Diversity of Cropping Pattern in Bogra

A B M J Islam ${ }^{1 *}$, S M Shahidullah ${ }^{1}$, A B M Mostafizur ${ }^{1}$ and A Saha ${ }^{1}$

Abstract

With a view to document the existing cropping patterns, cropping intensity and crop diversity, a study was carried out over all the upazilas of Bogra agricultural region during 2015-16. A pre-tested semi-structured questionnaire was properly used for this purpose. In the findings it was recorded that 21.88% of net cropped area (NCA) of the region was occupied by the cropping pattern Boro-Fallow-T. Aman. This pattern was found to be distributed over 27 upazilas out of 35 . The second largest area, 13.26% of NCA, was covered by Potato-Boro-T. Aman, which was spread over 17 upazilas. A total of 177 cropping patterns were identified in the whole region in this investigation. The highest number of cropping patterns was identified 36 in Nandigram upazila and the lowest was six in Dupchachia and Kahalu upazila of Bogra district. The lowest crop diversity index (CDI) was reported 0.718 in Raiganj upazila of Sirajganj district followed by 0.734 in Kalai of Joypurhat. The highest value of CDI was observed 0.978 in Pabna sadar followed by 0.972 in Bera upazila. The range of cropping intensity values was recorded 183-291\%. The maximum value was for Khetlal upazila of Joypurhat district and minimum for Bera of Pabna. As a whole the CDI of Bogra region was calculated 0.966 and the average cropping intensity at regional level was 234%.

Key words: Diversity index, land use, cropping system and flash flood

INTRODUCTION

A total of 35 upazilas of four districts formed the Bogra agricultural region. It has a wide diversity in land topography and soil characters ranging from river-eroded area to Barind Tract. This region belongs to Tista Meander Floodplain (AEZ-3), Karatoa-Bangali Floodplain (AEZ-4), Lower Atrai Basin (AEZ5), Active Brahmaputra-Jamuna Floodplain (AEZ-7), Active Ganges Floodplain (AEZ10), High Ganges River Floodplain (AEZ-11), Low Ganges River Floodplain (AEZ-12), Level Barind Tract (AEZ-25) and North-eastern Barind Tract (AEZ-27) (FAO, 1988).

Majority area of this region is very suitable for agricultural crop production especially in cereals and vegetables. The cropping intensity is much higher than the other region of the country. Shortage of surface water, serious flooding and river erosion are location-specific critical problems. Low moisture-holding capacity, low organic matter content and low
natural fertility are special characters of the Barind Tract.

Cropping system is the crop production activity of a farm which includes all cropping patterns grown on the farm resources, other household enterprises and the physical, biological, technological and socioeconomic factors or environments. A cropping pattern is the yearly sequence, temporal and partial arrangement of crops in a given land area. It is dependent on physical, historical, social, institutional and economic factors as well as government policies (Agrawal and Kassam, 1976). The cropping pattern and the changes therein depend on a large number of factors like climate, soil type, rainfall, agricultural technology, availability of irrigation facilities and other inputs, marketing and transport facilities and growth of agro-industries (Neena, 1998; Gadge, 2003; Rashid et al., 2005).

The yields of cereal crops are tending to stagnation, even in favourable environments. Moreover, cultivable land area is decreasing

[^0]day by day in the country. To increase the system productivity of the total environment it needs to bring diversity in enterprises for better utilization of limited resources. Detailed information on land situation and cropping systems is a prerequisite for a fruitful development programme. Diversified cropping pattern may be an option for the farmers as a coping strategy against risks (Mandal and Bezbaruah, 2013). Typology of different cropping systems is the base for the managers of these systems to intensify production (Shriar, 2000). There is a strong need for judicious and appropriate use of limited resources in case of intervention selection that does not lead to increased mal adaption or inequity in the society over long term. Existing trends of available agricultural lands is most essential requirement for any land use planning related to farming and food security in a sustainable manner. Therefore, an increased understanding of arable land use based on the cropping system is essential for the appropriate intervention in sustainable way. In these contexts, existing cropping patterns along with their diversity of such complex agricultural region are very crucial for risk minimization and overall productivity improvement. The specific objectives of the present study were to:

- Understand the existing cropping patterns scenario in Bogra region
- Visualize the existing land use pattern at upazila and regional level
- Determine the crop diversity and cropping intensity at local and regional level.

METHODOLOGY

Thirty-five upazilas of Bogra, Joypurhat, Pabna, and Sirajganj districts under Bogra agricultural region were the locale of this study. Data were collected using double stage procedure. At initial stage, data were collected through pretested semi-structured questionnaire from 35 pre-assigned Sub-Assistant Agriculture Officers (SAAO) of each upazila during October 2015 at upazila level. SAAOs were purposively pre-
selected by Agriculture Extension Officers (AEO), Additional Agriculture Officer (AAO) and Upazila Agriculture Officer (UAO) or altogether. Prior to data collection, the pre-tested questionnaire was explained along with proper guidelines to the AEOs or UAOs or both and handed over to them at each Deputy Director's office of Department of Agricultural Extension (DAE) during monthly meeting for the sake of accurate data collection. The filled questionnaires were collected by the scientists of RFS Division, checked and analyzed to find the inconsistencies of the supplied data before validation workshop. All the inconsistencies among the information were documented. The collected data along with documented inconsistencies were discussed in district level workshop for necessary correction and validation. Second stage of data collection was a day-long data validation workshop at district level. The workshop dates were 26 November 2015 for Sirajganj; 14 January 2016 for Bogra; 2 February 2016 for Pabna; and 20 September 2016 for Joypurhat. Four field-workers i.e. one SAPPO and three SAAOs experienced and engaged in crop-based data documentation, all officers from all upazilas viz UAOs, AEOs, AAEOs, DD (DAE), DD (Horticulture), DD of Seed Certification Agency, DTO and ADDs, one representative from Agricultural Training Institute (ATI) and scientists of BRRI regional station, Kushtia, and Rangpur, participated in the data validation workshop. The number of participants of validation workshop ranged from 50 to 92 in each district. All the participants were divided into three to four groups for data validation. Each group was facilitated by two RFSD scientists to finalize and validate the data and authenticated data were captured. Crop diversity index was calculated by using the following equation described by Kshirsagar et al. (1997).
$C D I_{i}=1-\sum_{j=o}^{n}\left(\frac{a_{i j}}{A_{i}}\right)^{2}$
Where, $\mathrm{CDI}_{\mathrm{i}}=$ Crop Diversity Index
$a_{i j}=$ Area planted to the $j^{\text {th }}$ crop in the $i^{\text {th }}$ location
$\mathrm{A}_{\mathrm{i}}=$ Total area planted under all crops

The index is zero for a land area growing only one crop. It approaches unity as the level of diversity increases. Compilation and processing of collected data were done using Micro Soft Excel programme. Descriptive statistics were used to facilitate the presentation of the findings.

RESULTS AND DISCUSSION

Land use

Table 1 presents the status of agricultural land utilization. The net cropped area of the Bogra region is 668,440 ha. Crops occupied the particular land for round the year were considered under annual crops. The major annual crops reported in the region were banana, papaya, sugarcane, betel leaf, ginger and turmeric. The annual crops area in different upazilas ranged from 10 to 3,500 ha. The annual crops area accounted only 1.70 \% of the net cropped area (NCA) in the region. At a glance the region possesses 7.58% single cropped area (SCA), 48.09% double cropped area (DCA), 41.15% triple cropped area (TCA). The quadruple cropped area also exists as a very negligible portion (0.76%) and was limited in only six upazilas viz Bogra, Dhunat, Nandigram, Sherpur, Sonatola and Atghoria. Most of the upazilas of Bogra and Joypurhat district cropping intensity was very high $(246 \%-291 \%)$ which were dominating by the TCA over SCA and DCA (Table 1). The TCA had the major share of NCA in Adamdighi, Bogra sadar, Dupchachia, Kahalu, Nandigram, Shibganj and Sonatola upazilas of Bogra district, all five upazilas of Joypurhat district, Iswardi, Pabna sadar and Santhia of Pabna district and Kazipur of Sirajganj district. A few upazilas were dominated by DCA viz-Dhunat, Gabtali, Sariakandi, Sherpur and Shajahanpur of Bogra district. In Pabna district Atghoria, Bera, Bhangura, Chatmohar, Faridpur and Sujanagar upazilas and in Sirajganj district all upzilas except Kazipur were dominated by DCA over SCA and TCA (Table 1). The area which could not defined under SCA, DCA,

TCA or QCA was considered as others whose coverage is less than 1% of the NCA. For availability of irrigation water in dry season, supply of modern varieties of various crops, skilled technology transfer system, knowledge of modern crop management practices, good communication and marketing facilities helped increasing land use efficiency in a given area (FAO, 1988).

Cropping patterns of Bogra

In total 177 cropping patterns were observed in Bogra region of which six cropping patterns with exclusive rice crop covers about 34% of the NCA. There were 55 cropping patterns with exclusive non-rice crop occupying over 12% of the NCA. Rest of the NCA i.e. about 54% area is covered by 116 rice - non rice cropping patterns (Appendix 1).

Rice and non-rice crops at a glance

Table 2 presents six cropping patterns where rice was the only crop round the year. It comprises about 34% of the NCA in the region. Among them single rice, double rice and triple rice areas represent around $6 \%, 25 \%$ and 3% respectively. It reflects the unparallel dominance of rice in the cropping systems in Bogra region. In case of individual pattern, Boro-Fallow-T. Aman has the highest coverage (approx. 22\%) and was recorded in 27 upazilas out of 35 . The second dominant pattern single Boro area occupied 5.68% of NCA which was reported in 21 upazilas. Boro-Aus-T. Aman covered 3\% of NCA and was obsrved in 15 upazilas. Single T. Aman area was very negligible (0.23%) with its existence in only two upazilas.

In the current investigation, 55 cropping patterns were identified that was free from rice. Among these 55 patterns first 40 have been arranged in descending order in Table 3. The rest 15 patterns with negligible area coverage (Table 9) where they are arranged with other patterns of different categories. Aggregate of the 55 patterns have engaged 82,815 hectares of land, which is equivalent to more than 12% of NCA in the region. In critical comparison it is clear that exclusive rice area is about three

Table 1. Land use of different upazilas in Bogra region (area in hectare), 2014-15.

	Upazila	Area of upazila	Annual crop	SCA	DCA	TCA	QCA	Other	NCA	C.I. (\%)
01	Adamdighi	16890	40	200	4450	7920	0	130	12740	261
02	Bogra	17734	150	0	1940	8700	300	110	11200	282
03	Dhunat	24712	50	920	14750	3570	150	100	19540	215
04	Dubchachia	16426	30	0	3090	10490	0	110	13720	277
05	Gabtali	24375	120	1210	12980	4710	0	140	19160	218
06	Kahalu	23879	30	60	4700	14310	0	130	19230	274
07	Nandigram	26551	10	0	9000	9500	3700	100	22310	276
08	Sariakandi	40858	40	3700	15620	4850	0	130	24340	205
09	Sherpur	29640	130	1490	15010	6390	790	130	16040	227
10	Shibganj	31148	150	0	3360	21960	0	120	23950	282
11	Shajahanpur	22108	620	630	7860	7290	0	130	26070	241
12	Sonatola	15693	150	730	5790	6920	130	130	13850	246
13	Akkelpur	14046	90	0	4100	6505	0	145	10840	260
14	Joyprhat	23864	800	100	6030	12340	0	130	19400	259
15	Kalai	16636	10	0	1485	12280	0	135	13910	289
16	Khetlal	14260	30	10	1010	10490	0	140	11680	291
17	Panchbibi	27853	570	0	9800	12100	0	200	22670	251
18	Atghoria	18380	220	800	6710	6130	30	130	14020	237
19	Bera	24871	700	3540	12330	1250	0	180	18000	183
20	Bhangura	13428	80	2170	6890	1780	0	160	11080	196
21	Chatmohar	29405	120	1150	17950	5700	0	150	25070	218
22	Faridpur	13897	40	1000	9350	1000	0	150	11540	200
23	Iswardi	26947	3500	30	2590	12530	0	150	18800	247
24	Pabna sadar	44259	700	1580	11000	22200	0	120	35600	256
25	Santhia	33152	270	0	5950	19100	0	150	25470	274
26	Sujanagar	33444	290	3750	16100	4370	0	180	24690	201
27	Belkuchi	16254	50	0	10300	2440	0	160	12950	219
28	Chowhali	23209	10	4440	4220	3940	0	100	12710	196
29	Kazipur	34763	300	9280	5840	7350	0	130	22900	190
30	Kamarkhanda	9163	120	540	4220	2700	0	140	7720	227
31	Raiganj	26667	400	1100	17880	2300	0	120	21800	203
32	Shahjadpur	32462	10	1870	16900	6000	0	120	24900	217
33	Sirajganj	30855	1500	1240	16550	4220	0	190	23700	206
34	Tarash	29732	10	3675	17635	3305	0	125	24750	198
35	Ullapara	41461	40	5440	18070	8390	0	150	32090	209
	Bogra region		11380	50655	321460	275030	5100	4815	668440	234

SCA-Single cropped area, DCA-Double cropped area, TCA-Triple cropped are, QCA-Quadruple cropped area, NCA-Net cropped area and C.I.-Cropping Intensity.

Table 2. Cropping patterns with exclusive rice in Bogra region, 2014-15.

	Cropping pattern	Area (ha)	$\%$ of NCA	Frequency (no. of upazila)
01	Boro-Fallow-T. Aman	146250	21.87	27
02	Boro-Fallow-Fallow	37300	5.58	21
03	Boro-Aus-T. Aman	19700	2.95	15
04	Boro-B. Aman	18650	2.79	10
05	Fallow-Fallow-T. Aman	1550	0.23	2
06	Boro-Aus-Fallow	670	0.10	3
	Total area for exclusive rice	225000	33.66	-

NCA-Net cropped area.
76 Islam et al

Table 3. Cropping patterns with exclusive non-rice in Bogra region, 2014-15.

	Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01	Vegetab-Vegetab-Vegetab	16030	2.40	22
02	Onion-Jute-Fallow	10080	1.51	5
03	Lentil-Jute-Fallow	6650	0.99	10
04	Chilli-Jute-Fallow	4620	0.69	10
05	Groundnut-Fallow-Fallow	4280	0.64	9
06	Wheat-Jute-Fallow	4090	0.61	11
07	Vegetab-Vegetab-Fallow	3730	0.56	10
08	Maize-Jute-Fallow	3300	0.49	6
09	Onion-Vegtab-Vegetab	3100	0.46	14
10	Maize-Fallow-Fallow	2520	0.38	5
11	Wheat-Vegetab-Vegetab	2100	0.31	3
12	Millet (kaon)+Sesame-Fallow	1720	0.26	4
13	Chilli-Vegetab-Fallow	1650	0.25	10
14	Potato-Maize-Vegetab	1500	0.22	1
15	Vegetab-Jute-Fallow	1240	0.19	4
16	Fallow-Fallow-Blackgram	1210	0.18	6
17	Grasspea-Fallow-Fallow	1005	0.15	3
18	Vegetab-Onion-Aus	1000	0.15	1
19	Wheat-Sesame-Fallow	1000	0.15	3
20	Vegetab-Fallow-Fallow	900	0.13	3
21	Wheat-Fallow-Blackgram	900	0.13	1
22	Lentil-Sesame-Fallow	810	0.12	4
23	Groundnut-Fallow-Blackgram	800	0.12	1
24	S.Potato-Jute-Fallow	780	0.12	3
25	Chilli-Fallow-Fallow	710	0.11	4
26	S.Potato-Fallow-Fallow	675	0.10	14
27	Coriander-Vegetab-Fallow	630	0.09	2
28	Grasspea-Jute-Fallow	550	0.08	3
29	Sesame-Fallow-Blackgram	500	0.07	1
30	Wheat-Jute-Blackgram	500	0.07	1
31	Garlic-Jute-Fallow	430	0.06	2
32	Grasspea-Sesbania-Fallow	400	0.06	1
33	Groundnut-Millet (kaon)-Fallow	380	0.06	2
34	Vegetab-Jute-Vegetab	380	0.06	1
35	Onion-Sesame-Fallow	350	0.05	2
36	Garlic-Vegetab-Vegetab	345	0.05	9
37	Groundnut-Sesame-Fallow	300	0.04	1
38	Lentil-Vegetab-Vegetab	270	0.04	5
39	Wheat-Fallow-Fallow	230	0.03	1
40	Vegetab-Fallow-Blackgram	200	0.03	3
41-55	Other 15 patterns (in Table 9)	950	0.14	-
	Total area for non-rice exclusive	82815	12.39	

folds of exclusive non-rice area. In Bogra region crop diversity is much wider than that of other regions like Sylhet and Chittagong where exclusive rice area covers 37 folds and 23 folds, respectively of exclusive non-rice
area (Muttaleb et al., 2017; Shahidullah et al., 2017). Appropriate cropping patterns may facilitate maximum possible land utilization as well as efficient use of other scarce resources in a sustainable manner. Diversified cropping
pattern may be an option for the farmers as a coping strategy against risks (Mandal and Bezbaruah, 2013). Typology of different cropping systems is the base for the managers of these systems to intensify production (Shriar, 2000).

Deep water rice

Table 4 presents deep water rice dominating 21 patterns which intogether covered 9.48% of NCA. Among thm, first 18 patterns cover 63,160 ha whereas other three minutely distributed patterns cover only 220 ha (Table 9). Boro-B. Aman cropping pattern covers the highest area of 18,650 hectares which represents about 2.79% of the regions NCA. This pattern is distributed over 10 upazilas out of 35 . The second highest Wheat-B. Aman cropping pattern covers 7,920 hectares and distributed over only six upazilas. Grasspea-B. Aman is the third dominant cropping pattern under deep water ecosystem which is distributed over the highest number of upazilas. Deep water rice with lentil, maize, pea and grass pea were the narrow existence covered only 0.3% of NCA. The water level of this ecosystem ranges between 150 and 400 cm , and water usually remains 3-4 months. Special rice varieties known as 'floating rice' are planted in these areas. In the past Bangladesh had had a land coverage of 3 million hectares for deepwater rice (Jackson et al., 1972). In course of time the continuous effort on modern agriculture shifted DWR area mainly to modern Boro. Now the area under deep water rice in Bangladesh is reduced to 0.4 million hectares (Nasim et al., 2017). Though this cropping system is less productive than other modern cropping systems, however, the specific fragile ecosystem still struggling because of no other alternatives.

Non-rice cereal crops

There were forty-three cropping patterns recorded in Table 5. In these patterns wheat and maize were major crops whereas barley and millets (cheena and kaon) were recognized as minor crops. Wheat-Jute-T. Aman was the most dominant pattern which possessed 2.18% of NCA and reported in 24 upazilas out of 35 .

In this documentation the aggregate of nonrice cereal cropping patterns covered 9.61% of NCA. The total area coverage under nonrice cereal crops is 64,475 ha where the first 31 patterns presented in the Table 5 covered 63,730 ha. The remaining 12 patterns are scatteredly distributed over the region which is presented in Table 9. The area coverage of these 12 patterns is only 745 ha which is about 0.11% of the net cropped area.

Oil-seed crops

Table 6 presents 31 cropping patterns of oil seed crops. Among the patterns the first 34 patterns possessed 135,700 ha whereas other five patterns covered only 385 ha (Table 9). Mustard is covering the largest area whereas groundnut is cultivated in the smallest area among the oil-seed crops. The mustard crop alone was leading 15 cropping patterns with an area coverage of 111,050 ha which is equivalent to 16.61% of NCA in the region and it is fourfifths of the total oil-seed crop area. Mustard-Boro-T. Aman is a favorite cropping pattern reported in 25 upazilas in this region and the area coverage is about 6.00% of NCA although the highest area coverage among the oil-seed crops is covered by Mustard-Boro-Fallow cropping pattern (7.62\% of NCA).

Pulse crops

In total 41 cropping patterns of the pulse crops are enlisted in the Table 7. Among them grasspea was covering the largest area (17,445 ha) whereas pea is cultivated in the smallest area (680 ha). Lentil-Jute-Fallow was the dominant cropping pattern in respect of area coverage under pulse crop in the region on the other hand Gasspea-B. Aman was the most widely distributed pulse crop pattern over the region (Table 7). The total area coverage of pulse crop is about 49,585 hectares of which 34 patterns listed in the Table 7 covered 48,880 ha area. The remaining 705 ha area is covered by other seven patterns which are presented in the Table 9. In case of pea there are only two cropping patterns viz Pea-B. Aman and Pea-Aus-Vegetable. These two patterns in-together occupied only 0.1% of NCA. In the documentation of pulse

Table 4. Cropping patterns under deep water rice ecosystem in Bogra region, 2014-15.

Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01 Boro-B. Aman	18650	2.79	10
02 Wheat-B. Aman	7920	1.18	6
03 Grasspea-B. Aman	6470	0.97	12
04 Mustard-Boro-B. Aman	5000	0.75	4
05 Onion-B. Aman	3650	0.55	7
06 Garlic-B. Aman	3100	0.46	4
07 Blackgram-B. Aman	2950	0.44	5
08 Grasspea-Boro-B. Aman	2600	0.39	2
09 Mustard-B. Aman	2300	0.34	3
10 Blackgram (Fod)-Boro-B. Aman	2000	0.30	1
11 Onion-Sesame+B. Aman	1800	0.27	2
12 Grasspea-Sesame+B. Aman	1700	0.25	1
13 Fallow-Sesame+B. Aman	1400	0.21	2
14 Lentil-Sesame+B. Aman	980	0.15	1
15 Mustard-B. Aus+B. Aman	800	0.12	1
16 Lentil-B. Aman	790	0.12	4
17 Maize-B. Aman	650	0.10	2
18 Pea-B. Aman	400	0.06	2
19-21 Other three patterns (in Table 9)	220	0.03	-
Total DW rice	63380	9.48	

Table 5. Cropping patterns for non-rice cereal crops in Bogra region, 2014-15.

Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01 Wheat-Jute-T. Aman	14540	2.18	24
02 Wheat-B. Aman	7920	1.18	6
03 Wheat-Aus-Fallow	4700	0.70	2
04 Wheat-Jute-Fallow	4090	0.61	11
05 Wheat-Aus-T. Aman	3630	0.54	13
06 Maize-Jute-Fallow	3300	0.49	6
07 Maize-Fallow-Fallow	2520	0.38	5
08 Wheat-Sesame-T. Aman	2470	0.37	7
09 Maize-Jute-T. Aman	2255	0.34	4
10 Wheat-Vegetab-Vegetab	2100	0.31	3
11 Wheat-Mungbean-T. Aman	1990	0.30	6
12 Millet (kaon)+Sesame-Fallow	1720	0.26	4
13 Wheat-Fallow-T. Aman	1560	0.23	3
14 Millet (kaon)-Fallow-T. Aman	1500	0.22	1
15 Potato-Maize-Vegetab	1500	0.22	1
16 Potato-Maize-T. Aman	1200	0.18	4
17 Wheat-Sesame-Fallow	1000	0.15	3
18 Wheat-Fallow-Blackgram	900	0.13	1
19 Wheat-Maize-T. Aman	700	0.10	1
20 Maize-B. Aman	650	0.10	2
21 Maize-Fallow-T. Aman	640	0.10	5
22 Wheat-Jute-Blackgram	500	0.07	1
23 Groundnut-Millet (kaon)-Fallow	380	0.06	2
24 Maize-Maize-T. Aman	330	0.05	4
25 Maize-Aus-Fallow	320	0.05	3
26 Maize-Sesame-T. Aman	300	0.04	1
27 Potato-Maize-Aus	300	0.04	1
28 Potato-Maize-Aus-Vegetab	300	0.04	1
29 Wheat-Fallow-Fallow	230	0.03	1
30 Millet (cheena)-Jute-Fallow	170	0.03	1
31 Barley-Fallow-Fallow	15	0.00	2
32-43 Other 12 patterns (in Table 9)	745	0.11	-
Total for non-rice cereal crops	64475	9.61	

Table 6. Cropping patternsof oil-seed crops in Bogra region, 2014-15.

Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01 Mustard-Boro-Fallow	50940	7.62	15
02 Mustard-Boro-T. Aman	40110	6.00	25
03 Mustard-Boro-B. Aman	5000	0.75	4
04 Groundnut-Fallow-Fallow	4280	0.64	9
05 Mustard-Jute-T. Aman	2700	0.40	3
06 Mustard-Boro-Aus	2560	0.38	2
07 Wheat-Sesame-T. Aman	2470	0.37	7
08 Mustard-Boro-Aus-T. Aman	2330	0.35	4
09 Mustard-B. Aman	2300	0.34	3
10 Mustard-Aus-T. Aman	2200	0.33	4
11 Onion-Sesame-T. Aman	2200	0.33	2
12 Onion-Sesame+B. Aman	1800	0.27	2
13 Millet (kaon)+Sesame-Fallow	1720	0.26	4
14 Grasspea-Sesame+B. Aman	1700	0.25	1
15 Lentil-Sesame-T. Aman	1680	0.25	6
16 Fallow-Sesame+B. Aman	1400	0.21	2
17 Wheat-Sesame-Fallow	1000	0.15	3
18 Lentil-Sesame+B. Aman	980	0.15	1
19 Grasspea-Sesame-T. Aman	970	0.15	2
20 Lentil-Sesame-Fallow	810	0.12	4
21 Groundnut-Fallow-Blackgram	800	0.12	1
22 Mustard-B.Aus+B. Aman	800	0.12	1
23 Mustard-Boro-Jute	700	0.10	1
24 Potato-Sesame-T. Aman	600	0.09	2
25 Groundnut-Jute-T. Aman	500	0.07	1
26 Sesame-Fallow-Blackgram	500	0.07	1
27 Mustard-Aus-Blackgram	400	0.06	1
28 Mustard-Mungbean-T. Aman	400	0.06	1
29 Groundnut-Millet (kaon)-Fallow	380	0.06	2
30 Onion-Sesame-Fallow	350	0.05	2
31 Mustard-Sesame-T. Aman	320	0.05	2
32 Groundnut-Sesame-Fallow	300	0.04	1
33 Maize-Sesame-T. Aman	300	0.04	1
34 Sesame-Aus-Fallow	200	0.03	1
35-39 Other five patterns (in Table 9)	385	0.06	-
Total oil-seed crops	136085	20.36	

crop grasspea reported its widest spreading in the region. One pattern is available in 12 out of 35 upazilas. Finally the aggregate area of the pulse crop cropping system stands for 7.42% of the NCA in Bogra region.

Vegetables and spices crops

Fifty-three cropping patterns have been arranged in descending order according to area coverage (Table 8). Potato and other vegetables of Rabi, Kharif-I and Kharif-II; spices viz chilli, onion, garlic are included in this list. A row is included at the end of the Table 8 representing
an aggregate of 25 patterns of vegetables and spices, which is elaborately presented in the Table 9 with other patterns of different categories. The most contributing cropping pattern is Potato-Boro-T. Aman covering about 13.26% of NCA, which was distributed over 17 upazilas. Year round vegetable was the second most dominant cropping pattern which possessed 16,030 ha covering 2.40% of NCA and recorded in 22 upazilas out of 35 . Onion-Jute-Fallow is the third dominant pattern but exists only in five upazilas. Among the spices onion occupied the major area under

Table 7. Cropping patterns of pulse crops in Bogra region, 2014-15.

Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01 Lentil-Jute-Fallow	6650	0.99	10
02 Grasspea-B. Aman	6470	0.97	12
03 Lentil-Aus-T. Aman	3340	0.50	9
04 Blackgram-B. Aman	2950	0.44	5
05 Grasspea-Boro-Fallow	2950	0.44	5
06 Grasspea-Boro-B. Aman	2600	0.39	2
07 B.gram(Fodder)-Boro-B. Aman	2000	0.30	1
08 Wheat-Mungbean-T. Aman	1990	0.30	6
09 Boro-Fallow-Blackgram	1960	0.29	7
10 Grasspea-Sesame+B. Aman	1700	0.25	1
11 Lentil-Sesame-T. Aman	1680	0.25	6
12 Fallow-Fallow-Blackgram	1210	0.18	6
13 Grasspea-Fallow-Fallow	1005	0.15	3
14 Lentil-Sesame+B. Aman	980	0.15	1
15 Lentil-Jute-T. Aman	975	0.15	7
16 Grasspea-Sesame-T. Aman	970	0.15	2
17 Wheat-Fallow-Blackgram	900	0.13	1
18 Lentil-Sesame-Fallow	810	0.12	4
19 Grasspea-Jute-T. Aman	800	0.12	1
20 Groundnut-Fallow-Blackgram	800	0.12	1
21 Lentil-B. Aman	790	0.12	4
22 Onion-Aus-Blackgram	740	0.11	3
23 Grasspea-Jute-Fallow	550	0.08	3
24 Sesame-Fallow-Blackgram	500	0.07	1
25 Wheat-Jute-Blackgram	500	0.07	1
26 Boro-Aus-Blackgram	410	0.06	2
27 Grasspea-Sesbania-Fallow	400	0.06	1
28 Mustard-Aus-Blackgram	400	0.06	1
29 Mustard-Mungbean-T. Aman	400	0.06	1
30 Pea-B. Aman	400	0.06	2
31 Lentil-Aus-Fallow	300	0.04	3
32 Pea-Aus-Vegetab	280	0.04	1
33 Lentil-Vegetab-Vegetab	270	0.04	5
34 Vegetab-Fallow-Blackgram	200	0.03	3
35-41 Other seven patterns (in Table 9)	705	0.11	
Total pulse crop	49585	7.42	

cultivation. Vegetables like colocasia, okra, amaranths, brinjal, cucurbits, etc are grown in medium upland adjacent to rice fields during rainy season and potato, sweet gourd, cole crops, leafy vegetables etc are grown during winter season in Tripura (Das et al., 2015).

Sporadic and distinct cropping patterns

There are some cropping patterns which are extremely location-specific, however, with a large area coverage. The Blackgram (fodder)-Boro-B. Aman is grown on 2,000 hectares (Table 7) in Shahjadpur upazila of Sirajganj
district. It is a unique pattern in Bangladesh. Shahjadpur is the main centre of the milch cattle/cow under the supervision of Milk Vita Cooperative Systems. Now-a-days other NGO and private enterprises are also going there for milk collection. For feeding these cattle the farmers of the locality has adopted this cropping system. In this system blackgram is grown as relay crop where the seeds of blackgram are broadcast in the standing deepwater rice at flowering stage. After harvesting of rice, blackgram is rapidly grown and are subjected to cattle feeding at green stage. Grasspea-

Table 8. Cropping patterns for vegetables and spices crops in Bogra region, 2014-15.

Cropping pattern	Area (ha)	\% of NCA	Frequency (no. of upazila)
01 Potato-Boro-T. Aman	88610	13.26	17
02 Vegetab-Vegetab-Vegetab*	16030	2.40	22
03 Onion-Jute-Fallow	10080	1.51	5
04 Onion-Jute-T. Aman	9330	1.40	12
05 Vegetab-Boro-T. Aman	4760	0.71	7
06 Chilli-Jute-Fallow	4620	0.69	10
07 Boro-Vegetab(Float/Norm**)	4000	0.60	6
08 Vegetab-Vegetab-Fallow	3730	0.56	10
09 Onion-B. Aman	3650	0.55	7
10 Garlic-B. Aman	3100	0.46	4
11 Onion-Vegtab-Vegetab	3100	0.46	14
12 Chilli-Jute-T. Aman	2300	0.34	2
13 Potato-Boro-Aus-T. Aman	2250	0.34	2
14 Onion-Sesame-T. Aman	2200	0.33	2
15 Wheat-Vegetab-Vegetab	2100	0.31	3
16 Vegetab-Aus-Fallow	2060	0.31	5
17 Onion-Aus-T. Aman	1910	0.29	3
18 Onion-Sesame+B. Aman	1800	0.27	2
19 Vegetab-Fallow-T. Aman	1790	0.27	6
20 Potato-Vegetab-T. Aman	1670	0.25	5
21 Vegetab-Aus-T. Aman	1665	0.25	6
22 Chilli-Vegetab-Fallow	1650	0.25	10
23 Potato-Maize-Vegetab	1500	0.22	1
24 Potato-Jute-T. Aman	1280	0.19	7
25 Vegetab-Jute-Fallow	1240	0.19	4
26 Chilli-Aus-Fallow	1210	0.18	4
27 Potato-Maize-T. Aman	1200	0.18	4
28 Vegetab-Vegetab-T. Aman	1030	0.15	4
29 Garlic-Aus-T. Aman	1010	0.15	2
30 Vegetab-Onion-Aus	1000	0.15	1
31 Vegetab-Jute-T. Aman	980	0.15	3
32 Vegetab-Fallow-Fallow	900	0.13	3
33 Potato-Boro-Fallow	750	0.11	3
34 Onion-Aus-Blackgram	740	0.11	3
35 Chilli-Fallow-Fallow	710	0.11	4
36 Garlic-Jute-T. Aman	700	0.10	6
37 Coriander-Vegetab-Fallow	630	0.09	2
38 Potato-Sesame-T. Aman	600	0.09	2
39 Chilli-Aus-T. Aman	430	0.06	2
40 Garlic-Jute-Fallow	430	0.06	2
41 Garlic-Fallow-T. Aman	420	0.06	5
42 Vegetab-Jute-Vegetab	380	0.06	1
43 Onion-Sesame-Fallow	350	0.05	2
44 Garlic-Vegetab-Vegetab	345	0.05	9
45 Potato-Boro-Vegetab	300	0.04	1
46 Potato-Maize-Aus	300	0.04	1
47 Potato-Maize-Aus-Vegetab	300	0.04	1
48 Vegetab-Boro-Jute	300	0.04	2
49 Pea-Aus-Vegetab	280	0.04	1
50 Lentil-Vegetab-Vegetab	270	0.04	5
51 Boro-Vegetab-T. Aman	200	0.03	2
52 Potato-Fallow-T. Aman	200	0.03	1
53 Vegetab-Fallow-Blackgram	200	0.03	3
54-78 Other 25 patterns (in Table 9)	1485	0.22	-
Total vegetab and spices	194075	29.03	

Table 9. Rare cropping patterns covering non-significant area in Bogra region, 2014-15.

	Cropping pattern	Area (ha)	\% of NCA	Frequency	Upazila
01	Mustard-Maize-T. Aman	190	0.03	1	Sherpur
02	Potato-Aus-T. Aman	180	0.03	2	Shahjahanpur+Pabna sadar
03	Blackgram-Jute-Fallow	170	0.03	2	Sonatola+Kazipur
04	Millet(cheena)-Jute-Fallow	170	0.03	1	Sariakandi
05	Vegetab-Boro-Fallow	170	0.03	1	Chowhali
06	Grasspea-B.Aus+B. Aman	160	0.02	2	Kazipur+Sirajganj sadar
07	Coriander-Fallow-Fallow	150	0.02	2	Bhangura+Chowhali
08	S.Potato-Fallow-T. Aman	115	0.02	3	Kalai+Khetlal+Kazipara
09	Wheat-Mungbean-Fallow	105	0.02	2	Pabna sadar+Tarash
10	Lentil-Mungbean-T. Aman	100	0.02	1	Pabna sadar
11	Maize-Aus-T. Aman	100	0.02	2	Shajahanpur+Pabna sadar
12	Mustard-Boro-Jute-T. Aman	100	0.02	1	Sonatola
13	Potato-Boro-Jute-T. Aman	90	0.01	1	Sherpur
14	Onion-Fallow-T. Aman	80	0.01	2	Dubchachia+Khetlal
15	Pea-Fallow-T. Aman	80	0.01	1	Chowhali
16	Vegetab-Maize-T. Aman	80	0.01	2	Shajahanpur+Tarash
17	Maize-Vegetab-T. Aman	70	0.01	1	Shajahanpur
18	Onion-Aus-Fallow	70	0.01	2	Adamdighi+Kazipur
19	Onion-Maize-T. Aman	70	0.01	1	Sherpur
20	Potato-S.gourd-Aus	70	0.01	2	Gabtali+Akkelpur
21	Garlic-Fallow-Fallow	60	0.01	1	Dhunat
22	Coriander-Sesame-T. Aman	55	0.01	2	Pabna+Tarash
23	Blackgram-Aus-T. Aman	50	0.01	1	Sherpur
24	S.Potato-Vegetab-Fallow	50	0.01	1	Bogra sadar
25	Blackcumin-Jute-Fallow	40	0.01	1	Chowhali
26	Chilli-Vegetab-T. Aman	40	0.01	1	Dubchachia
27	Grasspea-Aus-T. Aman	40	0.01	1	Atghoria
28	Maize-Maize-Fallow	40	0.01	1	Shajahanpur
29	Muskmelon-Fallow-Fallow	40	0.01	1	Sirajganj sadar
30	Chilli-B. Aman	30	0.00	1	Bera
31	Coriander-Jute-Fallow	30	0.00	1	Kazipur
32	Garlic-Aus-Fallow	30	0.00	1	Adamdighi
33	Maize-Sesame-Fallow	30	0.00	1	Tarash
34	Potato+S.gourd-Aus-T. Aman	30	0.00	1	Sonatola
35	W.Melon-B. Aman	30	0.00	1	Tarash
36	Blackcumin-Jute-T. Aman	20	0.00	1	Kazipur
37	Maize-Vegetab-Fallow	20	0.00	1	Shibganj
38	Potato-Maize-Fallow	20	0.00	1	Sirajganj sadar
39	Barley-Fallow-Fallow	15	0.00	2	Chowhali+Tarash
40	Chilli-Fallow-T. Aman	10	0.00	1	Kalai
41	Fallow-Sesame-T. Aman	10	0.00	1	Sherpur
42	Millet(cheena)-Fallow-Fallow	10	0.00	1	Sonatola
43	Potato-Onion-T. Aman	10	0.00	1	Khetlal
44	Wheat-Vegetab-T. Aman	10	0.00	1	Khetlal
45	S.Potato-Jute-T. Aman	5	0.00	1	Akkelpur
	Total	3045	0.46		

Sesame+B. Aman is grown on 1,700 hectares in Chowhali upazila of the same district. Millet (kaon)-Fallow-T. Aman is cultivated on 1,500 hectares only in Sariakandi of Bogra district. The millet is a small grain cereal crop, which stands on the bank of extinction for its low yield and less economic value, although it is a very nutritious food. Only some marginal land like charland is used for its cultivation (FAO, 1988).

Rare cropping patterns

In the present investigation, 45 cropping patterns have been identified as rare cropping patterns with negligible area coverage with seldom existence (Table 9). These are location specific system and are limited in one or two upazilas of the region. Total area coverage of the 45 patterns is far less than 1\% of NC Among them the highest area was allotted for Mustard-Maize-T. Aman (190 ha) and it is recorded only in Sherpur upazila of Bogra district. The smallest area was recorded for S.Potato-Jute-T. Aman cropping patterns whose coverage was only five hectares (Table 9) and is recorded only in Akkelpur upazila of Joypurhat district.

Most dominant cropping pattern

Boro-Fallow-T. Aman was the most dominant cropping pattern in Bogra region. It covers 21.88% of NCA in the region and is available in 27 upazilas out of 35 (Table 10). The highest area under this cropping was recorded 16,500 hectares in Raiganj upazila of Sirajganj district which represents 11.28% of the total Boro-Fallow-T. Aman area of the region. In consideration of indivdual upazila it also covered the highest area and it is 77.10% of its NCA for this pattern alone. Chatmohar and Bhangura upazila of Pabna district had negligible area coverage for this pattern. In some portion of the double rice area some short duration Rabi crops can be grown before Boro transplanting if appropriate varieties and other related technologies are made available (FAO, 1988). In the country-wide compilation of data it was observed that Boro-F-T. Aman was the most dominant cropping pattern in Bangladesh covering 2.31 million ha (27% of NCA in the country) with its distribution in 426 upazilas of 63 districts (Nasim et al., 2017).

Second dominant cropping pattern

The second dominant cropping pattern in Bogra region is Potato-Boro-T. Aman. It belongs to 13.26% of NCA of the region and spread over 17 upazilas (Table 11). Shibganj upazila of Bogra district holds the highest area coverage ($18,200 \mathrm{ha}$) under this cropping pattern. Kalai upazila ranks in second position in terms of area coverage ($11,800 \mathrm{ha}$) however this upazila allotted the biggest share (84.83%) of the upazila NCA. In the country-wide compilation of data it was observed that Potato-Boro-T. Aman was the $8^{\text {th }}$ dominant cropping pattern in Bangladesh covering 1.80 lac ha $(2.11 \%$ of NCA in the country) with its distribution in 115 upazilas of 33 districts (Nasim et al., 2017).

Third dominant cropping pattern

Mustard-Boro-Fallow cropping pattern holds the third largest area coverage 50,940 hectares in Bogra region. This area is an equivalent to 7.62% of NCA in the region. This pattern Mustard-Boro-Fallow is distributed over only 15 upazilas. Shahjadpur and Ullapara upazila have the highest area coverage under this pattern and it is 13,000 ha for both the upazilas which stands for 25.52% of the total area under this pattern in the region for both the locations (Table 12). Belkuchi upazila ranks in third position for this cropping pattern, however, Panchbibi, Santhia and Kazipur covers a minute area of 200 ha for each upazila.

Fourth dominant cropping pattern

Fourth dominant cropping pattern Mustard-Boro-T. Aman has occupied 40,110 hectares representing 6.0% share of NCA in Bogra region (Table 13). This pattern is distributed over 25 upazilas where Kahalu ranked in top position. This upazila has 4,800 ha area of Mustard-Boro-T. Aman which is 24.96% of upazila NCA. Dupchachia upazila ranks in third position with 3,700 ha area for this pattern; however, this upazila has allotted the biggest share (26.94\%) of its NCA.

Fifth dominant cropping pattern

Fifth dominant cropping pattern Boro-FallowFallow had been covering 37,300 hectares

Table 10. Distribution of the most dominant Boro-F-T. Aman cropping patterns in Bogra region, 2014-15.

	Upazila	Area (ha)	\% of upazila NCA	\% of the pattern in region
01	Raiganj	16500	77.10	11.28
02	Sherpur	13600	57.14	9.30
03	Dhunat	13100	67.18	8.96
04	Gabtali	11500	60.37	7.86
05	Sirajganj sadar	9000	40.54	6.15
06	Tarash	8700	35.15	5.95
07	Nandigram	8000	35.87	5.47
08	Sariakandi	8000	32.92	5.47
09	Panchbibi	7900	35.75	5.40
10	Shajahanpur	6500	40.88	4.44
11	Joypurhat sadar	5700	30.65	3.90
12	Kahalu	4700	24.48	3.21
13	Sonatola	4700	34.31	3.21
14	Atghoria	4500	32.61	3.08
15	Adamdighi	4100	32.28	2.80
16	Akkelpur	3900	36.28	2.67
17	Kazipur	3200	14.16	2.19
18	Dubchachia	3000	21.90	2.05
19	Iswardi	2000	13.07	1.37
20	Bogra sadar	1800	16.29	1.23
21	Sujanagar	1800	7.38	1.23
22	Kalai	1400	10.07	0.96
23	Shibganj	1200	4.72	0.82
24	Kamarkhanda	800	10.53	0.55
25	Khetlal	300	2.58	0.21
26	Chatmohar	200	0.80	0.14
27	Bhangura	150	1.36	0.10
	Bogra region	146250	21.88	100.00

Table 11. Distribution of the $2^{\text {nd }}$ dominant Potato-Boro-T. Aman cropping pattern in Bogra region, 2014-15.

	Upazila	Area (ha)	$\%$ of upazila NCA	$\%$ of the pattern in region
01	Shibganj	18200	75.99	20.54
02	Kalai	11800	84.83	13.32
03	Khetlal	8900	76.20	10.04
04	Kahalu	8600	44.72	9.71
05	Dubchachia	6600	48.05	7.45
06	Pachbibi	6100	26.90	6.88
07	Bogra sadar	6000	53.56	6.77
08	Joypurhat sadar	5500	28.35	6.21
09	Akkelpur	5000	46.12	5.64
10	Shajahanpur	4000	16.98	4.51
11	Adamdighi	3300	25.90	3.72
12	Sonatola	2300	16.61	2.60
13	Gabtali	1300	6.78	1.47
14	Sherpur	360	1.38	0.41
15	Ullapara	250	0.78	0.28
16	Kamarkhanda	200	2.59	0.23
17	Tarash	200	0.81	0.23
	Bogra region	88610	13.26	100.00

Table 12. Distribution of the $3^{\text {rd }}$ dominant Mustard- Boro-Fallow cropping pattern in Bogra region, 2014-15.

	Upazila	Area (ha)	\% of upazila NCA	\% of the pattern in region
01	Shahjadpur	13000	52.20	25.52
02	Ullapara	13000	40.51	25.52
03	Belkuchi	6000	46.33	11.78
04	Tarash	5100	20.60	10.01
05	Chatmohar	4000	15.96	7.85
06	Faridpur	4000	34.64	7.85
07	Bera	1400	7.80	2.75
08	Bhangura	1100	9.92	2.16
09	Raiganj	800	3.66	1.57
10	Gabtali	740	3.86	1.45
11	Sujanagar	700	2.84	1.37
12	Sirajganj	500	2.11	0.98
13	Panchbibi	200	0.88	0.39
14	Santhia	200	0.79	0.39
15	Kazipur	200	0.87	0.39
	Bogra region	50940	7.62	100.00

Table 13. Distribution of the $4^{\text {th }}$ dominant Mustard-Boro-T. Aman cropping pattern in Bogra region, 2014-15.

	Upazila	Area (ha)	$\%$ of upazila NCA	$\%$ of the pattern in region
1	Kahalu	4800	24.96	11.97
2	Panchbibi	4200	18.52	10.47
3	Dubchachia	3700	26.94	9.22
4	Ullapara	3700	11.53	9.22
5	Adamdighi	3200	25.12	7.98
6	Joypurhat	3000	15.46	7.48
7	Dhunat	2000	10.23	4.99
8	Kamarkhanda	2000	4.86	4.99
9	Sirajganj	1600	6.74	3.99
10	Khetlal	1400	11.99	3.49
11	Sonatola	1300	9.39	2.99
12	Shariakandi	1200	4.93	2.74
13	Sherpur	1100	4.67	2.74
14	Shibganj	1100	4.22	2.74
15	Akkelpur	1100	10.15	2.49
16	Belkuchi	1000	7.72	2.24
17	Raiganj	900	4.11	1.99
18	Bogra	800	7.14	1.50
19	Shajahanpur	600	3.74	0.87
20	Kazipur	350	1.53	0.65
21	Tarash	260	1.05	0.50
22	Kalai	200	1.44	0.50
23	Atghoria	200	1.43	1.80
24	Bhangura	200	0.79	0.50
25	Santhia	200	6.00	0.50
	Bogra region	40110	100.00	

representing 5.58% share of NCA in Bogra region (Table 14). This pattern is distributed over 21 upazilas where Kazipur ranked in top position. This upazila had 7,600 ha area for single Boro pattern which is 33.17% of upazila NCA. Ullapara upazila ranked in second position in respect to area coverage. In the country-wide
compilation of data it was observed that the single Boro was the $2^{\text {nd }}$ dominant cropping pattern in Bangladesh covering 1.14 million ha (13% of NCA in the country) with its distribution in 342 upazilas of 59 districts (Nasim et al., 2017). This pattern is frequent and concurrently experienced by early flash

Table 14. Distribution of the $5^{\text {th }}$ dominant Boro-F-F cropping pattern in Bogra region, 2014-15.

	Upazila	Area (ha)	\% of upazila NCA	\% of the pattern in region
01	Kazipur	7600	33.17	20.38
02	Ullapara	5400	16.83	14.48
03	Tarash	3000	12.12	8.04
04	Chowhali	2400	18.88	6.43
05	Bhangura	2100	18.94	5.63
06	Sariakandi	2000	8.21	5.36
07	Sujanagar	1800	7.29	4.83
08	Shahjadpur	1800	4.23	4.83
09	Pabna	1500	4.21	3.02
10	Bera	1400	7.80	3.75
11	Gabtali	1200	6.26	2.68
12	Sherpur	1000	3.84	2.68
13	Chatmohar	1000	3.99	2.68
14	Faridpur	1000	8.66	2.68
15	Raiganj	1000	4.57	2.14
16	Atghoria	800	5.70	1.61
17	Shajahanpur	600	2.55	1.61
18	Sonatola	600	4.33	1.34
19	Kamarkhanda	500	6.46	1.07
20	Dhunat	400	2.05	0.54
21	Adamdighi	200	1.57	100.00

in April and cold injury at reproductive stage. Diversified cropping pattern may be resort for the farmer as a coping strategy with flood related risk (Mandal and Bezbaruah, 2013) but scope of diversification is limited due to environmental and climatic condition (FAO, 1988).

Crop diversity and cropping intensity

Higher number of available crops under cultivation in an area dictates its higher diversity. Number of cropping patterns is also a gross indicator of crop diversity. A total of 177 cropping patterns were identified in the whole area of Bogra region under this investigation. The highest number of cropping patterns was identified 36 in Kazipur upazila of Sirajganj district and that was 34 in Sonatola upazila in Bogra district (Table 15). The lowest number of cropping patterns was identified six in Nandigram followed by nine in Dubchachia and Kahalu upazila. The higher number of cropping patterns is generally related to higher level of diversity indices for cropping pattern. The upazilas having lower number of cropping patterns were related to either low land area or water logging or both. The highest value of
diversity index for cropping pattern was found 0.950 in Bera upazila that was followed by 0.912 in Chatmohar upazila. The lowest CDI was reported 0.718 in Raiganj of Sirajganj district followed by 0.734 in Kalai upazila in Joypurhat. The highest value of CDI was observed 0.978 in Pabna sadar followed by 0.972 in Bera upazila. The range of cropping intensity values was recorded $183-291 \%$. The maximum value was for Khetlal upazila of Joypurhat district and minimum for Bera upazila of Pabna district. As a whole the CDI of Bogra region was calculated 0.966 and the average cropping intensity at regional level was 234%. In a simultaneous study, the investigators identified 316 cropping patterns for whole Bangladesh; where the CDI value was 0.952 at national level and the national average of cropping intensity was 200\% (Nasim et al, 2017). Diversification of crops helps risk reduction as diversification allows a producer to balance low price in one or two crops with reasonable prices in other. (Blade and Slinkard, 2002). The farmers of Kerala diversified their cropping pattern to minimize risk of crop failures and price fluctuations (Mahesh, 1999).

Table 15. Crop diversity and cropping intensity in Bogra region, 2014-15.

	Upazila	No. of identified pattern	No. of crop	Diversity index for cropping pattern	Crop diversity index (CDI)	C.I. (\%)
01	Adamdighi	14	13	0.762	0.909	261
02	Bogra	16	18	0.675	0.879	282
03	Dhunat	22	17	0.535	0.794	215
04	Dubchachia	9	13	0.827	0.866	277
05	Gabtali	20	16	0.614	0.831	218
06	Kahalu	9	11	0.677	0.878	274
07	Nandigram	6	7	0.692	0.893	276
08	Sariakandi	19	17	0.852	0.929	205
09	Sherpur	32	15	0.660	0.863	227
10	Shibganj	16	15	0.499	0.810	282
11	Shajahanpur	22	14	0.761	0.905	241
12	Sonatola	34	22	0.835	0.936	246
13	Akkelpur	19	15	0.647	0.859	260
14	Joypurhat	14	15	0.795	0.920	259
15	Kalai	12	13	0.270	0.734	289
16	Khetlal	17	12	0.402	0.783	291
17	Panchbibi	13	10	0.768	0.908	251
18	Atghroria	28	13	0.868	0.949	237
19	Bera	29	20	0.950	0.972	183
20	Bhangura	16	13	0.859	0.931	196
21	Chatmohar	20	16	0.912	0.961	218
22	Faridpur	11	14	0.816	0.906	200
23	Iswardi	18	17	0.904	0.954	247
24	Pabna sadar	34	21	0.942	0.978	256
25	Santhia	25	16	0.891	0.962	274
26	Sujanagar	28	19	0.843	0.922	201
27	Belkuchi	14	14	0.759	0.894	219
28	Chowhali	26	26	0.901	0.944	196
29	Kazipur	36	21	0.845	0.940	190
30	Kamarkhanda	19	18	0.832	0.919	227
31	Raiganj	21	17	0.425	0.718	203
32	Shahjadpur	19	16	0.703	0.870	217
33	Sirajganj	25	21	0.831	0.917	206
34	Tarash	28	22	0.799	0.899	198
35	Ullapara	26	18	0.777	0.900	209
	Bogra region	177	35	0.919	0.966	234

CONCLUSION

The cropping intensity of the Bogra region was higher than the national average. Boro-Fallow-T. Aman, Potato-Boro-T. Aman, Mustard-BoroFallow, Mustard-Boro-T. Aman and single Boro were the dominant cropping patterns in the region. Exclusive rice area is about three folds of exclusive non-rice area. In Bogra region crop diversity is much wider than that of other regions. Based on the findings of the study, the following recommendations were made.

- Initiative to be taken to increase productivity of exclusive rice based cropping pattern.
- Effort might be given so that a portion of double-rice area could be brought under Potato-Boro-T. Aman and/or Mustard-Boro-T. Aman cropping systems.
- In the single Boro area suitable vegetables might be grown on floating bed system in wet season.
- The upazilas having unique or exceptional cropping patterns with large area coverage
might be studied in-depth to extrapolate to similar environments.
- Scope might be explored for the establishment of agro-food industry on the basis of potato crop.

REFERENCES

Agrawal, D J and A H Kassam. 1976. The importance of multiple cropping in increasing world food supplies. American Society of Agronomy, Madison, Wisconsin. 27: 2-3.
Blade, S F and A E Slinkard 2002. New Crop Development: The Canadian Experience. In: Trends in New Crops and New Uses. J Janick and A Whipkey (Editors). ASHS Press, Alexandria.
Das, Anup., G I Ramkrushna, GS Yadav, J Layek, C Debnath, B U Choudhury, K P Mohaptara, S V Ngachan and S Das. 2015. Capturing traditional practices of rice based farming systems and identifying interventions for resource conservation and food security in Tripura, India. Applied Ecology and Environmental Sciences. 3(4): 100-107.
FAO, 1988. Land Resources Appraisal of Bangladesh for Agricultural Development- Report 2: Agroecological regions of Bangladesh. Food and Agriculture Organization of the United Nations, Rome, Italy. 570p.
Gadge, S S. 2003. Influence of changes in cropping pattern on farmers' economic status. Indian J. Ext. Edu. 39(1\&2): 99-101.

Jackson, B R, A Yantasast, C Prechachat, M A Chowdhury and S M H Zaman. 1972. Breeding rice for deepwater
areas. International Rice Research Institute, Rice Breeding, Los Baňos, Philippines. in:517-528.
Kshirsagar, K G, S Pandey and M R Bellon. 1997. Farmers' perception, varietal characteristics and technology adoption: the case of rainfed village in eastern India. Discussion paper 5/97. Social Sciences Division, International Rice Research Institute. Los Baňos, Laguna, Philippines.
Mahesh, R. 1999. Causes and consequences of change in cropping pattern: A location specific study. Discussion Paper No. 11, Kerala Research Programme on Local Level Development, Centre for Development Studies, Thiruvananthapura.
Mandal, R and M P Bezbaruah. 2013. Diversification of cropping pattern: its determinants and role in flood affected agriculture of Assam Plains. Ind. Jn. of Agri. Econ. 68(2): 169-181.
Muttaleb, M A, S M Shahidullah, M Nasim and A Saha. 2017. Cropping systems and land use in Sylhet region. Bangladesh Rice J. 21(2): 283-298.

Nasim, M, S M Shahidullah, A Saha, M A Muttaleb, T L Aditya, M A Ali and M S Kabir. 2017. Distribution of Crops and Cropping Patterns in Bangladesh. Bangladesh Rice J. 21(2): 1-55.

Neena, D. 1998. Interstate variation in cropping pattern in India.Indian J. Regi. Sci. 30(2): 57-69.
Rashid, M H, A H Khan and M M Alam. 2005. Cropping systems dynamics in greater Khustia. J. Bangladesh Agril. Univ. 3(2):213-238.
Shahidullah, S M, M Nasim, M K Quais and A Saha. 2017. Diversity of Cropping Systems in Chittagong Region. Bangladesh Rice J. 21(2): 109-123.

Shriar, A J. 2000. Agricultural intensity and its measurement in frontier regions. Agroforestry Systems. 49 (3): 301318.

Appendix 1. List of cropping patterns in Bogra region, 2014-15.

[^0]: ${ }^{1}$ Rice Farming Systems Division, BRRI, Gazipur; *Corresponding author's E-mail: saurov.brri@gmail.com

