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Abstract

In this article, we discuss the Cantor sct and its fractal dimension. We show the Cantor middle
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which is generalized Cantor set, where 2 < m < 9, We also generalized the box-counting dimension of Cantor sct that
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Introduction

Cantor sets were discovered by the German Mathematician
George Cantor in the late 19th to early 20th centuries (1845-
1918). He introduced fractal which has come to be known as
the Cantor set, or Cantor dust. The set has some interesting
properties which have led to further research and discovery
in fractals and chaos theory (Richard, 1996).

Fractal is defined by B. Mandelbrot is a shape made of parts
similar to the whole in some way in the 1960's. Fractals can
be classified in numerous manners, of which one stands out
rather distinctly, exact (regular) fractals versus statistical
(random) fractals. An exact fractal is an object which
appears self-similar under varying degrees of magnification
in effect, possessing symmetry across scale with each small
part replicating the structure of the whole. Statistical fractals
have been observed in many physical systems, ranging from
material structures (polymers, aggregation, interfaces, etc.)
to biology, medicine, electric circuits, computer intercon-
nects, galactic clusters, and many other surprising areas,
including stock market price fluctuations (Addison, 1997).

Fractal is a geometric object that possesses the two proper-
ties: self-similar and non-integer dimensions. So a fractal is
an object or quantity which displays self-similarity.
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George Cantor found the Cantor middle — set. Kathleen T.

Alligood et. al. (1997) found the box-counting dimension
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set,

2L m< o,
Generalization of Cantor set

Definition

A nen empty set I' C R is called a Cantor set if
() I' is closed and bounded.

(0) I' contains no intervals.
(c) Every pointin [ is an accumulation point of I,

1
The Canter middle 5 set which is created by the following

algorithm:
We start with the closed interval [0,1]. Call this set [';.
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Remove the middle open third This leaves a new set,
1 2
called [, whichis [0, -] w[=,1].
3 3
G R
0 1.3 2.3 1

Each iteration through the algorithm removes the epen
middle third from each segment of the previous iteratien.

Thus the next two sets wnuldbe
1 21 8
r,=[0,-1ul[=,= -, = —
;=1 9] [9 3] [ ] [9 1].
G — — |—| —
D 15 z5 13 23 8.5 1
1 21 2 7 g8 1
and ['; =0, —]w[—,=]w w—,—
=l 7] [27 9] [9 27] [27 3]
2 19 20 7 8 25 26
= 2 ety [UPY il |
[3 27] [27 9] [9 27] [27 ]
G HH  HH HH  HH

0 15 25 1.3 2.3 75 85 1
In general, after 1 times iterations, we obtain l—'M which

as follows

T, = [0 ]ulo 2 ]UA

3" 3"y
3"-3 3"-2 3" -1
e A
3 3 3
The Cantor set is defined to be the set of the points that
remain as the number of iterations tends to infinity. The

,1], where > 0.

Cantor middle% setistheset =] T,.

n=0
We can show that the total length of the segments
removed is 1. Note that in the first iteration we removed
1/3, in the second iteration we remowved 2/9, in the third
iteration we removed 4/27, and in the fourth iteration we
removed 8/81, and so forth. This is a geomelric series with

1 2
first term a=§ and commen ratio #= —. This

. 1/3 .
converges, and the sum is §_ = =1. Any point

S 1-2/3
that is an endpoint of an interval at any iteration survives
andis a member of the Cantor set.

1
The Cantor middle g set which is created by the following
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algorithm:
We start with the closed interval [0,1]. Call this set .

=3 I
0

1

Remove the middle open interval (1/5,2/5) and
(31’5 41"5) This leaves a new set, called I, which is

0,—-lu]—,=uw]-=,1].

[ 5] [5 5] [5 ]

G P b
0 1.5 2.5 3.5 a5 1

Each iteration through the algorithim removes the open 2nd
and 4th interval from each segment of the previous
iteration. Thus the next set would be

1 2 3 4 1 2 11 12
L =[0,—]ul—,=]u[—.,Zlu[=, —=]w[-—=,
=l 25] [25 25] [25 5] [5 25] [25
13 14 3 4 21 22 23 24
e e s 1.
25] [25 5] [5 25] [25 25] [25 ]
G H H H H H o H
0 1.5 Z_5 3.5 4.5 1
In general, after r times iterations, we obtain Fn which
as follows
1 2 3
F = 05_ o s .- UA
» =l 5”] [5” 5”]
U[S _3,5 _Z]U[S _1,1], where 2> 0.
5" 5" 5"

The Cantor middle 1 setistheset [=] T .

5 n=0
We can show that the total length of the segments removed
is 1. Note that in the first iteration we removed 2/5, in the
second iteration we removed 6/25, in the third iteration we
removed 18/125, and so forth. This is a geometric series with

3
with first term @ = — and common ratio ¥ = g This
" 2/5
converges, and the sum is S = =1.
1-3/5

1
The Cantor middlc; set which set is created by the

following algorithm:

We start with the closed interval [0,1]. Call this set I',.
G | .
0 1
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Remove the middle open interval (1/7,2/7),
(3/7,4/7), and (5/7,6/7). This leaves anew set,

1 23 45 6
alled I',, whichis [0,—]w[—,=]w[=,=]w][=,1].
called I, which is [ 7] [7 7] [7 7] [7]
G —4 f | f | f |
0 17 27 37 47 57 63 1

Each iteration through the algerithm removes the open
2nd, 4th, and 6th interval from each segment of the
previous iteration. In general, after A tiunes iterations, we

obtain I', which as follows

1 2 3
L,=[0,—]u[—,—
U e

7"-3 7' -2, T'-
1l
7 7 7

WA

1

i ,1], where 1> 0.

1 o
The Cantor middle? setistheset I = I L,.
n=0
We can show that the total length of the segments
removed is 1. Note that in the first iteration we removed
3/7, in the second iteration we removed 12/49, in the third
iteration we removed 48/343 and so forth. This is a

geometric series with first term @ = — and common ratio
4 _ )
F= ; This converges, and the sum is
37
?1-477
From the above construction, we can construct the Cantor
. 1 1 1 ,
middle —,—,— A set, in general, the Cantor
9°11°13
. 1
middle set.
Zm -
1
If O< <1, where 2<m< o, then we cam

2m—1

construct similar sets called Canter middle sets

2m-1
by remeving an interval from the center of each remaining

interval whose length is times the length of the

2m—1
remaining mnterval.

The Cantor middle

set which is created by the
2m-1

following algorithm:

We start with the closed interval [0,1]. Call this set [;.

@ | |
0 1
Remove the middle open

IR S
m-12m-1/

3 4 A 2m—-3 2m-2
2m—1"2m-1/ \2m-1"2m-1/

where 2 € m < 0. In general, after 2 times iterations,

mterval

we obtain Fn which is as follows
1 2 3
[0, ol o ,
(2m-1) (2m-1)" (2m-1)
u[(Zm—l)MIS , (2m-1)" :Z]U[(Zm—l)” n—l
(2m-1) (2m-1) (2m-1)

A

A1,

where #20, and m > 2. The Cantor middle

2m—1
setistheset [ =] T,.
n=0
2.2 Lemma: If I‘n is defined in Cantor middle
Zm-1

set, where 2<m< o, then there are m" closed

intervals in I', and the length of each closed interval is

n

1
1—
__2m_1 , where 2 < m < 0. Also the combined
2m—2
n
length of the intervals m I, is | —— | , where
2m—1

2<m<w, which is
approaches to infinity.
Proof: We start with the interval [0, 1] whose length is 1.
We proceed by mathematical induction. In the first step,

approaches to zero as H

and obtain ¥ closed

we remaove a gape of length
m J—

intervals whose combined length is . Speach
2m-1
1
1—
interval has a length of __2m-1 , where
2m -2

2 < m < . In general, suppose that there are m"

intervals remain in [, , each with a length of
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, Where
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length of [7] , where 2 <m< 0. We will

2m—1
show that there are 72" intervals remain in ].—';c . €ach
e+
1
1—
with a length _ 2m-1 , where 2<m< o0, for

2m-—2

2m—1
Note that each time we

i+l
m
a combined length [7] , where 2<m< 0,

remove the middle

;, where 2 < m < o, closed
2Zm—1

intervals, we split the interval inte # closed intervals. So

porion of 2

in passing from [, to I},;, we nultiple the number of

intervals by i, and there are m(m)=m"", where

2<m< o, intervals in [,,. By assumption, each
i

1
1—
interval in Fk has a length of _ 2m-1 , where
2m—2
2<m<on.  Since we remove the middle

1 : : .
ﬁ’ where 2 < m < o0, portion of each interval in
m_

FJ: to create [’

iy » e amount of each interval from Fk

leftin I, is

vy 1y
2m—1| 1 2m—1
2m—2 Zm—1| 2m-2
e+l
[1_21 J
=(2m—_2)k, where 2 € m < o0. As this length
m_

isleft in 2m— 2 intervals, the length of each remaining
interval
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[1 1 ]kﬂ , ] |
1 2m-1) Com—1

- , Where

2m—2 (2m—2) 2m—2
2 < m < . Finally, thee are 72" intervals in L, so
the combined length of the intervals in FM is

k-

1—; ki
m x 2m—1 . L where

2 — 2 2m-1)

2<m<ow. Snee 0« ! <], "
2m—1 2m-1

corverges to 0 as r grows without bound and it follows
that the combined length of the intervals in Fn approaches

0 as 7 goes to infinity.
Prop osition

The Cantor middle

set is a Cantor set, where
2m—1

2 m< o,

Proof

Let I' be a Cantor middle

set, where
2m—1

2<m< 0. Since 0 isinevery [, [ isnet empty. To

complete the proof, we must show that (i) " is closed and
bounded, (ii) ' contains no intervals, and (iii) every point
of I' is an accummlation point of I'.

(i) Since ' is the intersection of closed intervals, it is
closed As I is containedin [0, 1], it is also bounded

(ii) If I' contains an open interval (x, y) with length
| y—x/|, then at each stage in the construction of

I', (x, y) must be contained in one of the remaining

closed intervals. However, Lemma 2.2 implies that after

n steps the length of one of these intervals is

1 bl
1———
Zm—1

, where 2 < < o0, andwe can find an
2m—2
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2m—1
m—2

n, such that <|y—x|, where

2<m«< o, thatis, the length of each of the clesed
intervals in I, isless than the length of (x, y). Hence,

the entire interval (x, y) cannot be containedin I, and

I' contains no intervals.

(iii) Suppose that x is a pointin " andlet
N_(x)=(x—g&, x+ £) be aneighborhood of x. We
must show that there exists a pointin [’ that is contained
in N_(x) andis not equal to x. Notice that if x; is an

endpeint of ene of the intervals that is removed, then x, is

in I'. Now at each stage in the construction of the Cantor
set, x must be in one of the remaining closed intervals.
That is, for each 1 there is an intervals in [’ that

contains  X. encugh so that

o1
2m—1

2m—2

Cheoose n large

el

< £, where 2<m< . Then X isin

one of the closed intervals that comprise [,. Call this
interval f . By Lemma 2.2, the length of [ is

{ A%
1
_ 2m-1 , where 2L m< o, Since
2m—2
\ /
{ A%
b
_ 2m-1 < g, where 2 < m< o0, it must be the
2m—2
\ /

endpoints of J, arein NV, (x). As there are two endpoints

and X can be equal to at ene of them, other endpoint is an
accumulation point of I". The proofis complete.

Fractal Dimension

Consider a grid of step-size 1/ 1 on the unit interval

[0,1], that 1is, there are grid points at

503

0,1/m,2/n,..(rn—1)/n, 1. Thatisthere are 1 boxes
of grid of size 1/ n. The situation changes slightly if we
consider the interval [0,8]. Then we need 87 boxes of

size¢ 1/n The common property of ene-dimensional

intervals is that the number of boxes of size £ requiredto
cover an interval is no more than C(1/ £), where C isa
constant depending on the length of the interval. This
proportionality is often expressed by saying that the
number of boxes of size £ scales 1/ £, meaning that the

number of boxes is between C, /£ and C, /g, where
() and ', are fixed constants not depending en £.
The square {(x,y):0<x,y <1} of side-length one in
the plane can be covered by n" boxes of side-length 1/n.
Any two-dimensional rectangle in R” can be covered by
C(1/&)* boxes of size & Similarly, a d -dimensional
region requires C(1/&)° boxes of size & If we consider
a square of side length 2 in the plane, and cover by boxes
of side-length £=1/m, then A4(1/&)° boxes are
required, so C = 4. The censtant C can be chosen as
large as needed, as long as the scaling C(1/ £)* holds as
g goesto 0.
We denote N(&) the number of boxes (Dindos, 2001) of
gide-length & needed to cover a given set. In general, if
S isasetin R™, we would like to say that S isa d -
dimensional set when it can be covered by
N(g)=C(/eg)
boxes of side-length &, for all small & Stated in this
way, it is not required that the exponent d be an integer.
Let S be a bounded set in R™. To measure the
dimensicn of S, we lay a grid of m -dimensicnal boxes
of side-length £ over S. Set N(&) equal to the number
of boxes of the grid that intersect S. Solving the scaling

law for the dimension d gives us
InN{eg)-InC

€

d:
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If C is a constant for all small £, the contribution of the

second term in the numerator of this formula will be
negligible for small £.

Definition

A bounded set S in R" has box counting dimension

boxdim(S) = lim In

(£) .
where the limit exists.

—= (1 ’
ln[ lj
£

Computing the box-counting dimension of the Cantor
middlel/3 set I’

jury

IR S T
;L FEE & &
T EEE &

Fig. 1: Construction of the Cantor

£ E
€ &

iddlel/3 set

The set ' is contained in I', for each #. Just as Fl

consists of 2 intervals of length 1/3, and I', consists of
2% intervals of length 1737,

intervals of length 1/37,

and ', consists of 2’
in general ', consists of 2"

intervals, each of length (14"3”). Further, we know that
[’ contains the endpoints of all 2" intervals, and that
each pair of endpeints lie 37" apart. Therefore, the
smallest number of 3" boxes coverng [ s

N,(37")=2". We compute the box-counting dimension

of the Cantor middle 1/3 set r as
Boxdim ([) = lim 2 —lim P02 _ 2 _ 63
ns»In3" o pln3d  1nl3

Computing the box-counting dimension of the Cantor
middlel/5 set [’

& E_® &
ok B & £
o & & & & 1

Fig. 2: Construction of the Cantor middlel/S set.
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The set [' is contained in I’ for each 7z. Just as [
consists of 3 intervals of length 1/5, and I', consists of
3 intervals of length 1/5°,
intervals of length 1/5°,

and [, consists of 3’
in general I’ consists of 3"

intervals, each of length (1/35"). Further, we know that

I' contains the endpaints of all 3" intervals, and that each
pair of endpoints lie 5" apart. Therefore, the smallest
number of 57 boxes covering I' is N,(577)=3" we

compute the box-counting dimension of the Cantor
middel/5 set I as
In3* .. rIn3 In3

Boxdim (') = lim = lim =_——=0.68.
= n5" rseplni Ins

By the above, we ean find the box-ceunting dimensien of
the Cantor midde 1/7,1/9,1/11,A ,in general, the

Cantor middle set, where 2 < 1 < 0.

2m—

Computing the box-counting dimension of the Cantor
middlel/7 set I’

Fig. 3: Consttuction of the Cantor middlel/7 set.

The set [’ is contained in I, for each 7 Just as I}
consists of 4 intervals of length 1/7, and I', consists of
4% intervals of length 1/7°, and I, consists of 4°
intervals of length 1/7°,in general [, consists of 4"
intervals, each of length (1/7"). Further, we know that

I' contains the endpeints of all 4" intervals, and that
each pair of endpoints lie 77"
smallest number of 77

apart. Therefore, the
boxes covering [ is
N, (77)=4". We compute the box-counting dimension
of the Canter middle 1/7 set [ as

In4 i rln4d _ ln_4 071

Boxdim (I') = lim im
e pgln?  In7

e I 7"
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Computing the box-counting dimension of the Cantor
middlel/9 set [

m$%$%%%$$f
EEEEEEEEE

Fig. 4: Construction of the Cantor middlel/9 set.

The set I is contained in I', for each 7. Just as [
consists of 5 intervals of length 1/9, and ', consists of
5" intervals of length 1/92, ad [, consists of 5
intervals of length 1/93,111 general [, consists of 5"
intervals, each of length (1/5"). Further, we know that
[ contains the endpoints of all 5" intervals, and that
each pair of endpoints lie 97" apart Therefore, the
smallest of 97"
N, (") =5". We compute the box-counting dimension

of the Cantor middle1/9 set " as

In5 e n1n5:1n_5:0.73.
n—:m]_ng

number boxes covering [ is

1umn

o pln9 In9
Computing the box-counting dimension of the Cantor
middlel/11 set [’

e e
L T e
v 11 ll#ll#ll 11 #%#l

Fig. 5: Construction of the Cantor middlel/11 set.

The set I is contained in I', for each 7. Just as [
consists of 6 intervals of length 1/11, and [, consists of
6 intervals of length 1/112, and [’ consists of 6

intervals of length 1/113,in general [, consists of 6"

intervals, each of length (1/6"). Further, we know that

[ contains the endpoints of all 6" intervals, and that
apart. Therefore, the

boxes covering [ is

cach pair of endpeints lie 117"
smallest number of 117"
N,(A17)=6" We
dimension of the Cantor middle 1/11 setI as
In6” 1 rnln6é Iné6

1m =——=0.75.
= plnll Inll

compute the box-counting

Boxdim (I")=1im
no]nll"

In general, we will find the box-counting dimension of
Cantor middle1/(2m—1) set [', where 2<m <. A
similar Cantor set construction of Fig.5: can be altered to
create the Cantor middle1/(2m —1) set . Theset I is

contained in [', for each #. Just as I} consists of m
intervals of length 1/(2m—1), and I, consists of m’
intervals of length 1/(2m—1)°, and [, consists of m’
intervals of length 1/(2m—1)’,
of m" intervals, each of length 1/(2m—1)". Further, we

in general, [ consists

know that " centains the endpoints of all m" intervals,
and that each pair of endpoints lie (2m—1)" apart
Therefore, the smallest number of (2m—1)"" boxes
covering [ is N, ((2m—1)"")=m". We compute the
box-counting dimension of the Cantor middle1/(2m — 1)
set [ as

Innt nlnm
Boxdim (I) =lim =lim
nxln(2m-1)"  »=nln(2m-1)
In m

where 2 <m < o0,

?

T In 2m—1)

Conclusion

We conclude the result as the generalized form of the Cantor

set, where 2 < m < o0,

set 1s the Cantor middle
2m—1
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and the box-counting dimension of the Cantor set is
Inm

In2m-1)’
of m, then the value of box-counting dimension of the

where 2 < m < . If we increase the value

Cantor middle set will be increased and tends to 1.

2m-1
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