 
acid according to Eqn. (1) and the operating conditions 
mentioned by Fogler (2016);

                                                                                                        
      (1)

The important constraint on the operation of propylene 
glycol production is propylene oxide has a rather low-boil-
ing-point temperature, therefore, the operating temperature 
must not exceed 125 oF, to prevent oxide from vaporization 
through the vent system. All parameters and variables speci-
fied for the CSTR are presented by Fogler (2016).

Mathematical modeling

The mathematical model of the CSTR reactor comes from 
material and energy balances. The main assumptions were 
made to obtain the simplified modeling equations of a 
non-isothermal CSTR according presented by Seborg et al. 
(2011).

According to the assumptions, the unsteady-state mole 
balance for the CSTR is:

                                                                  

where (∆H) is the heat of reaction per mole of reacted PO is 
given as;

                                                                                           (7)

U is the overall heat transfer coefficient, a surface area of the 
cooling coil, To is the feed temperature and Tc is the coolant 
temperature, and ∆Cp is the heat capacities for a chemical 
reaction.

From Eqns. (2-7), the mole and energy balance equations at 
unsteady state conditions are:

                                                                                      (8)

                                                   (9)

where τ = V ⁄vo.

At steady-state operating condition Eqns. (8 & 9) becomes;

                                                                          (10)

                                      (11)

where CPOs.s., Ts.s. and Tc.s.s. are steady-state quantities of 
concentration of PO, temperature of outlet stream from the 
CSTR, and coolant temperate respectively.

The dynamic model of the non-isothermal CSTR is presented 
in Eqns. (8 and 9) is nonlinear as a result of the many product 
terms and the exponential temperature dependence of k. 
These equations are coupled and it is not possible to solve 
one equation independently of the other. For designing the 
controllers for such a nonlinear process, one of the approach-
es is to represent the nonlinear system as a family of local 
linear models.

Simulation and validity of the model

A comparison between outputs from the real system and 
simulated outputs demonstrates the validity of the mathemat-
ical model. If the difference between the real system and the 
model is unacceptable, it is necessary to jump back to mode-
ling and cancel some simplifications. The goal is to find the 
simplest model with a satisfactory description of the real 
process (Vojtesek and Dostal, 2005).

Simulation studies were performed for the system at 
steady-state to find an optimal working point, where the 
product’s concentration is maximal and the operating temper-
ature must not exceed 125 oF, to prevent oxide from vaporiza-
tion through the vent system.

Steady-state analysis for stable systems involves computing 
values of state variables in time t∞ when changes of these 
variables are equal to zero. That means, the set of Eqns. (10 
& 11) is solved with the operating conditions and the parame-
ters given by Fogler (2016) after rearranged in forms x as a 
function of T as follows;

                                                                            (12)

                                                                                (13)

These two nonlinear simultaneous equations (NLE) have two 
unknowns, x, and T, which can solve with Polymath v.6.10. 
The exiting temperature and conversion are 103.7 oF (563.7 
R) and 36.4%, respectively. This conversion is low, so could 
reduce the cooling by increasing Tc to raise the reactor 
temperature closer to 585 R, but not above this temperature 
as present in Table I.

The reactor and coolant steady-state temperatures (Ts.s.=583.5 
R, and Tcs.s.=555 R) respectively, and 60.3% of propylene 
oxide is converted to propylene glycol, so the propylene 
oxide and propylene glycol steady-state concentrations are 
0.0524, and 0.0796 lb.mol/ft3 respectively. This output 
temperature was used as the controlled variable in the control 
section and a change in the coolant temperature was consid-
ered a manipulated variable. So, the obtained results are 
satisfied with the results and constraints presented by Fogler 
(2016), which reveals the model of this system is satisfactory.

State-Space models

Dynamic models derived from typical physical principles 
consist of two ordinary differential equations (ODEs). It 
considers a general class of ODE models referred to as linear 
state-space models that provide a compact and useful 
representation of dynamic systems and provide the theoreti-
cal basis for the analysis of nonlinear processes (Seborg et 
al., 2011). A linear state-space model is;

    
                                                                       (14)

where  x is the state vector; u is the input vector of manipulated 
variables (also called control variables); d is the disturbance 
vector, and y is the output vector of measured variables. 

The elements of x are referred to as state variables. The 
elements of y are typically a subset of x, namely, the state 
variables that are measured. In general, x, u, d and y are 
functions of time. The time derivative of x is denoted by x 
(=dx/dt); it is also a vector. Matrices A, B, C, and E are 
constant matrices. The vectors in Eqn. (14) can have different 
dimensions (or "lengths") and are usually written as deviation 
variables. So the Eqns. (8 & 9) becomes;

                                                             (15)

                                           (16)

where -CPOo =  CPOo -  CPOos.s,    
-CPO = CPO -   CPOs.s, 

-T = T - Ts.s and -Tc = Tc - Tcs.s.. These variables resulting from subtracting 
Eqns. (8 & 9) from Eqns. (10 & 11). Because of the 
state-space model in Eqns. (15 & 16) may seem rather 
abstract, it is helpful to consider physical problems.

Linearization

At steady state condition Eqns. (15) and (16) becomes the 
standard state variable form as;

                                                       (17)

 

          (18)

For this situation, there are two input variables v and Tc, and 
two output variables CPO and T. So, the linearized CSTR model 
in Eqns. (17 and 18) can be rewritten in vector-matrix form 
using deviation variables presented in Eqn. (14) as follows:

                                            (19)

where x1 ≡
_
CPO and x2 ≡ 

_
T, and denote their time derivatives 

by x1 and by x2 and the feed volumetric flow rate 
_
v and

 coolant temperature  
_
Tc are considered to be a manipulated 

variables u1 and u2 respectively.

                                                                            (20)

But according to the objective of this study, there is one 
input variable (manipulated, 

_
Tc ) and one output variable 

(controlled,  
_
T ). So, Eqn. (20) reduced into the final forms as 

follows;

                                                                                       (21)

The Jacobian matrix A is given as,

                                                                                          (22)

The coefficients of Matrix A at steady-state operating condi-
tions [presented by Eqns. (17 and 18)] are;

                  (23)

             

           
The Jacobiam matrix B is given by;

                                                                                          (24)

where the coefficients of Matrix B at steady-state operating 
conditions [presented in Eqn. (18)] are;

                                                                                                                      
          (25)

By using the steady-state values and the CSTR parameters 

and substituting in Eqns. (23 and 25) gets on;

                                                                                          (26)

                                                                                                                          
          (27)

The transfer function of the process that relates changes in 
the CSTR temperature -T to the changes in the coolant 
temperature   -Tc is given as follow (Seborg et al., 2011);

                                                  (28)

                                                                                          (29)

Stability criterion for State-Space model

One important property of state-space models is stability. A 
state-space model is said to be stable if the response x(t) is 
bounded for all u(t) and d(t) that are bounded. [i.e. The 
state-space model in Eqn. (19) will exhibit abounded 
response x(t) for all bounded u(t) and d(t) if and only if all of 
the eigenvalues of A have negative real parts] (Seborg et al., 
2011). The stability is solely determined by A, the B, C, and 
E matrices do not affect. The corresponding values of x are 
the eigenvectors of A. The eigenvalues are the roots of the 
characteristic equation (Seborg et al., 2011);

       
                                                  (30)

where I is the n×n identity matrix and |  I_A | denotes the 
determinant of the matrix   I_A.

The stability criterion for state-space models indicates that 
stability is determined by the eigenvalues of A. They can be 
calculated using the MATLAB command, eig, after defin-
ing A as mentioned in Eqn. (26). The eigenvalues of A are 
-2.8367+3.9816i, and -2.8367-3.9816i. Because both 
Eigenvalues have negative real parts, the state-space model 
is stable, although the dynamic behavior will exhibit oscil-
lation due to the presence of imaginary components in the 
eigenvalues.

Simulink model for CSTR

The operation of the CSTR is disturbed by external factors 
such as changes in the feed flow rate and temperature. So 
the control action to alleviate the impact of the changing 

disturbances and to keep T at the desired set point (SP) in this 
system, the manipulated temperature Tc is responsible to 
maintain the temperature T at the desired set-point. The 
reaction is exothermic and the heat generated is removed by 
the coolant, which flows in the jacket around the tank.

The continuous stirred tank reactor was modeled with 
Simulink according to Eqns. (26 & 27). The open and closed 
systems of CSTR are shown in Fig. (2a & b). Due to distur-
bance, the value of a controlled variable is increased. Without 
control, as shown in Fig. (2a), this variable continues to rise 
to a new final steady-state value. With regulation as shown in 
Fig. (2b), the control mechanism starts taking action to hold 
the controlled variable close to the value that existed before 
the disruption occurred (LeBlanc and Coughanowr, 2009). 
The control purpose is to affect the Tc (manipulated variable) 
and maintain the temperature of the system at the required 
value (controlled variable) so a controller must be used.

Control Strategies of CSTR

A primary objective of control theory is to make the output of 
a dynamic process behave in a certain manner. The desired 
output of a system is called the reference (Set-Point). In the 
field of the control system, various control strategies and 
methods are implemented, devised, and experienced in the 
process control and other control applications (Kumar and 
Patel, 2015). The main controllers frequently used in indus-
trial processes had been presented and discussed herein. 

The actual electronic controller is but one of the components 
because the transducer and the converter will be lumped 
together with the controller for simplicity. The main goal of a 
controller used is to reduce the error between the process 
output (temperature of CSTR) and the temperature of cooling 
water. The controller works in a closed-loop system with a 

process using the schematic shown in Fig. (3), the variable 
(ε) represents the tracking error, the difference between the 
desired output temperature (Tc) and the actual output temper-
ature (T). This error signal (ε) is fed to the controller, and the 
controller computes the error to time. The effect of each of 
the controller parameters will be discussed on the dynamics 
of a closed-loop system and will demonstrate how to use a 
controller to improve a system's performance.

Proportional Controller (P)

The proportional controller has only one adjustable parame-
ter, the proportional gain (KP). This controller produces an 
output signal (current, or voltage for an electronic controller) 
that is proportional to the error (ε). This action may be 
expressed as a transfer function as follow;
                                                                                                                                    
                      (31)

Fig. (4) presents the control system model by using a propor-
tional controller. The default proportional gain value is 0.8.

Proportional-Integral Controller (PI)

This controller has two adjustable parameters the proportion-
al gain (KP) and the integral gain (KI). Thus it is a bit more 
complicated than a proportional controller, but in exchange 
for the additional complexity, it reaps the advantage of no 
error at a steady state. This action may be expressed as;
                                                                                                                            
                      (32)

The proposed control model by using a proportional-integral 
controller is shown in Fig. (5). The default proportional and 
integral gain values are 0.8 and 1 respectively.

Proportional-Derivative Controller (PD)

This controller has three adjustable parameters the 
proportional gain (KP) the derivative gain (KD) and the deriv-
ative filter coefficient (n). Proportional-derivative controller 
represented by;

                                                                                                                    
                       (33)

The proposed control model by using a proportional-deriva-
tive controller is shown in Fig. (6). The default proportional 
and derivative gain values are 0.8 and 0.4, and the derivative 
filter coefficient is 100.

Proportional-Integral-Derivative Controller (PID)

As implied by the name, a PID (proportional-integral-deriva-
tive) controller consists of three parts: the proportional part, 
the integral part, and the derivative part. The weighted sum of 
these three parts is used to adjust the process via a control 
valve. Usually, a PID is formulated as follows:

                                                                                          (34)

The proposed control model by using a proportional-inte-
gral-derivative controller is shown in Fig. (7), with default 
values of proportional, integral, and derivative gains are 
0.8, 1, and 0.4 respectively, and the derivative filter coeffi-
cient is 100.

Two Degree of Freedom-PID Controller (2-DOF-PID)

The degree of freedom of a control system is defined as the 
number of closed-loop transfer functions that can be adjusted 
independently (Araki and Taguchi, 2003). Two-de-
gree-of-freedom (abbreviated as 2-DOF-PID) controller is 
capable of fast disturbance rejection without a significant 
increase of overshoot in set-point tracking. 2-DOF-PID 
controllers are also useful to mitigate the influence of chang-
es in the reference signal on the control signal (Matlab 
website, 2020). 

In the PID controller (2DOF) the set-point weights b and c 
determine the strength of the proportional and derivative 
action in the feed-forward compensator. The block of the 
2-DOF-PID presented in Fig. (8) generates an output signal 
based on the difference between a reference signal (Tc) and a 
measured system output (T). The block computes a weighted 
difference signal for the proportional and derivative actions 
according to the set-point weights (b and c). The block output 
is the sum of the proportional, integral, and derivative actions 
on the respective difference signals, where each action is 
weighted according to the gain parameters KP, KI, and KD. 
The default values of proportional, integral, and derivative 
gains are 0.8, 1, and 0.4 respectively, and the weights coeffi-
cients (b and c) are 1 and 1 respectively.

Model predictive controller (MPC)

A Model Predictive Controller used for control of tempera-
ture, concentration, and pH without a neural strategy for 
CSTR as presented by (Arivalagan et al., 2015; Shyamala-
gowri and Rajeswari, 2013; Hong and Cheng, 2012; Balaji 
and Maheswari, 2012). The MPC Controller block shown in 
Fig. (9) receives the current measured output signal (mo), and 
a reference signal (ref). The block computes the optimal 
manipulated variable (mv) by solving a quadratic program-
ming problem using a system model then optimized at 
regular intervals concerning a performance. The control 
interval is chosen to be a 0.1-time unit. The Prediction 
horizon and Control Horizon are chosen as 5 and 1 intervals 
respectively.

Controllers tuning

The tuning of controllers is the main task for better perfor-
mance of the system. The desired parameters for the control-
lers are the proportional gain (KP) integral gain (KI) and the 
derivative gain and filter coefficient (KD and n) can be calcu-
lated by the Automatic controller tuning method in Simulink 
software (Simulink Tuner). Controller tuning refers to the 
selection of tuning parameters to ensure the best response of 
the controller. When a control system is properly tuned, the 
process variability is reduced, efficiency is maximized, 
energy costs are minimized, and production rates can be 
increased as mentioned by Buckbee (2009).

Simulink design optimization

Simulink® Design Optimization™ provides functions, 
interactive tools, and blocks for analyzing and tuning model 
parameters to determine the model’s sensitivity, fit the model 
to test data, and tune it to meet requirements. The Simulink 
displays a warning if the signal violates the specified step 

response characteristics. The bounds also appear on the 
step response plot as shown in Fig. (10), and checked that 
a signal satisfies response bounds during the simulation. 
This block and the other blocks in the Model Verification 
library test that a signal remains within specified time-do-
main characteristic bounds.

Results and discussion

Simulink models

The curves shown in Fig. (11a & b) represent the behavior of 
the controlled temperature of a CSTR system when it is 
subjected to a permanent step disturbance (

_
Tc ). The values of 

the controlled temperature rise at time zero owing to the 
disturbance. The steady-state error for the open system 
(offset) reaches a new value up to 0.019 with a final tempera-
ture value reaching 124.481 oF. While the steady-state error 
for the closed-loop system (offset) also reaches a new value 
up to 0.505. Generally, the closed-loop system is better than 
an open system due to it has small values of rising time, peak 
time, and settling time as shown in Table II. But, it has a high 
overshoot percentage then it settles at a lower stable value 
with a more restricted final temperature value that reaches 
123.995 oF compared with the open system.

Comparative the responses of the CSTR model with the 
different controllers

The comparative analysis of the control strategies results 
had been used for the control response of a CSTR by 
Simulink. In all the simulation runs, the process is simulat-
ed using the State-Space Model of the CSTR presented 
through Eqns. (26-27). The control models designed for 
this process were done by using various controllers P, PI, 
PD, PID, 2-DOF-PID, and MPC. For the controllers' 
design default values for parameters have been used to find 
the system response. A set-point of 1 oF is given as a step 
input at t= 0 sec.

With no control, the controlled variable (T) continues to rise 
to a new steady-state value as seen previously. But with 
control after some time, the control system begins to take 
action to try to maintain the controlled variable close to the 
value that is required. With a proportional controller, the 
block temperature response of CSTR shown in Fig. (12), the 
control system can arrest the rise of the controlled tempera-
ture and ultimately bring it to rest at a new steady-state value 
with short time-domain responses as presented in Table II. 

The time values of responses include rise time, peak time, 
and settling time are around 0.2299, 0.5376, and 0.8199 sec 
respectively; with an overshoot of 14.147% (overshoot 
value reaches 0.5019 oF). The steady-state error for the 
process with P controller (offset) reaches 0.56, and the final 
value of the response reaches 123.94 oF; this value has a 
smaller offset than that obtained by an uncontrolled 
process in a closed-loop system (Final temperature value 
reached 123.995 oF). So, as shown in Fig. (12), block 
proportional control produces an overshoot followed by the 
oscillatory response, which levels out at a value that does 
not equal the set-point; this ultimate displacement from the 
set-point is the offset.

As shown in Fig. (13), the block response of CSTR tempera-
ture by using the PI controller, the addition of integral action 
eliminates the offset; the controlled temperature ultimately 
goes to the required value. This advantage of integral action 
is balanced by the disadvantage of more oscillatory behavior. 
For the system with the PI controller, the domain-time 
responses were 2.918, 10, and 5.655 sec for rising time, peak 
time, and settling time respectively. There is no overshoot 
percentage in the response (the overshoot value reaches 
0.998 oF). The steady-state error for the process with PI 
controller (offset) reaches an excellent value up to 0.002, and 
the final value of the temperature response reaches 
124.498oF. Compared with the previous systems without a 
controller (closed-loop system) and with a proportional 
controller, the temperature settles at lower stable values 
(Final temperature values reached 123.995 and 123.94 oF for 
each one respectively). The main disadvantage is that it has a 
high value of settling time compared to other systems. In this 
case, the block response has no overshoot; and the response 
returns to the approximated set-point (offset=0.002) after a 
relatively long settling time. The most beneficial of the 
integral action in the controller is reducing the offset.

For the system with a PD controller shown in Fig. (14), the 
block response exhibits a smaller period of oscillation 
compared to the block response for proportional control. The 
rise time, peak time, and settling time are around 0.0113, 
0.2049, and 1.0987 sec respectively, and a high overshoot of 
36.731% in the block response (overshoot value reaches 
0.6012 oF). The offset that remains is the same that for 
portioned control (reaches 0.56), the final value of the block 
response reaches (123.94 oF). Compared with a process 
without a controller (closed-loop system) the temperature 
settles at the same stable value faster than a PD controller.

The addition of derivative action to the PI action gives a 
definite improvement in the block response. The rise of the 
controlled variable is arrested more quickly, and it is returned 
rapidly to the original value with little or no oscillation. For 
the block system with PID controller shown in Fig. (15), the 
rise time, peak time, and settling time are around 3.0859, 10, 
and 5.3737 sec respectively. The block response has a lower 
overshoot of 0.09%, in which the peak value reaches 0.9991 
oF. The steady-state error for the process with PID controller 
(offset) reaches an excellent value more than the PI controller 
(reaches 0), and the final value of the block response reaches 
(124.5 oF). The main advantage of the PID controller is that it 
has small values of offset and overshot compared to other 
controllers, with acceptable values of settling time, rise time, 
and peak time.

The used 2-DOF-PID shown in) for control of the system 
generates a low-value overshoot (0% with a peak value 
reaching 0.999 oF), where rise time, peak time, and settling 
time were recorded at 3.2805, 9.95, and 5.5674 sec respec-
tively. It has been found that 2-DOF-PID performs best in 
terms of overshoot and settling time reduction and suppress-
ing the effect of the applied perturbation on the system.         

In this case, the overshoot has been reduced to 0% and has 
the same settling time recorded by conventional PID with 
default parameters (about 5.3737 sec).

The simulation results with the MPC controller as shown in 
Fig. (17), prove that the MPC control method is a more effec-
tive way to enhance the stability of the time-domain perfor-
mance of the temperature of the CSTR process. It is shown 
that the proposed model predictive control design yields 
better improvement with significantly better response, peak, 
and settling times than the PID controller in their forms of 
conventional and 2-DOF as mentioned in Table II. The time 
values of responses include; rise time, peak time, and settling 
time are around 0.383, 0.7, and 0.919 sec respectively, and 
the overshoot value reaches 1.04 oF with 4%. The more the 
overshoot gives the transients in the response though gives a 
short rise time, the stability of the system to keep in mind 
(Deulkar and Patil, 2015). In these simulation results, the 
MPC controller yields a better and more stable response. 
There are no offset reaches, and the final value of the 
response reaches (124.5 oF).

Controllers tuning

The tuning of controllers was done by using the Controller 
Tuner provided by Simulink which is powered by Matlab. 
The results of tuned control systems (tuned response) are 
shown in Figs. (12-16), and the values presented in Table III 
better performance and reduction of error in the majority of 
all control cases than the results of the systems that have 
default parameters of controllers (block response) presented 
in Table II. 

The MPC controller gave the optimized tuning parameters 
directly, this behavior was confirmed by the results of Jibril 
et al. (2020) for study the continuous stirred tank reactor with 
the MPC controller has a better response in minimizing the 
overshoot and tracking the desired value with the effect of the 
disturbance makes the output with small fluctuations and it is 
better than the continuous stirred tank reactor with PID 
controller. The MPC controller incorporates a way better 
reaction in terms of minimizing overshoot and following the 
temperature required by the system. Even in the event of a 
failure, a CSTR with an MPC controller provides better 
response behavior than a CSTR with traditional control 
technology, which is the optimal value of the controller 
parameters generated, as mentioned by Prabhu et al. (2021).

Tuning with actuator constraints

The method of tuning with constraints optimization is based 
on the minimization of a global objective function that incor-
porates local objective functions. With this approach, it is 
possible to consider uncertainties of the model, several 
control algorithms, and different types of disturbances. The 
proposed method does not place any kind of restriction on the 
characterization of the process. So, even nonlinear models 
can be used. Moreover, any type of controller can be imple-
mented (Neto and Embirucu, 2000). So, by using the 
Simulink Design optimization tool that includes checking 
step response characteristics. The constrained bounds values 
of step response characteristics are specified including rising 
time, settling time as 5 and 7 seconds, and the percentage of 
settling, overshoot, and rise is specified as 2%, 10%, and 
90%. By starting the optimization of the controller parame-
ters with the initial values of KP, KI, KD, n, b, and c mentioned 
previously where the response is not satisfactory, the optimi-
zation process is iterating to meet the requirement. The 
obtained process response must not be out of the envelope. 
The optimized response satisfied with the constrained 
requirements is plotted by the thickest line of response in the 
scheme of optimization progress of the response of a CSTR 
control system with the controllers shown in Fig. (18). The 
comparison between the final values of gains of the used 
tuned and optimized controllers are presented in Table IV.

      (2)

Because V and ρ are constants, Eqn. (2) reduces to vo = v;
Thus, even though the inlet and outlet flow rate may change 
due to upstream or downstream conditions, Eqn. (2) must be 
satisfied at all times. In Fig. (1) flow rates are denoted by the 
symbol (v).

The unsteady-state component balances for species PO (in 
molar units) is;

                                           (3)

where CPO is the product (effluent) concentration of compo-
nent PO in the reactor and –rPO is the rate of disappearance of 
component PO per unit volume and given in first order as 
presented by Fogler (2016) for Eqn. (1);
                                                       
          (4)

Also, the unsteady state energy balance equation for a 
non-isothermal CSTR is (Fogler, 2016);

                                                    (5)

                                                                                      (6)
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Also, the results presented in Table V clearly show that the 
method of tuning with constraints optimization of 
controllers efficiently provides temperature control for 
CSTR more than a Simulink tuner (presented in Table III) 
with small overshoot, good rise and settling times, and 
achieves the set-point without offset. It can be verified 
that due to imposed restriction the process presented a 
slower closed-loop response and a variation in the varia-
ble manipulated softer.

Conclusion

The CSTR process was extremely nonlinear and the 
modeling of the CSTR process was defined and applied. 
The model has been determined by empirically determin-
ing the method that extracts the actual process from the 
data. In the event of an uncontrolled process response, an 
enormous amount of steady-state error is made. To 
control the temperature inside the reactor different 
controllers (P, PI, PD, PID, 2-DOF-PID, and MPC) were 
implemented in this study. To monitor the servo response, 
the simulations had implemented, and the results are 
plotted. It has been found that MPC performs are best on 
the system with default gain parameters in terms of rising 
time, settling time, and offset. 

Optimization of controller parameters by using Simulink 
Tuner and tuning with a method of optimizing constraints 
to get quick responses. The design having a 2-DOF-PID 
control has far-ranging implications as seen from the tests 
and study. Under two-DOF PID control, the system 
performs better with a very low percentage overshoot and 
good load disturbance rejection with a minimum settling 
time, both compared to traditional controllers. Also, as it 
is compared to other conventional controllers used in this 
study, the MPC controller has an overshoot of 4 percent 
and the minimum rise and settling times. It is found that 
the performance of 2-DOF-PID and MPC controllers is 
better than other conventional controllers for nonlinear 
systems such as the CSTR process. Besides, it must be 
pointed out that no issues in the convergence of the tuning 
method were faced, even though using a weak initial 
estimate. In this case, the use of tuning with constraints 
optimization method is strongly recommended to improve 
the time domain output stability of the controlled variable 
and to get quick responses.
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