
Introduction

The distributor's decisions optimization can be reformulated

as the generalization of classical transportation problem.

Conventional transportation problem is the special type of

linear programming problem in which we used special math-

ematical structure of restrictions. In classical transporting

costs from K wholesalers to the L consumers are minimuzed.

In 1979, Isermann (Isermann, 1979) introduced algorithm

for solving this problem. The Ringuest and Rinks (Dymowa

and Dolata) proposed two iterative algorithms for solving

linear, multicriterial transportation problem. Similar solution

proposed in 1992 by A. K. BIT (Bit et. al., 1992). 

The different effective algorithms were worked out for this

transportation problem but parameters for task described in

form of real numbers. Nevertheless, such conditions are ful-

filled almost never because of on natural uncertainties in

which we met real world problems. For example, it is hard to

define stable cost of specified rout. In 1999, S.K. DAS (Das

et. al., 1999), this problem was solved in case of interval

uncertainty of transporting costs.

In 1993 & 1998 works by S. Chanas and D. Kuchta (Chanas

et. al., 1993, Chanas and Kuchta, 1998), the result based on

interval and fuzzy Co-efficient had been elaborated. The fur-

ther development of this approach introduced by F. WAIEL

in 2001 (Waiel and ABD, 2001).

All the above mentioned works introduce the restrictions in

a form of membership function. This allows to transform the

initial fuzzy linear programming problem into the net of

usual linear programming tasks by use of well defined ana-

lytic procedures. However in practice the membership func-

tions, which describes uncertain parameters of used models

can have the considerable complicated forms. In such cases,

the numerical approach is needed.

The main technical problem when constructing the numeri-

cal fuzzy optimization algorithm is to compare the fuzzy val-

ues. To decide this problem, we use the approach proposed

by P. SEWASTIANOW in 2002 & 2003 (Sewastianow et.
al., 2002, Sewastianow and Gog, 2003) and well described

by P. SEWASTIANOW & M. JONCZYK (Sewastianow and

Jonczyk), which is  -level representation of fuzzy numbers

and probability estimation of the fact that given interval is

greater than equal an other interval. We note that probabilis-

tic method was used only to infer the set of formulae for

deterministic quantitative estimation of intervals inequality

or equality. 

The method allows to compare the interval and real number

and to take into account the widths of intervals ordered. 

The proposed method allows to accomplish the direct fuzzy

extension of classical numerical simplex method with its
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implementation using tools of object orented programming

(Waiel and ABD, 2001).

Preliminaries

Definition 2.1 : Optimization 

A linear programming requires the optimization of a desired

object such as minimization of cost or maximization of prof-

it or achievement of desired performance utility through the

system under constraints.

Definition 2.2: Fuzzy Optimization 

(Zimmermann H.J., 1996). In the following case a fuzzy

decision model is employed as optimization criterion for a

search algorithm. It proved to better reflect human judgment

in a scheduling problem when due dates were tight.

The standard operation research approach is to model the tar-

diness of a schedule as the objective function to be mini-

mized, defined by:

* the number of late  jobs

* the sum of delays of all late jobs

* the delay of the latest job

* the weighted sum of late job (penalty cost approach)

Definition 2.3 : Fuzzy Approach to the transportation

problem

(Zimmermann H.J., 1996) The analysis of "fuzzy counter-

parts" of linear programming problems of some special

structure, for example problems of flows in networks, trans-

portation problems, and so on, appears to be an interesting

task. The following model considers a transportation prob-

lem with fuzzy supply values of the suppliers and with fuzzy

demand values of the receivers. For the solution of the prob-

lem parametric programming is used.

Model. 1:

Minimize 

such that                              = 1, 2, ...... , m

j = 1, 2, ......,  n

Xij > 0 , i = 1, 2, ........, m ; j = 1, 2, ........, n

and      denote non-negative fuzzy numbers of trapezoidal

form. The value of                                                     is inter-

preted as a feasibility degree of the solution w. r. t. the i-th (j-

th) constraint in model 1.

Fig. 1: The trapezoidal form of a fuzzy number. 

Definition 2.4 Simplex method

Simplex method also called simplex technique or simplex

algorithm was developed by G. B. Dantzig (in 1947), an

American mathematician. The simplex method provides an

excellent of the algorithms (iterative solution procedures)

that are so prevalent in operations research work.

Definition 2.5  Uncertainty method: 

(Zimmermann H.J., 1996) There are three main reasons for

the use of fuzzy set theory in expert systems : (i) The inter-

faces of the expert system on the expert side as well as on the

user side are with human beings. Therefore communication

in a 'natural' way seems to be the most appropriate; and 'nat-

ural' means, generally, in the language of the expert or user.

(ii) The knowledge base of an expert system is a repository

of human knowledge; and since much of human. Knowledge

is imprecise in nature it is usually the case that the knowl-

edge base of an expert system is a collection of rules and

facts which, for the most part are neither totally certain, nor

totally consistent. 

(iii) As a consequence of what has been said in point two the

'management of uncertainty' plays a particularly important

role. Uncertainty of information in the knowledge base

indices uncertainty in the conclusions.
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Definition 2.6  Probability of a Fuzzy Evant as a fuzzy set 

(Zimmermann H.J., 1996) Let                                                     

be a fuzzy set representing a fuzzy event. The degree of

membership of element             is denoted by        (xi). α -

level sets or α -cuts such as already defined shall be denoted

by Aα .

Yagen [1979, 1987] suggests that it is quite natural to define

the probability of an  α-level sets as P(Aα ) =          P(x). On

the basis of this the probability of a fuzzy event is defined as

follows [Yager 1984].

Definition 2.6.1 

Let Aα be the α -level set of a fuzzy set 
~A representing a

fuzzy event. When the probability of a fuzzy event 
~A can be

defined as                                                          with the

interpretation "the probability of at least an   α degree of sat-

isfaction to the condition  
~A ."

Definition 2.7 Fuzzy Linear Programming 

(Zimmermann H. J., 1996) Linear programming models

shall be considered as a special kind of decision model : the

decision space is defined by the constraints; the "goal" (util-

ity function) is defined by the objective function; and the

type of decision is decision making of linear programming

can be stated as

maximize f(x) = CTx

such that Ax < b

x > 0

The Method's description of linear programming fre-

quency distribution and fuzzy number 

In the proposed method we not only minimize the transporta-

tion costs but in addition we maximize the distributor's prof-

its with the same manner.

Let ai (i = 1 to K), be the maximal quantities of goods that

can be proposed by wholesalers and bj (j = 1 to L), be the

maximal good requirements of consumers. The distributor

must buy at least pi good units at price of ti monetary units

for unit of good from each ith wholesaler and to sell at least

qj good units at price of sj monetary units for unit of good to

each jth consumer. The total transportation cost of delivering

good unit from ith wholesaler to jth consumer is cij. 

For distributor, the reduced prices are mi if he or she buy the

greater quantities of good then stipulated in contract quanti-

ties pi and also the reduced prices nj for consumers if they

buy the good quantities grater than contracted qj. The prob-

lem is to find the optimal good quantities xij (i = 1 to K; j =

1 to L) delivering from ith wholesaler to jth consumer max-

imizing the distributor's total benefit B under restrictions. All

above mentioned parameters are fuzzy ones, resulting opti-

mization formulated as :

Maximize (1)

Subject to constraints

............(2)

...............(3)

Where Zij = nj - mi - cij (i = 1 to K; j = 1 to L) and B , Zij, a,

b, p, q are fuzzy values.

Fig. 1. The distributor's activity

The distributor contracts with K wholesalers and L consumers (Fig. 1).
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To decide the problem (1) - (3), the numerical method based

on the  α-cut representation of fuzzy numbers and proba-

bilistic approach to the interval and fuzzy interval compari-

son has been elaborated.

The direct fuzzy extension of usual simplex method is used.

The use of object programming tools makes it possible to get

the results of fuzzy optimization. i, e. xij, in the form of fuzzy

numbers.

To estimate the effectiveness of method proposed the results

of fuzzy optimization were compared with thouse obtained

from (1)-(3) when all the uncertain parameters were consid-

ered as normally distributed random values. In the last case

all the parameters in (1) - (3) were considered as real num-

bers.

To make the results using the fuzzy and probability

approaches comparable the simple special method for trans-

formation frequency distributions into fuzzy numbers with-

out lost of useful information was used to achieve the com-

parability of uncertain initial data in fuzzy and random cases.

In practice, we often have a problem with different preci-

sions of representation the uncertain data we use. For

instance, one part of parameters used can be represented in

the trapezoid fuzzy numbers form on basis of the expert's

opinions and at the same time, the other part of them can

have the form of the histogram or frequency distributions of

considerable complicated form we got as a result of statisti-

cal analysis.

In these cases, the methodologically correct approach is to

transform all the uncertain data available to the form of

smallest certain level we met in our task. Thus, we have to

transform the data represented in form of frequency distribu-

tions or histogram to the membership functions of fuzzy

numbers.

To present the initial data in fuzzy number form at first we

should apply an algorithm, which builds the membership

function on basis of frequency distribution, if such exists, or

directly using histogram.

In the simplest case of normal frequency distributions, they

can be exhaustively described be their averages d and stan-

dard deviations σ. In the more complicated situations it

seems better to use directly the histograms.

That is why, we use the numerical algorithm which allows us

to transform the frequency distribution or histogram to trape-

zoidal fuzzy number.

As the illustration, let us consider the reduction of frequency

distribution (Fig. 2) to the fuzzy number.

Fig. 2: Frequency distribution to be transformed

We have to accomplish the following steps of algorithm.

Step 1.  

In the interval within the smallest value xmin (in our example

xmin = 60) and maximum value (xmax = 161), we define the

function F(xi) as surface are under the curve (Fig. 2) from

xmin . to current the xi. As a result, we get cumulate function

show on (Fig. 3). It is easy to see that function F(x) is factu-

ally, the probability of x < xi.

Step. 2. 

Using obtained cumulate function F(x) we ask the decision

makers (experts) for the four values F(xi) (i = 0, 1, 2, 3)

which define the mapping of F(x) on X in such a way that

they provide the bottom and upper α- levels of trapezoidal

fuzzy number. In our example (Fig. 3), the intervals [105,

115] and [88, 130] are in essence the 30% and 90% proba-

bility confidence intervals.

0



Dev, Sultana and Mitra 251

Fig. 3: The transformation of cumulate function to a

fuzzy number

As a result we get the trapezoidal fuzzy interval represented

in our example by quadruple [88, 105, 115, 130].

It is easy to see that transformation accuracy depends only

on the expert's opinion about suitability and correctness of

upper and button confidence intervals chosen.

It is worthy to note that the main advantage of presented

method is that it can be successfully used in both cases; 

when we have the initial data in a form of frequency distri-

bution function and in a form of rough histogram. 

The described method allows us to represent all the uncertain

data in uniform way as the trapezoid fuzzy intervals.

The elaborated method of fuzzy programming problem (1) -

(3) solution is realized performing all fuzzy numbers as the

sets of α -cuts. In fact, it reduces fuzzy problem into the set

of crisp interval optimization tasks.

The final solution has been obtained numerically with using

probabilistic approach to interval comparison. The interval

arithmetic rules needs were realized with a help of object ori-

ented programming tools.

The standard Monte-Caro procedure was used for the real-

ization of probability approach to the description of uncer-

tain parameters of the optimization task (1)-(3). In fact, for

each randomly selected set of real valued parameters of task

(1)-(3). We solve the usual linear programming problem.

Numerical Example

To compare the results of fuzzy programming with those

obtained when using the Monte-Carlo method, all the uncer-

tain parameters previously were performed by Gaussian fre-

quency distribution. The averages of them are presented in

Table I. For simplicity, all the standard deviations were

accepted as equal to 10 i. m.

The results we get with using of fuzzy optimization method

and Monte-Carlo method (usual linear programming with

real valued but random parameters) are presented in Fig. 4 to

Fig. 8 for the case K = L = 3, where the final frequency dis-

tributions F are drown by dotted lines, fuzzy numbers μ are

drawn by continuous lines.

a1=360 b1=310 p1=340 q1=290 t1=500 s1=900 m1=490 n1 = 890

a2=360 b2=410 p2=340 q2=390 t2=391 s2=391 m2=380 n2 =1000

a3=510 b3=510 p3=490 q3=490 t3=481 s3=481 m3=470 n3 =1080

c11=90 c12=20 c13=90

c21=100 c22=26 c23=395

c31=110 c32=138 c33=01

Table I: Average values of Gaussian distributions of uncertain parameters

0

0



252 The Transportation Problem Under Probability 46(2) 2011

Fuzzy optimization has been formulated as :

maximize 

= (1)

(2)

(3)

Maximize  B = 310x11 + 410x21+ 310x31 + 490x12 + 594x22

+ 392x32+ 500x13 + 305x23 + 609x33.

Subject to

(2)

(3)

Fig. 4: Frequency distribution F and fuzzy number μ for

optimized x11.

Fig. 5: Frequency distribution F and fuzzy number μ for

optimized x12.

Fig. 6: Frequency distribution F and fuzzy number μ for

optimized x22.

Fig. 7: Frequency distribution F and fuzzy number μ for

optimized x33.
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It is easy to see that fuzzy approach give us some more wider

fuzzy intervals then method Monte-Carlo. It is interesting

that using probabilistic method. We can get even two-

extreme results whereas fuzzy approach always give us the

results without ambiguity. It is worth noting that probabilis-

tic method demands too mach of random steps (about

100000000) to obtain the smooth frequency distribution of

resulting benefit B. Thus, it seems rather senseless to use this

method in practice.

Conclusion

The direct numerical method for solving of fuzzy transporta-

tion problem is elaborated. The method is based on  -level

representation of fuzzy numbers and probability estimation

of the fact that given interval is greater or equal (>, =) then

another interval (this idea was firstly proposed by S.

Chanas). The proposed approach makes it possible to

accomplish the direct fuzzy extension of usual simplex

method.

The results of case studies with using of fuzzy optimization

method and Monte-Carlo method (usual linear programming

with real valued but random parameters) show that the fuzzy

approach have considerable advantages in comparison with

Monte-Carlo method, especially from the computational

point of view.
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