Multi-dimensional research impact assessment through bibliometrics, altmetrics, semantometrics, and webometrics
Authors
- Ahmed Al Marouf
Department of Computer Science, University of Calgary, Calgary, AB, Canada - Tanvir C TurinDepartment of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
DOI:
Keywords
altmetrics, semantometrics,
webometrics
Downloads
Correspondence
Publication history
Responsible editor
Reviewer
Funding
Ethical approval
Trial registration number
Copyright
Published by Bangabandhu Sheikh Mujib Medical University (currently, Bangladesh Medical University).

Scopus (https://www.scopus.com/): Scopus is one of the largest curated abstract and citation databases, covering a wide range of scientific journals, conference proceedings, and books. It includes over 76 million records, ensuring extensive coverage of global and regional scientific literature. It offers comprehensive citation data and analytics. Scopus data is widely used in research assessments, science policy evaluations, and university rankings. Its reliable and high-quality data supports large-scale analyses and benchmarking studies [4].
The analysis approach is to collect the citation data and conduct in-depth analysis using the citation counts. Some of the widely used methods in bibliometrics are citation analysis [7], co-citation analysis [8], bibliographic coupling [9] etc. Citation happens when one research paper mentions another in its references. Citation analysis [7] looks at how often a paper is cited, which can indicate its influence in a field. For example, if article “A” cites article “B”, it means that article “A” is using information from article “B”. If article “B” is cited by many other papers, it is likely an important study. Co-citation occurs when two papers are cited together by a third paper. This suggests that both papers are related in content. The more often two papers are cited together, the stronger their connection. The process of finding these from various research articles is known as co-citation analysis [8]. For example, if article “C” cites both article “A” and article “B”, we say that article “A” and article “B” are co-cited. If many other papers also cite them together, it suggests that they belong to the same research area. Bibliographic coupling [9] happens when two papers cite the same earlier paper. This indicates that these two papers are working with similar background research and are related. For Example, if both article “A” and article “B” cite article “C”, then article “A” and article “B” are bibliographically coupled. This means they are likely studying similar topics.
Altmetrics, abridgement of "alternative metrics," measure the impact of scholarly work based on online interactions and mentions [10]. This includes social media shares, blog posts, news articles, and other online platforms. Unlike the bibliometrics, which focuses on academic citations and publication trends, altmetrics analyses quantitative values of online presence.
Imagine a research paper on diabetes epidemiology that gets shared widely on Twitter, Facebook, discussed in blog posts, and covered in news articles. Altmetrics would track these interactions, showing how the paper is influencing public discourse and reaching a broader audience.
Altmetric (https://www.altmetric.com/): Altmetric captures where and how often a research output is mentioned online over the news portals, policy documents, social media platforms (Facebook, X , Twitter etc.), Wikipedia, or any blogs. For example, as of 22 May 2025, a paper titled “Lifetime risk of diabetes among First Nations and non–First Nations people” published in Canadian Medical Association Journal had an “altmetric attention score” of 640, which places the paper in the top 5% of all research outputs scored by Altmetric (https://cmaj.altmetric.com/details/12089307). This paper was mentioned in 80 news outlets, 1 policy source, 1 Facebook page, 24 X posts, etc. The overall score represents the summation of weighted counts all over online presence. This paper is in the top 5% of all research outputs scored by Altmetric and has High Attention Score compared to outputs of the same age (99th percentile).
By comparing the text of a new research paper with existing literature, semantometrics can assess how much new knowledge the paper contributes to its field. For instance, it can identify novel concepts or methodologies introduced by the paper. Grounded on the idea of semantic similarity-based method, Petr Knoth et al. developed a formula assessing the publication's contribution [11].

Tools/Websites
As of now, there is no mainstream, publicly available app or web platform where we can simply upload a publication and receive a semantometric score in the same way that one might check an Altmetric score or bibliometric citation count.
Webometric Analyst (http://lexiurl.wlv.ac.uk/): Webometric Analyst is a free Windows-based program for analysis of webometrics, including link analysis, network diagrams of the links between a collection of web sites. Users can find where a specific digital object and digital collections are being connected to.

Quantitative RIA metrics provide valuable, standardised insights into scholarly influence and reach, offering a bird's-eye view of research performance that enables comparisons across domains, institutions, and time periods. These metrics are essential for academic decision-making and strategic planning. However, while they offer comparability, they may not fully capture the complexity or broader significance of research impact, which often goes beyond numerical measures. Qualitative methods such as study quality assessments, narratives, and case studies complement quantitative metrics by adding depth and context. Therefore, the most effective research assessment combines both approaches, providing a holistic view that better reflects the multifaceted nature of research impact on academia and society.


Background characteristics | Number (%) |
Age at presentation (weeks)a | 14.3 (9.2) |
Gestational age at birth (weeks)a | 37.5 (2.8) |
Birth weight (grams)a | 2,975.0 (825.0) |
Sex |
|
Male | 82 (41) |
Female | 118 (59) |
Affected side |
|
Right | 140 (70) |
Left | 54 (27) |
Bilateral | 6 (3) |
Delivery type |
|
Normal vaginal delivery | 152 (76) |
Instrumental delivery | 40 (20) |
Cesarean section | 8 (4) |
Place of delivery |
|
Home delivery by traditional birth attendant | 30 (15) |
Hospital delivery by midwife | 120 (60) |
Hospital delivery by doctor | 50 (25) |
Prolonged labor | 136 (68) |
Presentation |
|
Cephalic | 144 (72) |
Breech | 40 (20) |
Transverse | 16 (8) |
Shoulder dystocia | 136 (68) |
Maternal diabetes | 40 (20) |
Maternal age (years)a | 27.5 (6.8) |
Parity of mother |
|
Primipara | 156 (78) |
Multipara | 156 (78) |
aMean (standard deviation), all others are n (%) |
Background characteristics | Number (%) |
Age at presentation (weeks)a | 14.3 (9.2) |
Gestational age at birth (weeks)a | 37.5 (2.8) |
Birth weight (grams)a | 2,975.0 (825.0) |
Sex |
|
Male | 82 (41) |
Female | 118 (59) |
Affected side |
|
Right | 140 (70) |
Left | 54 (27) |
Bilateral | 6 (3) |
Delivery type |
|
Normal vaginal delivery | 152 (76) |
Instrumental delivery | 40 (20) |
Cesarean section | 8 (4) |
Place of delivery |
|
Home delivery by traditional birth attendant | 30 (15) |
Hospital delivery by midwife | 120 (60) |
Hospital delivery by doctor | 50 (25) |
Prolonged labor | 136 (68) |
Presentation |
|
Cephalic | 144 (72) |
Breech | 40 (20) |
Transverse | 16 (8) |
Shoulder dystocia | 136 (68) |
Maternal diabetes | 40 (20) |
Maternal age (years)a | 27.5 (6.8) |
Parity of mother |
|
Primipara | 156 (78) |
Multipara | 156 (78) |
aMean (standard deviation), all others are n (%) |
Mean escape latency of acquisition day | Groups | ||||
NC | SC | ColC | Pre-SwE Exp | Post-SwE Exp | |
Days |
|
|
|
|
|
1st | 26.2 (2.3) | 30.6 (2.4) | 60.0 (0.0)b | 43.2 (1.8)b | 43.8 (1.6)b |
2nd | 22.6 (1.0) | 25.4 (0.6) | 58.9 (0.5)b | 38.6 (2.0)b | 40.5 (1.2)b |
3rd | 14.5 (1.8) | 18.9 (0.4) | 56.5 (1.2)b | 34.2 (1.9)b | 33.8 (1.0)b |
4th | 13.1 (1.7) | 17.5 (0.8) | 53.9 (0.7)b | 35.0 (1.6)b | 34.9 (1.6)b |
5th | 13.0 (1.2) | 15.9 (0.7) | 51.7 (2.0)b | 25.9 (0.7)b | 27.7 (0.9)b |
6th | 12.2 (1.0) | 13.3 (0.4) | 49.5 (2.0)b | 16.8 (1.1)b | 16.8 (0.8)b |
Average of acquisition days | |||||
5th and 6th | 12.6 (0.2) | 14.6 (0.8) | 50.6 (0.7)b | 20.4 (2.1)a | 22.4 (3.2)a |
NC indicates normal control; SC, Sham control; ColC, colchicine control; SwE, swimming exercise exposure. aP <0.05; bP <0.01. |
Categories | Number (%) |
Sex |
|
Male | 36 (60.0) |
Female | 24 (40.0) |
Age in yearsa | 8.8 (4.2) |
Education |
|
Pre-school | 20 (33.3) |
Elementary school | 24 (40.0) |
Junior high school | 16 (26.7) |
Cancer diagnoses |
|
Acute lymphoblastic leukemia | 33 (55) |
Retinoblastoma | 5 (8.3) |
Acute myeloid leukemia | 4 (6.7) |
Non-Hodgkins lymphoma | 4 (6.7) |
Osteosarcoma | 3 (5) |
Hepatoblastoma | 2 (3.3) |
Lymphoma | 2 (3.3) |
Neuroblastoma | 2 (3.3) |
Medulloblastoma | 1 (1.7) |
Neurofibroma | 1 (1.7) |
Ovarian tumour | 1 (1.7) |
Pancreatic cancer | 1 (1.7) |
Rhabdomyosarcoma | 1 (1.7) |
aMean (standard deviation) |
Narakas classification | Total 200 (100%) | Grade 1 72 (36%) | Grade 2 64 (32%) | Grade 3 50 (25%) | Grade 4 14 (7%) |
Complete recoverya | 107 (54) | 60 (83) | 40 (63) | 7 (14) | - |
Near complete functional recovery but partial deformitya | 22 (11) | 5 (7) | 10 (16) | 6 (12) | 1 (7) |
Partial recovery with gross functional defect and deformity | 31 (16) | 7 (10) | 13 (20) | 10 (20) | 1 (7) |
No significant improvement | 40 (20) | - | 1 (1.5) | 27 (54) | 12 (86) |
aSatisfactory recovery bGrade 1, C5, 6, 7 improvement; Grade 2, C5, 6, 7 improvement; Grade 3, panpalsy C5, 6, 7, 8, 9, Grade 4, panpalsy with Hornon’s syndrome. |
Narakas classification | Total 200 (100%) | Grade-1 72 (36%) | Grade-2 64 (32%) | Grade-3 50 (25%) | Grade-4 14 (7%) |
Complete recoverya | 107 (54) | 60 (83) | 40 (63) | 7 (14) | - |
Near complete functional recovery but partial deformitya | 22 (11) | 5 (7) | 10 (16) | 6 (12) | 1 (7) |
Partial recovery with gross functional defect and deformity | 31 (16) | 7 (10) | 13 (20) | 10 (20) | 1 (7) |
No significant improvement | 40 (20) | - | 1 (1.5) | 27 (54) | 12 (86) |
aSatisfactory recovery bGrade 1, C5, 6, 7 improvement; Grade 2, C5, 6, 7 improvement; Grade 3, panpalsy C5, 6, 7,8,9, Grade 4, panpalsy with Hornon’s syndrome. |
Variables in probe trial day | Groups | ||||
NC | SC | ColC | Pre-SwE Exp | Post-SwE Exp | |
Target crossings | 8.0 (0.3) | 7.3 (0.3) | 1.7 (0.2)a | 6.0 (0.3)a | 5.8 (0.4)a |
Time spent in target | 18.0 (0.4) | 16.2 (0.7) | 5.8 (0.8)a | 15.3 (0.7)a | 15.2 (0.9)a |
NC indicates normal control; SC, Sham control; ColC, colchicine control; SwE, swimming exercise exposure. aP <0.01. |
Pain level | Number (%) | P | ||
Pre | Post 1 | Post 2 | ||
Mean (SD)a pain score | 4.7 (1.9) | 2.7 (1.6) | 0.8 (1.1) | <0.001 |
Pain categories | ||||
No pain (0) | - | 1 (1.7) | 31 (51.7) | <0.001 |
Mild pain (1-3) | 15 (25.0) | 43 (70.0) | 27 (45.0) | |
Moderete pain (4-6) | 37 (61.7) | 15 (25.0) | 2 (3.3) | |
Severe pain (7-10) | 8 (13.3) | 2 (3.3) | - | |
aPain scores according to the visual analogue scale ranging from 0 to 10; SD indicates standard deviation |
Surgeries | Number (%) | Satisfactory outcomes n (%) |
Primary surgery (n=24) |
|
|
Upper plexus | 6 (25) | 5 (83) |
Pan-palsy | 18 (75) | 6 (33) |
All | 24 (100) | 11 (46) |
Secondary Surgery (n=26) |
|
|
Shoulder deformity | 15 (58) | 13 (87) |
Wrist and forearm deformity | 11 (42) | 6 (54) |
All | 26 (100) | 19 (73) |
Primary and secondary surgery | 50 (100) | 30 (60) |
Mallet score 14 to 25 or Raimondi score 2-3 or Medical Research grading >3 to 5. |
Narakas classification | Total 200 (100%) | Grade-1 72 (36%) | Grade-2 64 (32%) | Grade-3 50 (25%) | Grade-4 14 (7%) |
Complete recoverya | 107 (54) | 60 (83) | 40 (63) | 7 (14) | - |
Near complete functional recovery but partial deformitya | 22 (11) | 5 (7) | 10 (16) | 6 (12) | 1 (7) |
Partial recovery with gross functional defect and deformity | 31 (16) | 7 (10) | 13 (20) | 10 (20) | 1 (7) |
No significant improvement | 40 (20) | - | 1 (1.5) | 27 (54) | 12 (86) |
aSatisfactory recovery bGrade 1, C5, 6, 7 improvement; Grade 2, C5, 6, 7 improvement; Grade 3, panpalsy C5, 6, 7,8,9, Grade 4, panpalsy with Hornon’s syndrome. |
Trials | Groups | ||||
NC | SC | ColC | Pre-SwE Exp | Post-SwE Exp | |
1 | 20.8 (0.6) | 22.1 (1.8) | 41.1 (1.3)b | 31.9 (1.9)b | 32.9 (1.8)a, b |
2 | 10.9 (0.6) | 14.9 (1.7) | 37.4 (1.1)b | 24.9 (2.0)b | 26.8 (2.5)b |
3 | 8.4 (0.5) | 9.9 (2.0) | 32.8 (1.2)b | 22.0 (1.4)b | 21.0 (1.4)b |
4 | 7.8 (0.5) | 10.4 (1.3) | 27.6(1.1)b | 12.8 (1.2)b | 13.0 (1.4)b |
Savings (%)c | 47.7 (3.0) | 33.0 (3.0) | 10.0 (0.9)b | 23.6 (2.7)b | 18.9 (5.3)b |
NC indicates normal control; SC, Sham control; ColC, colchicine control; SwE, swimming exercise exposure. aP <0.05; bP <0.01. cThe difference in latency scores between trials 1 and 2, expressed as the percentage of savings increased from trial 1 to trial 2 |

