
Introduction

In the evaluation of the element/stiffness matrix in Finite

Element Method (FEM), various integrals are determined

numerically. Among various numerical integration schemes,

the use of Gauss quadrature is attractive and it can evaluate

exactly the (2n-1)th order simple polynomials with n points.

The integrals in practical situations are not always simple but

rational expressions in which the lower order quadrature

scheme cannot evaluate exactly (Hacker et al, 1989; Yagawa

et al, 1990; Zienkiewicz, 1977). For this some researchers

have attempted to develop analytical integration formula

(Hacker et al, 1989 and Rathod and Islam 2002).) for limit-

ed finite elements. These integrals usually involve a huge

amount of computing time and memory space. Thus symbol-

ic computing techniques (Brlzer, 1990; Videla and

Cerrolaza, 1996; Yang, 1994 and Yew et al 1995) are applied

to save the computational costs. In this aspect, Griffiths

(Griffiths, 1994) introduced coordinate transformation in

closed form, and recently Islam and Akter ( 2008) used this

technique again   but these are limited only for  2 x 2 Gauss

quadrature rule. Since we do not know the exact order of the

quadrature rule in which the integrands can be evaluated

exactly, higher order quadrature is essential, and an impor-

tant task that one how can handle easily and efficiently to get

the desired accuracy.

Videla and Cerrolaza (Videla and Cerrolaza, 1996) explicit

numerical integration with the Derive symbolic manipula-

tion code. Yagawa et al (1990) presented a combined

approach based on both conventional numerical and symbol-

ic integration. They reported 15 percent savings in CPU

times to their test problem. Yang (1994) developed a trans-

formation method that replaces the integral form of the stiff-

ness matrix by its algebraic form only for triangular ele-

ments. The analytical integration stiffness matrix has been

also investigated by Yew at el (1995) in closed form using

Mathematica but it is confined for the mixed finite elements.

Thus the explicit numerical integration is an essential task to

provide a balance between efficiency and accuracy in the

generation of stiffness matrices.

However, this paper describes how the stiffness matrix of a

general quadrilateral element can be expressed in closed

form using the Gauss quadrature numerical integration sum-

mation. For this, some basic idea of the formulation of stiff-

ness matrix is described. Nodal coordinate transformation

method is then employed to replace the associated algebraic

form. Two algorithms are proposed to generate the matrix

and to save the computational times. These algorithms are

executed by Mathematica. Numerical accuracy and efficien-
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cy are demonstrated by comparing it with conventional

Gaussian quadrature through numerical example.

Formulation of Stiffness Matrix

Let us consider an arbitrary four node linear quadrilateral

element in the global system (x, y)  which is mapped

into a 2-Square in the local parametric system (ξ, η) as

shown in the Fig. 1. Then the isoparametric coordinate trans-

formation from (x, y)  plane to  (ξ, η) plane is given by,

(1)

where (xi, yi), i = 1 - 4, are the vertices of the element in (x,
y) -plane and Ni (ξ, η) denotes the 2D bilinear basis func-

tions (Bickford, 1990 and Zienkiewicz, 1977) with (ξ, η) as

the natural coordinates in (ξ, η) -plane such that

Now from equation (1) we have 

and 

(2a)

where, 

(2b)

Fig. 1: Original 4-node quadrilateral element and its con-

figuration in  ξ - η plane.

Also from equation (2a),we have

(3)

Hence the Jacobian J can be expressed as:

(4)

where,

(5)

Using the chain rule of calculus and Eqns.(3), we obtain the

global derivatives

(6a)

and similary,

(6b)

where

(7a)
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(7b)

In order to obtain the finite element stiffness matrix using

quadrilateral elements due to second order linear Partial

Differential Equation via Galerkin weighted residual formu-

lation (Bickford, 1990 and Zienkiewicz, 1977) the integrals of the

product of global derivatives are of the form (Islam et al 2008):

(8)

Since we are restricted ourselves only to consider the 4-node

quadrilateral element, the element matrix will be symmetric,

so only those terms, on and above on the main diagonal, will

need to be evaluated. This symmetric matrix is of the form

(9)

where each component, ki-j of the matrix K is the linear com-

bination of the integrals defined in eqns. (8). Generally, this

can be written symbolically as

i,j = 1 - 4                     (10)

Since each coefficient,          is constant depending on the

four vertices of the quadrilateral obtained using eqns.(7 - 8). 

Evaluation of Stiffness Matrix

Since in Eq.(10), the denominator (the Jacobian defined in

Eq. (4) is a function of two variables   ξ and  η, the numer-

ator is  also a function of two variables ξ and  η, so apply-

ing nxn Gaussian quadrature(Bickford, 1990 and Zienkiewicz,

1977)  the numerical integration of Eq. (10) is then

(11)

where  (ξp, ηq) are the Gaussian integration points, and wp,
wq, are the corresponding weights.

Before evaluating the terms of the matrix  defined in Eq. (9),

we split the terms into two different groups, namely A (diag-

onal), and B (non-diagonal). Then the Eq.(9) may be rede-

fined as 

(12)

We compute the leading terms k1,1 (i = j = 1)  and k1,2 (i =1,

j = 2)  of the groups A, and B, respectively. The other terms

of each group can be obtained using one of the four nodal

coordinate transformations (Zienkiewicz, 1977) listed in

Table I. The notation used in Table 1 is that the symbol ==>
means "is replaced by".

Table I: Types of Nodal Coordinate Transformation 
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Using four types of transformation the computational rela-

tion between the two terms of each groups matrix  K in Eq.

(9), is shown in Table II.

Now we give two brief methods below to compute the com-

plete matrix for a general four node quadrilateral described

in Figure 1 on the basis of the above information. We also

write a Mathematical program for each, which are available

upon request to the corresponding authour.

Method 1:

For this method first we write down the explicit form of the

coefficients of   k11 and  k1,2 as follows:

For k1,1 :

(12a)

For k1,2 :

(12b)

Algorithm 1:

Step 1. Input:  The coordinates of the quadrilateral ele-

ment; x1, x2, x3, x4, y1, y2, y3, y4,

Step 2. Define          and         for k1,1 and  k1,2 respective-

ly, defined in Eq.(13)

Step 3. Define the Gauss points.

Step 4. Define the leading terms  k1,1 and  k1,2 defined in

Eq. (10).

Step 5. Write down the nodal coordinate transformation

types.

Step 6. Store data in the variables.

Step 7. Calculate ki,j 1< i, j < 4. .

Method 2:

Now express the Eq. (11) using the quadrature rule for  n =

2,3 and 4, successively as given below for this paper. One

can proceed for n > 5, , in a similar fashion.

For  : n = 2 :

(14a)

where

(14b)

Table II: Relation between two terms of matrix  K

Group

A

B

To compute

k4.4

k3.3

k2.2

k2.3

k1.4

k4.4

k1.3

k2.4

To compute

k11

k4.4

k3.3

k1.2

k2.3

k1.4

k3.4

k1.3

To compute

Type 1

Type 1

Type 1

Type 2

Type 3

Type 2

Type 4

Type 1
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Here α and          are defined in Eqs. (5) and (13), respec-

tively. The functions  f, s and  t depend on the nodal co-ordi-

nates. Also note that the transformations are always applied

to the 's ', 't 'and 'f ' functions.

Algorithm 2:

Step 1 Input:  The coordinates of the quadrilateral element;

x1, x2, x3, x4, y1, y2, y3, y4.

Step 2. Define the leading terms k1,1 and k1,2 defined in

Eqs. (14 - 16) for 2x2, 3x3 and 4x4  Gauss points,

respectively.

Step 3. Write down the nodal transformation types.

Step 5. Store data in the variables.

Step 6. Set the expressions for f, s, t .

Step 7. Calculate ki,j 1< i, j < 4.

Test Example

We compute the element matrices using the integration for-

mula presented in this paper to compare with the existing

solutions. For this, we consider a simple one-element exam-

ple to evaluate the element matrices for two-dimensional

Laplace's equation. The finite element formulation (Beltzer,

1990 and Hacker et al., 1989)of the Laplace's equation is 

(17)

where R is the typical four-node isoparametric element

shown in Fig. 2

Fig. 2: Element geometry for Laplacian matrices

The complete matrices (symmetric) for this geometry are

shown in Table III, obtained by the proposed algorithms for

n =2, 3, 4   Gauss points. The accuracy of the results is sim-

ilar to the existing solutions (Beltzer, 1990 ). 

Table III: Element matrix for the geometry shown in Fig. 2

Table IV: Comparison of running time

Gauss CPU Time (sec)

Points Conventional Present Methods

(Eq.11) Method 1 Method 2

2x2 0.016 0.014 0.001

3x3 0.031 0.015 0.001

4x4 0.281 0.094 0.047

The running time of the test example is listed in Table IV.

Observe that the savings in computational time is obvious. In

this study, Method 1 can save the computational time 12.5%,

51.6% and 66.5% compare to the conventional (direct)

numerical integration method for 2x2, 3x3 and 4x4 Gauss

points, respectively. On the other hand, the savings in com-

putational time by Method 2 are 90.7%, 96.7% and 83.3%

for the same, respectively. Note that the computational time

requires 118.343 seconds for analytical results (Rathod et al.,

2008) while   4x4 Gaussian quadrature rule requires 0.047

seconds using algorithm 2 in this paper to get the same accu-

racy. Thus the performance of the present methods is excel-

lent.

Gauss
points

2x2

3x3

4x4

Matrix K = [ki,j ], 1< i, j < 4.
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Conclusion

In this paper, two simple and efficient methods are focused

on the reduction of computing time and space in the stiffness

matrix for a general four node quadrilateral element through

pre- and post-integration process, and by symbolic computa-

tion. Among the 16 terms of a  4x4 stiffness matrix, only two

terms are simplified and are calculated by  n x n Gaussian

quadrature rule. Nodal coordinate transformation method is

thus developed in this study so that the explicit expressions

of these two terms can be replaced by the associated algebra-

ic form obtained pre- and post-numerical integration. Thus

we can save greatly the computational time and memory

space in two ways: we no need to, (i) compute the coeffi-

cients                     of the element equation (11), and (ii) sim-

plifying the Eq.(11) using  n x n Gaussian quadrature rule,

for the remaining fourteen terms of the matrix. Here, the

explicit numerical integration is used for the improvement of

the efficiency of numerical integration, not for the integra-

tion itself. The procedure is rather simple and it may be car-

ried out to optimize the explicit integration formulas also for

the other finite elements. The comparison of the computing

time also confirmed one of the main advantages of the sym-

bolic integration approach. 
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