
Introduction

Flow induced by a stretching sheet of Newtonian or non-

Newtonian fluid is a classical problem in fluid mechanics.

Study of momentum and heat transfer in laminar boundary

layer flow of a viscoelastic fluid over a linearly stretching

sheet is of great importance in polymer processing industries

e.g., in manufacturing artificial fibers and artificial films etc.

The concept of viscous flow due to a linearly stretching sheet

was introduced by Crane (1970) and obtained an closed form

analytical solution. The pioneering work of Crane was

extended by Rajagopal et al. (1984) by taking viscoelastic

fluid and also Siddappa and Abel (1985) discussed some

other important aspects of flow of non-Newtonian fluid over

stretching sheet. Troy et al. (1987) established the unique-

ness of solution of the flow of second-grade fluid over a

stretching sheet. But two years latter, Chang (1989) showed

that the solution of the flow of viscoelastic fluid is not unique

and he obtained the different forms of non-unique solutions.

In 1987, Bujurke et al. presented the heat transfer analysis

for the flow of second order viscoelastic fluid over a stretch-

ing sheet. Lawrence and Rao (1992) also demonstrated the

heat transfer in the flow of viscoelastic fluid past a stretching

sheet. Andersson (1992) showed the magnetic effect on

the flow of Walter's liquid B over a stretching sheet.                         

Cortell (1994) obtained the similarity solution for the flow

and heat transfer of a viscoelastic fluid over a stretching

sheet.

In case of heat transfer analysis, the thermal radiation and

internal heat generation or absorption are very important

physically. Siddheshwar and Mahabaleswar (2005) investi-

gated the radiation effects on MHD flow of a viscoelastic

fluid and heat transfer over a stretching sheet taking into

account the internal heat generation/absorption. Khan (2006)

studied the effects of radiation as well as heat source/sink

and mass suction/blowing on heat transfer in viscoelastic

fluid flow over a stretching surface. Cortell (2007) analyzed

the mass transfer with chemically reactive species for two

classes of viscoelastic fluid viz. second-grade fluid and

Walter's liquid B over a porous stretching sheet. 

In our study, we investigate the effects of heat generation or

absorption on the flow of two different classes of viscoelas-

tic fluid namely, second-grade and Walter's liquid B over a

stretching sheet which is being stretched linearly. We

obtained the exact solutions for both momentum and heat

equations. The solution of self-similar heat conducting equa-
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tion is obtained in the form of Kummer's function (a conflu-

ent hypergeometric function). The numerical solutions are

also obtained using shooting method. Actually, this work is

the generalization of the study of Cortell (1994).

Formulation of the flow and heat transfer problems

We consider a steady laminar flow of an incompressible vis-

coelastic fluid over a plane sheet coinciding with the plane

y=0, the flow being confined in the plane y>0. The motion is

caused due a linear stretching of the sheet because of simul-

taneous application of two equal opposite forces along the x-

axis so that the sheet stretched keeping the origin fixed and

the physical sketch of the flow dynamics is given in Fig. 1.

The boundary layer equations for momentum and heat trans-

fer may be written as follows: 

(1)

(2)

and (3)

where u and v are velocity components in x and y directions

respectively, υ (=µ / ρ) the kinematic fluid viscosity, ρ is the

fluid density, µ is the coefficient of fluid viscosity, k0 is

coefficient of viscoelasticity, T is the temperature, k is the

fluid thermal conductivity, cp is the specific heat, Q0 is the

heat generation or absorption coefficient, Too is the free

stream temperature. The positive sign in the right hand side

of equation (2) is corresponding to second-grade fluid

(Cortell, 1994 and 2006) whereas the negative sign is for

Walter's liquid B (Prasad et al., 2000 and Khan et al., 2003)

also termed as second-order fluid (Khan and Sanjayanand,

2000).

The appropriate boundary conditions for the velocity com-

ponents and the temperature are given by

(4)

and  , (5)

Fig. 1: Physical sketch of the flow

where c is stretching constant with c>0, Tw temperature of

the sheet assumed to be constant. The last condition of (4) is

the augmented condition because the flow is in an unbound-

ed domain, which had been discussed by Garg and Rajagopal

(1992). 

We now introduce the stream function ψ (x,y) as 

(6)

The mass-conservation equation (1) is satisfied automatical-

ly and the momentum equation (2) and temperature equation

(3) take the following forms.

and                                                                              .

Accordingly, the boundary conditions in (4) reduce to 

(7)

Next, we introduce the dimensionless variables for ψ and T

as given below:

(8)

The similarity variable denoted by η is given by η =y (c/υ))1/2.
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Using the dimensionless variables and similarity variable,

the above equations finally take the self-similar forms given

below:

(9)

and (10)

where λ =+ k0c/υ is the viscoelastic parameter with λ >0 cor-

responding to the second-grade fluid and λ <0 for the

Walter's liquid B, Pr= µcp/ k is the Prandtl number and

δ=Q0/ ρcpc is the heat source (δ<0) or sink ( δ>0) parameter.

The boundary conditions (7) and (5) also transform to

(11)

and (12)

Solutions of self-similar equations

The self-similar equation (9) with the boundary condition

(11) has a solution of the form 

(13)

Where (14)

According the sign of  λ, we can consider the fluid to be

either second-grade (λ >0) or Walter's liquid B (λ <0, IλI <1).

Also, replacing λ by --λ in the equations (13) and (14) ear-

lier analyses of Cortell (1994) and Khan (in nonporous medi-

um) (2006) can be obtained.

The analytic solution of equation (10) with respective

boundary condition (12) can be written in form of hypergeo-

metric function:

(15)

Where

(16)

The confluent hypergeomertic function M is the Kummer's

function (Abramowitz and Stegun, 1965) and is defined by

Numerical solutions

The nonlinear coupled differential equations (9) and (10)

along with the boundary conditions form a boundary value

problem (BVP) and is solved using shooting method, by

converting it into an initial value problem (IVP). In this

method we have to choose a suitable finite value of  η�οο ,

say ηοο , We set following first-order systems

(17)

and (18)

with the boundary conditions 

(19)

To solve (17) and (18) as an IVP we must need values for

r(0) i.e. f © © © (0) and z(0) i.e. θ ©(0) but no such values are

given. The initial guess values for  f © © © (0) and   θ ©(0) are cho-

sen and applying fourth order Runge-Kutta method a solu-

tion is obtained. Then we compare the calculated values of

f © (η) and θ(η) at ηoo (=20) with the given boundary condi-

tions f (ηoo )=0 and θ(ηoo )=0 and adjust values of f © © © (0) and

θ ©(0) using Secant method to give better approximation for

the solution. The step-size is taken as ∆η =0.01. This

process is repeated until we get the results correct up to the

desired accuracy of 10-6 level. The comparisons of numeri-

cal and exact solutions are presented in Figs. 2 and 3 and it

is observed that the numerical solutions are matched well

with the exact solutions. On the other hand, the Secant

method regarding the selection of shoot values is conver-

gent, which is already proved.

Fig. 2: Comparison of velocity profiles
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Fig. 3: Comparison of temperature profiles

Results and Discussions

The exact solutions for different values of parameters are

plotted in figures and the physical characteristics are given.

The solution curves for velocity are plotted and are shown in

Figs 4a and 4b for several value of λ for second-grade ( λ>0)

and Walter's liquid B (λ <0) respectively. It is noticed that

the dimensionless velocity represented by f ©(η) increases

with an increase in λ with λ >0 i.e. for second order fluid and

on the other hand, it decreases as magnitude of λ increases

when  λ<0 i.e. in case of Walter's liquid B. So, two opposite

behaviours in velocity curves for two different classes of vis-

coelastic fluid are noticed.

Fig. 4a: Velocity profiles for several values of λ for sec-

ond-grade fluid (i.e. λ>0)

Fig. 4b: Velocity profiles for several values of λ Walter's

liquid B (i.e. λ <0)

Now the numerical solution curves for the temperature dis-

tribution for several values of λ are presented in Figs5a and

5b. In Fig 5a, for the second-grade fluid the dimensionless

temperature θ (η) increases with increasing  λ, whereas from

Fig5b i.e. for the Walter's liquid B θ (η) decreases when the 

Fig. 5a: Temperature profiles for several values of λ for

second-grade fluid (i.e. λ >0)

Fig. 5b: Temperature profiles for several values of λ
Walter's liquid B (i.e. λ <0)
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magnitude of λ increases. The natures of the dimensionless

temperature profiles are same as that of the dimensionless

velocity profiles.

The deviation in the temperature profiles for the variation of

the Prandtl number is demonstrated in Figs 6a and 6b. For

both type of viscoelastic fluids, the temperature as well as

the thermal boundary layer thickness decreases rapidly with

increasing values of Pr. Thus the Prandtl number affects the

temperature distribution for both types of fluids in similar

manner.

Fig. 6a: Temperature profiles for several values of Pr for

second-grade fluid (i.e. λ >0)

Fig. 6b: Temperature profiles for several values of Pr for

Walter's liquid B (i.e. λ <0)

Finally, the effects of internal heat source or sink on the heat

transfer are exhibited in the Figs7a and 7b. Due to the

increase in the heat source or sink parameter the thickness of

the thermal boundary layer is reduced and the temperature at

a point decreases. Thus, with the increase in strength of heat

source the temperature and the thermal boundary layer thick-

ness increase but, the outcome of increase in strength of the

heat sink is totally opposite i.e. the temperature and the ther-

mal boundary layer thickness decrease with increase in sink

strength. The above thermal behaviours are found in both

second-grade fluid and Walter's liquid B.

Fig. 7a: Temperature profiles for several values of δ for

second-grade fluid (i.e. λ >0)

Fig. 7b: Temperature profiles for several values of δ for

Walter's liquid B (i.e. λ <0)

Conclusion

The Objective of our study is to investigate the flow behav-

iours and heat transfer for two classes of viscoelastic fluid

over a stretching sheet with internal heat generation or

absorption. Using similarity variables, the momentum and

heat equations are transferred into self-similar ordinary dif-

ferential equations. The momentum equation is solved ana-

lytically and also the heat equation using a confluent hyper-

geomertic function, the well known Kummer's function. The

numerical solutions are also obtained using shooting method

and the exact and numerical solutions are well matched. The

exact solutions are presented in some figures and the follow-

ing conclusions can be drawn:
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1. Due to increase in magnitude of viscoelastic parameter

the velocity and temperature increase for second-grade

fluid and decrease for Walter's liquid B.

2. For both fluids, increase in Prandtl number reduces the

thermal boundary layer thickness.

3. The temperature at a point increases with the heat

source strength and decreases with heat sink strength

for second-grade as well as Walter's B fluids.
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